1
|
Kapoor A, Kumar P, Prakash R, Chaudhry K, Sharma R, Duraisamy AK. Comparison of smear layer removing efficacy of Cold Atmospheric Pressure (CAP) Plasma Jet with different chelating agents. An ex-vivo study. Biomater Investig Dent 2023; 10:2271929. [PMID: 38204477 PMCID: PMC10763900 DOI: 10.1080/26415275.2023.2271929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/11/2023] [Indexed: 01/12/2024] Open
Abstract
The present study aimed to assess the effectiveness of different final irrigation regimens (Cold Atmospheric Pressure Plasma Jet, MTAD, and EDTA) in removing the smear layer from intra-radicular dentin using a Scanning Electron Microscope (SEM). Eighty-four mandibular premolars were prepared with ProTaper Universal hand files and were equally divided into four groups i.e. Normal saline (control), EDTA, MTAD and CAP Plasma Jet. Prepared samples in the control, EDTA and MTAD groups were irrigated with 5 milliliters of the irrigant, and it was retained for 2 min. In the CAP Plasma Jet group, the plasma plume was directed towards the canal lumen for 2 min. The smear layer removal of all the groups was evaluated at the coronal, middle and apical thirds. Statistical analysis was performed using Kruskal-Wallis test followed by Dunn's test. Evaluation by SEM showed that the smear layer removal ability of MTAD and EDTA were significantly better than CAP Plasma Jet (p < 0.05). While CAP Plasma Jet showed results comparable to EDTA in the coronal third. In the middle and apical third of the canal, its effect was comparable to the control group (p > 0.05). MTAD and EDTA aided in better smear layer removal than the CAP Plasma Jet in the coronal, middle, and apical third of the test samples. CAP Plasma jet performed better in the coronal third.
Collapse
Affiliation(s)
- Ankita Kapoor
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Pravin Kumar
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Ram Prakash
- Department of Physics, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Kirti Chaudhry
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Rajat Sharma
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Arun Kumar Duraisamy
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
2
|
Mohseni P, Ghorbani A, Fariborzi N. Exploring the potential of cold plasma therapy in treating bacterial infections in veterinary medicine: opportunities and challenges. Front Vet Sci 2023; 10:1240596. [PMID: 37720476 PMCID: PMC10502341 DOI: 10.3389/fvets.2023.1240596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Cold plasma therapy is a novel approach that has shown significant promise in treating bacterial infections in veterinary medicine. Cold plasma possesses the potential to eliminate various bacteria, including those that are resistant to antibiotics, which renders it a desirable substitute for traditional antibiotics. Furthermore, it can enhance the immune system and facilitate the process of wound healing. However, there are some challenges associated with the use of cold plasma in veterinary medicine, such as achieving consistent and uniform exposure to the affected area, determining optimal treatment conditions, and evaluating the long-term impact on animal health. This paper explores the potential of cold plasma therapy in veterinary medicine for managing bacterial diseases, including respiratory infections, skin infections, and wound infections such as Clostridium botulinum, Clostridium perfringens, Bacillus cereus, and Bacillus subtilis. It also shows the opportunities and challenges associated with its use. In conclusion, the paper highlights the promising potential of utilizing cold plasma in veterinary medicine. However, to gain a comprehensive understanding of its benefits and limitations, further research is required. Future studies should concentrate on refining treatment protocols and assessing the long-term effects of cold plasma therapy on bacterial infections and the overall health of animals.
Collapse
Affiliation(s)
- Parvin Mohseni
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Niloofar Fariborzi
- Department of Biology and Control of Diseases Vector, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Akarca G, Atik A, Atik İ, Denizkara AJ. The use of cold plasma technology in solving the mold problem in Kashar cheese. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:752-760. [PMID: 36712224 PMCID: PMC9873875 DOI: 10.1007/s13197-022-05661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023]
Abstract
In this study, the possibilities of using cold plasma technology in solving the mold problem, which is one of the most important problems in Kashar cheese, were investigated. For this purpose Kashar cheeses were exposed to cold plasma with different gas compositions. As a result of the study 3-4 log reduction was achieved for both Aspergillus flavus and Penicillium crysogenum. The pH and aw values of samples were decreased with cold plasma application. The b* values of samples increased while L* and a* values decreased. When all the results obtained are considered as a whole, it can be said that cold plasma technology improves the physicochemical properties of Kashar cheese and provides significant decrease in mold count of the product.
Collapse
Affiliation(s)
- Gökhan Akarca
- Food Engineering Department, Faculty of Engineering, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Azize Atik
- Food Engineering Department, Faculty of Engineering, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - İlker Atik
- Food Technology Program, Afyon Vocational School, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Ayşe Janseli Denizkara
- Food Engineering Department, Faculty of Engineering, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| |
Collapse
|
4
|
Zhao Y, Shao L, Jia L, Zou B, Dai R, Li X, Jia F. Inactivation effects, kinetics and mechanisms of air- and nitrogen-based cold atmospheric plasma on Pseudomonas aeruginosa. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Lata S, Chakravorty S, Mitra T, Pradhan PK, Mohanty S, Patel P, Jha E, Panda PK, Verma SK, Suar M. Aurora Borealis in dentistry: The applications of cold plasma in biomedicine. Mater Today Bio 2022; 13:100200. [PMID: 35036896 PMCID: PMC8743205 DOI: 10.1016/j.mtbio.2021.100200] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 01/11/2023] Open
Abstract
Plasma is regularly alluded to as the fourth form of matter. Its bounty presence in nature along with its potential antibacterial properties has made it a widely utilized disinfectant in clinical sciences. Thermal plasma and non-thermal (or cold atmospheric) plasma (NTP) are two types of plasma. Atoms and heavy particles are both available at the same temperature in thermal plasma. Cold atmospheric plasma (CAP) is intended to be non-thermal since its electrons are hotter than the heavier particles at ambient temperature. Direct barrier discharge (DBD), atmospheric plasma pressure jet (APPJ), etc. methods can be used to produce plasma, however, all follow a basic concept in their generation. This review focuses on the anticipated uses of cold atmospheric plasma in dentistry, such as its effectiveness in sterilizing dental instruments by eradicating bacteria, its advantage in dental cavity decontamination over conventional methods, root canal disinfection, its effects on tooth whitening, the benefits of plasma treatment on the success of dental implant placement, and so forth. Moreover, the limitations and probable solutions has also been anticipated. These conceivable outcomes thus have proclaimed the improvement of more up-to-date gadgets, for example, the plasma needle and plasma pen, which are efficient in treating the small areas like root canal bleaching, biofilm disruption, requiring treatment in dentistry. Non-thermal plasma (NTP) has regarded as an important tool for biomedical application especially dental application. The surface application of NTP can be used for disinfecting microbial infection in endodontic issues. NTP can be used to eradicate the microorganism biofilm responsible for dental caries. NTP can also be utilized in would healing, implant modifications and adhesive restoration. NTP is potential candidate for clinical application in dentistry based on the experimental proofs.
Collapse
Affiliation(s)
- S Lata
- Kalinga Institute of Dental Sciences, Department of Conservative Dentistry and Endodontics, KIIT University, Bhubaneswar, 751024, India
| | - Shibani Chakravorty
- Kalinga Institute of Dental Sciences, Department of Conservative Dentistry and Endodontics, KIIT University, Bhubaneswar, 751024, India
| | - Tamoghni Mitra
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Prasanti Kumari Pradhan
- Kalinga Institute of Dental Sciences, Department of Conservative Dentistry and Endodontics, KIIT University, Bhubaneswar, 751024, India
| | - Soumyakanta Mohanty
- Department of Conservative Dentistry and Endodontics, SCB Dental College and Hospital, Cuttack, 753007, India
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Ealisha Jha
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.,Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| |
Collapse
|
6
|
Laroussi M, Bekeschus S, Keidar M, Bogaerts A, Fridman A, Lu XP, Ostrikov KK, Hori M, Stapelmann K, Miller V, Reuter S, Laux C, Mesbah A, Walsh J, Jiang C, Thagard SM, Tanaka H, Liu DW, Yan D, Yusupov M. Low Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3135118] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Scholtz V, Vaňková E, Kašparová P, Premanath R, Karunasagar I, Julák J. Non-thermal Plasma Treatment of ESKAPE Pathogens: A Review. Front Microbiol 2021; 12:737635. [PMID: 34712211 PMCID: PMC8546340 DOI: 10.3389/fmicb.2021.737635] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 01/19/2023] Open
Abstract
The acronym ESKAPE refers to a group of bacteria consisting of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. They are important in human medicine as pathogens that show increasing resistance to commonly used antibiotics; thus, the search for new effective bactericidal agents is still topical. One of the possible alternatives is the use of non-thermal plasma (NTP), a partially ionized gas with the energy stored particularly in the free electrons, which has antimicrobial and anti-biofilm effects. Its mechanism of action includes the formation of pores in the bacterial membranes; therefore, resistance toward it is not developed. This paper focuses on the current overview of literature describing the use of NTP as a new promising tool against ESKAPE bacteria, both in planktonic and biofilm forms. Thus, it points to the fact that NTP treatment can be used for the decontamination of different types of liquids, medical materials, and devices or even surfaces used in various industries. In summary, the use of diverse experimental setups leads to very different efficiencies in inactivation. However, Gram-positive bacteria appear less susceptible compared to Gram-negative ones, in general.
Collapse
Affiliation(s)
- Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia
| | - Eva Vaňková
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia.,Department of Biotechnology, University of Chemistry and Technology, Prague, Czechia
| | - Petra Kašparová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia
| | - Ramya Premanath
- Nitte University, Nitte University Centre for Science Education and Research, Mangalore, India
| | - Iddya Karunasagar
- Nitte University, Nitte University Centre for Science Education and Research, Mangalore, India
| | - Jaroslav Julák
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia.,Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
8
|
Abstract
Plasma is an electrically conducting medium that responds to electric and magnetic fields. It consists of large quantities of highly reactive species, such as ions, energetic electrons, exited atoms and molecules, ultraviolet photons, and metastable and active radicals. Non-thermal or cold plasmas are partially ionized gases whose electron temperatures usually exceed several tens of thousand degrees K, while the ions and neutrals have much lower temperatures. Due to the presence of reactive species at low temperature, the biological effects of non-thermal plasmas have been studied for application in the medical area with promising results. This review outlines the application of cold atmospheric pressure plasma (CAPP) in dentistry for the control of several pathogenic microorganisms, induction of anti-inflammatory, tissue repair effects and apoptosis of cancer cells, with low toxicity to healthy cells. Therefore, CAPP has potential to be applied in many areas of dentistry such as cariology, periodontology, endodontics and oral oncology.
Collapse
|
9
|
Jungbauer G, Moser D, Müller S, Pfister W, Sculean A, Eick S. The Antimicrobial Effect of Cold Atmospheric Plasma against Dental Pathogens-A Systematic Review of In-Vitro Studies. Antibiotics (Basel) 2021; 10:211. [PMID: 33672690 PMCID: PMC7924351 DOI: 10.3390/antibiotics10020211] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Interest in the application of cold atmospheric plasma (CAP) in the medical field has been increasing. Indications in dentistry are surface modifications and antimicrobial interventions. The antimicrobial effect of CAP is mainly attributed to the generation of reactive oxygen and reactive nitrogen species. The aim of this article is to systematically review the available evidence from in-vitro studies on the antimicrobial effect of CAP on dental pathogens. A database search was performed (PubMed, Embase, Scopus). Data concerning the device parameters, experimental set-ups and microbial cultivation were extracted. The quality of the studies was evaluated using a newly designed assessment tool. 55 studies were included (quality score 31-92%). The reduction factors varied strongly among the publications although clusters could be identified between groups of set pathogen, working gases, and treatment time intervals. A time-dependent increase of the antimicrobial effect was observed throughout the studies. CAP may be a promising alternative for antimicrobial treatment in a clinically feasible application time. The introduced standardized protocol is able to compare the outcome and quality of in-vitro studies. Further studies, including multi-species biofilm models, are needed to specify the application parameters of CAP before CAP should be tested in randomized clinical trials.
Collapse
Affiliation(s)
- Gert Jungbauer
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (D.M.); (A.S.); (S.E.)
| | - Dominick Moser
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (D.M.); (A.S.); (S.E.)
| | - Steffen Müller
- Department of Cranio-Maxillofacial Surgery, Hospital of the University of Regensburg, 93053 Regensburg, Germany;
| | - Wolfgang Pfister
- Department of Hospital Hygiene, Sophien- und Hufeland-Klinikum Weimar, 99425 Weimar, Germany;
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (D.M.); (A.S.); (S.E.)
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (D.M.); (A.S.); (S.E.)
| |
Collapse
|
10
|
Antibacterial efficacy of cold atmospheric plasma against Enterococcus faecalis planktonic cultures and biofilms in vitro. PLoS One 2019; 14:e0223925. [PMID: 31770390 PMCID: PMC6879142 DOI: 10.1371/journal.pone.0223925] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Nosocomial infections have become a serious threat in our times and are getting more difficult to handle due to increasing development of resistances in bacteria. In this light, cold atmospheric plasma (CAP), which is known to effectively inactivate microorganisms, may be a promising alternative for application in the fields of dentistry and dermatology. CAPs are partly ionised gases, which operate at low temperature and are composed of electrons, ions, excited atoms and molecules, reactive oxygen and nitrogen species. In this study, the effect of CAP generated from ambient air was investigated against Enterococcus faecalis, grown on agar plates or as biofilms cultured for up to 72 h. CAP reduced the colony forming units (CFU) on agar plates by > 7 log10 steps. Treatment of 24 h old biofilms of E. faecalis resulted in CFU-reductions by ≥ 3 log10 steps after CAP treatment for 5 min and by ≥ 5 log10 steps after CAP treatment for 10 min. In biofilm experiments, chlorhexidine (CHX) and UVC radiation served as positive controls and were only slightly more effective than CAP. There was no damage of cytoplasmic membranes upon CAP treatment as shown by spectrometric measurements for release of nucleic acids. Thus, membrane damage seems not to be the primary mechanism of action for CAP towards E. faecalis. Overall, CAP showed pronounced antimicrobial efficacy against E. faecalis on agar plates as well as in biofilms similar to positive controls CHX or UVC.
Collapse
|
11
|
Jiao Y, Tay FR, Niu LN, Chen JH. Advancing antimicrobial strategies for managing oral biofilm infections. Int J Oral Sci 2019; 11:28. [PMID: 31570700 PMCID: PMC6802668 DOI: 10.1038/s41368-019-0062-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 02/06/2023] Open
Abstract
Effective control of oral biofilm infectious diseases represents a major global challenge. Microorganisms in biofilms exhibit increased drug tolerance compared with planktonic cells. The present review covers innovative antimicrobial strategies for controlling oral biofilm-related infections published predominantly over the past 5 years. Antimicrobial dental materials based on antimicrobial agent release, contact-killing and multi-functional strategies have been designed and synthesized for the prevention of initial bacterial attachment and subsequent biofilm formation on the tooth and material surface. Among the therapeutic approaches for managing biofilms in clinical practice, antimicrobial photodynamic therapy has emerged as an alternative to antimicrobial regimes and mechanical removal of biofilms, and cold atmospheric plasma shows significant advantages over conventional antimicrobial approaches. Nevertheless, more preclinical studies and appropriately designed and well-structured multi-center clinical trials are critically needed to obtain reliable comparative data. The acquired information will be helpful in identifying the most effective antibacterial solutions and the most optimal circumstances to utilize these strategies.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Stomatology, the 7th Medical Center of PLA General Hospital, Beijing, PR China
| | - Franklin R Tay
- Department of Endodontics, the Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, PR China.
| | - Ji-Hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
12
|
Abstract
The formation of bacterial biofilm on implanted devices or damaged tissues leads to biomaterial-associated infections often resulting in life-threatening diseases and implant failure. It is a challenging process to eradicate biofilms as they are resistant to antimicrobial treatments. Conventional techniques, such as high heat and chemicals exposure, may not be suitable for biofilm removal in nosocomial settings. These techniques create surface degradation on the treated materials and lead to environmental pollution due to the use of toxic chemicals. A novel technique known as non-thermal plasma has a great potential to decontaminate or sterilize those nosocomial biofilms. This article aims to provide readers with an extensive review of non-thermal plasma and biofilms to facilitate further investigations. A brief introduction summarizes the problem caused by biofilms in hospital settings with current techniques used for biofilm inactivation followed by the literature review strategy. The remainder of the review discusses plasma and its generation, the role played by plasma reactive species, various factors affecting the antimicrobial efficacy of non-thermal plasma and summarizes many studies published in the field.
Collapse
|
13
|
Abstract
The main objective of this work was to fully understand the bio-decontamination process in a reduced-pressure oxygen plasma. Gram-negative Escherichia coli species was chosen as the target microorganism in this test. The comparison of decontamination efficacy between plasma total and UV radiation individually under various treatment parameters and tests of DNA agarose electrophoresis were made to evaluate the inactivation effect of UV radiation. The quantity of protein leakage and the concentration of malondialdehyde (MDA), which are markers of the end products of lipid peroxidation, in bacterial suspension after treatment were determined to estimate the contribution of both charged particles and free radicals for bacterial death. In addition, a scanning electronic microscope was used to visualize the plasma effect on microorganisms. The results showed that the essential action of the oxygen plasma on Escherichia coli is believed to be attributed to the fast and intense etching on cell membrane by electrons and ions. Attacks on polyunsaturation fatty acid (PUFA) in the cell membrane by oxygen free radicals and the destruction of the DNA in the cell by UV radiation are accessorial during an effective decontamination process.
Collapse
|
14
|
Neuber JU, Song S, Malik MA, Heller L, Jiang C. Nanosecond Pulsed Plasma Brush for Bacterial Inactivation on Laminate. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2017. [DOI: 10.1109/trpms.2017.2697760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.05.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Lacombe A, Niemira BA, Gurtler JB, Fan X, Sites J, Boyd G, Chen H. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiol 2015; 46:479-484. [DOI: 10.1016/j.fm.2014.09.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
|
17
|
Blumhagen A, Singh P, Mustapha A, Chen M, Wang Y, Yu Q. Plasma deactivation of oral bacteria seeded on hydroxyapatite disks as tooth enamel analogue. AMERICAN JOURNAL OF DENTISTRY 2014; 27:84-90. [PMID: 25000666 PMCID: PMC4090609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE To study the plasma treatment effects on deactivation of oral bacteria seeded on a tooth enamel analogue. METHODS A non-thermal atmospheric pressure argon plasma brush was used to treat two different Gram-positive oral bacteria including Lactobacillus acidophilus (L. acidophilus) and Streptococcus mutans (S. mutans). The bacteria were seeded on hydroxyapatite (HA) disks used as tooth enamel analogue with three initial bacterial seeding concentrations: a low inoculum concentration between 2.1 x 10(8) and 2.4 x 10(8) cfu/mL, a medium inoculum concentration between 9.8x10(8) and 2.4 x 10(9) cfu/mL, and a high inoculum concentration between 1.7 x 10(10) and 3.5 x 10(10) cfu/mL. The bacterial survivability upon plasma exposure was examined in terms of plasma exposure time and oxygen addition into the plasmas. SEM was performed to examine bacterial morphological changes after plasma exposure. RESULTS The experimental data indicated that a 13-second plasma exposure time completely killed all the bacteria when initial bacterial seeding density on HA surfaces was less than 6.9 x 10(6) cfu/cm2 for L. acidophilus and 1.7 x 10(7) cfu/cm2 for S. mutans, which resulted from low initial seeding inoculum concentration between 2.1 x 10(8) and 2.4 x 10(8) cfu/mL. Plasma exposure of the bacteria at higher initial bacterial seeding density obtained with high initial seeding inoculum concentration, however, only resulted in approximately 1.5 to 2 log reduction and approximately 2 to 2.5 log reduction for L. acidophilus and S. mutans, respectively. It was also noted that oxygen addition into the argon plasma brush did not affect the plasma deactivation effectiveness. SEM images showed that plasma deactivation mainly occurred with the top layer bacteria, while shadowing effects from the resulting bacterial debris reduced the plasma deactivation of the underlying bacteria.
Collapse
Affiliation(s)
- Adam Blumhagen
- Center for Surface Science and Plasma Technology, Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Prashant Singh
- Department of Food Science, University of Missouri, Columbia, MO 65211, USA
| | - Azlin Mustapha
- Department of Food Science, University of Missouri, Columbia, MO 65211, USA
| | - Meng Chen
- Nanova, Inc., Columbia, MO 65211, USA
| | - Yong Wang
- Center for Research on Interfacial Structure & Properties, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Qingsong Yu
- Center for Surface Science and Plasma Technology, Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
18
|
Luís Â, Silva F, Sousa S, Duarte AP, Domingues F. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. BIOFOULING 2014; 30:69-79. [PMID: 24228999 DOI: 10.1080/08927014.2013.845878] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Staphylococcus aureus is a Gram-positive pathogen which is able to form biofilms, exhibiting a more pronounced resistance to antibiotics and disinfectants. The hurdles posed in eradicating biofilms have driven the search for new compounds able to fight these structures. Phenolic compounds constitute one of the most numerous and ubiquitous group of plant secondary metabolites with many biological activities. The aim of the present work was to study the potential antimicrobial and antibiofilm properties of gallic, caffeic, and chlorogenic acids against S. aureus as well to elucidate its mechanism of action. It was concluded that the phenolic acids studied in this work have antistaphylococcal properties. For instance, gallic acid is able to influence the adhesion properties of S. aureus. The phenolic acids tested were also able to inhibit the production of α-hemolysin by this microorganism, with the exception of chlorogenic acid. Regarding its mechanism of action, caffeic acid interferes with the stability of the cell membrane and with the metabolic activity of the cells of S. aureus.
Collapse
Affiliation(s)
- Ângelo Luís
- a CICS-UBI - Health Sciences Research Centre, University of Beira Interior , Covilhã , Portugal
| | | | | | | | | |
Collapse
|
19
|
Hoffmann C, Berganza C, Zhang J. Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. Med Gas Res 2013; 3:21. [PMID: 24083477 PMCID: PMC4016545 DOI: 10.1186/2045-9912-3-21] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/05/2013] [Indexed: 11/10/2022] Open
Abstract
Cold Atmospheric Plasma is an ionized gas that has recently been extensively studied by researchers as a possible therapy in dentistry and oncology. Several different gases can be used to produce Cold Atmospheric Plasma such as Helium, Argon, Nitrogen, Heliox, and air. There are many methods of production by which cold atmospheric plasma is created. Each unique method can be used in different biomedical areas. In dentistry, researchers have mostly investigated the antimicrobial effects produced by plasma as a means to remove dental biofilms and eradicate oral pathogens. It has been shown that reactive oxidative species, charged particles, and UV photons play the main role. Cold Atmospheric Plasma has also found a minor, but important role in tooth whitening and composite restoration. Furthermore, it has been demonstrated that Cold Atmospheric Plasma induces apoptosis, necrosis, cell detachment, and senescence by disrupting the S phase of cell replication in tumor cells. This unique finding opens up its potential therapy in oncology.
Collapse
Affiliation(s)
- Clotilde Hoffmann
- Department of Physiology, Loma Linda University School of Medicine, Risley Hall, Room 223, Loma Linda, CA 92354, USA
| | - Carlos Berganza
- Department of Physiology, Loma Linda University School of Medicine, Risley Hall, Room 223, Loma Linda, CA 92354, USA
| | - John Zhang
- Department of Physiology, Loma Linda University School of Medicine, Risley Hall, Room 223, Loma Linda, CA 92354, USA
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
20
|
Vatansever F, de Melo WCMA, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP, Hamblin MR. Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 2013; 37:955-89. [PMID: 23802986 DOI: 10.1111/1574-6976.12026] [Citation(s) in RCA: 578] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction in molecular oxygen. Four major ROS are recognized comprising superoxide (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen ((1)O2), but they display very different kinetics and levels of activity. The effects of O2•- and H2O2 are less acute than those of •OH and (1)O2, because the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and nonenzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or (1)O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics and nonpharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma, and medicinal honey. A brief final section covers reactive nitrogen species and related therapeutics, such as acidified nitrite and nitric oxide-releasing nanoparticles.
Collapse
Affiliation(s)
- Fatma Vatansever
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schaudinn C, Jaramillo D, Freire MO, Sedghizadeh PP, Nguyen A, Webster P, Costerton JW, Jiang C. Evaluation of a nonthermal plasma needle to eliminate ex vivo biofilms in root canals of extracted human teeth. Int Endod J 2013; 46:930-7. [PMID: 23480318 DOI: 10.1111/iej.12083] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 02/02/2013] [Indexed: 01/16/2023]
Abstract
AIM To evaluate the efficacy of a nonthermal plasma (NTP) at atmospheric pressure on ex vivo biofilm in root canals of extracted teeth. METHODOLOGY Intracanal contents from three teeth with root canal infections were collected, pooled and grown in thirty-five microCT-mapped root canals of extracted and instrumented human teeth. One group of teeth was treated with NTP, another with 6% NaOCl and one set was left untreated. The intracanal contents from twenty-seven teeth (nine teeth in each group) were plated on agar and colony forming units were determined. Parametric test of one-way analysis of variance (anova) was used to analyse statistical significance. The remaining teeth were cut open, stained with LIVE/DEAD(®) and examined with confocal laser scanning microscopy. RESULTS The untreated root canals were covered with biofilm of varying thickness. Treatment with nonthermal plasma decreased the number of viable bacteria in biofilms by one order of magnitude, whilst the NaOCl control achieved a reduction of more than four magnitudes. Both the NTP and the NaOCl treatment results were significantly different from the negative control (P < 0.05). CONCLUSION The nonthermal plasma displayed antimicrobial activity against endodontic biofilms in root canals, but was not as effective as the use of 6% NaOCl.
Collapse
Affiliation(s)
- C Schaudinn
- Robert Koch Institute, Berlin, Germany; House Research Institute, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|