1
|
Cai Y, Zhang X. The atypical organization of the luxI/R family genes in AHL-driven quorum-sensing circuits. J Bacteriol 2024; 206:e0043023. [PMID: 38240569 PMCID: PMC10882985 DOI: 10.1128/jb.00430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Quorum sensing (QS) is an elaborate regulatory mechanism associated with virulence and bacterial adaptation to the changing environment. QS is widespread in Proteobacteria and acts primarily through N-acylhomoserine lactone (AHL) signals. At the core of the AHL-driven QS systems are the AHL synthase gene (luxI family) and its cognate transcriptional regulator gene (luxR family). Several QS systems display one or more genes intervening between the luxI and luxR, in which gene arrangements are notably different due to the relative position and the transcriptional orientation between the essential luxI/R and the genes of location correlation. These adjacent genes may exert a regulatory impact on the primary QS genes or contribute toward an extension of QS regulatory control. In this review, we describe the organization of AHL-driven QS genes based on previous research and specific genome databases and provide new insights into these atypical QS gene arrangements.
Collapse
Affiliation(s)
- Yuyuan Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Cell-Cell Signaling Proteobacterial LuxR Solos: a Treasure Trove of Subgroups Having Different Origins, Ligands, and Ecological Roles. mSystems 2023; 8:e0103922. [PMID: 36802056 PMCID: PMC10134790 DOI: 10.1128/msystems.01039-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Many proteobacteria possess LuxR solos which are quorum sensing LuxR-type regulators that are not paired with a cognate LuxI-type synthase. LuxR solos have been implicated in intraspecies, interspecies, and interkingdom communication by sensing endogenous and exogenous acyl-homoserine lactones (AHLs) as well as non-AHL signals. LuxR solos are likely to play a major role in microbiome formation, shaping, and maintenance through many different cell-cell signaling mechanisms. This review intends to assess the different types and discuss the possible functional roles of the widespread family of LuxR solo regulators. In addition, an analysis of LuxR solo types and variability among the totality of publicly available proteobacterial genomes is presented. This highlights the importance of these proteins and will encourage scientists to mobilize and study them in order to increase our knowledge of novel cell-cell mechanisms that drive bacterial interactions in the context of complex bacterial communities.
Collapse
|
3
|
López-Martín M, Dubern JF, Alexander MR, Williams P. AbaM Regulates Quorum Sensing, Biofilm Formation, and Virulence in Acinetobacter baumannii. J Bacteriol 2021; 203:e00635-20. [PMID: 33495249 PMCID: PMC8088503 DOI: 10.1128/jb.00635-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/08/2021] [Indexed: 12/31/2022] Open
Abstract
Acinetobacter baumannii possesses a single divergent luxR/luxRI-type quorum-sensing (QS) locus named abaR/abaI This locus also contains a third gene located between abaR and abaI, which we term abaM, that codes for an uncharacterized member of the RsaM protein family known to regulate N-acylhomoserine lactone (AHL)-dependent QS in other beta- and gammaproteobacteria. Here, we show that disruption of abaM via a T26 insertion in A. baumannii strain AB5075 resulted in increased production of N-(3-hydroxydodecanoyl)-l-homoserine lactone and enhanced surface motility and biofilm formation. In contrast to the wild type and the abaI::T26 mutant, the virulence of the abaM::T26 mutant was completely attenuated in a Galleria mellonella infection model. Transcriptomic analysis of the abaM::T26 mutant revealed that AbaM differentially regulates at least 76 genes, including the csu pilus operon and the acinetin 505 lipopeptide biosynthetic operon, that are involved in surface adherence, biofilm formation and virulence. A comparison of the wild type, abaM::T26 and abaI::T26 transcriptomes, indicates that AbaM regulates ∼21% of the QS regulon including the csu operon. Moreover, the QS genes (abaI and abaR) were among the most upregulated in the abaM::T26 mutant. A. baumanniilux-based abaM reporter gene fusions revealed that abaM expression is positively regulated by QS but negatively autoregulated. Overall, the data presented in this work demonstrates that AbaM plays a central role in regulating A. baumannii QS, virulence, surface motility, and biofilm formation.IMPORTANCEAcinetobacter baumannii is a multiantibiotic-resistant pathogen of global health care importance. Understanding Acinetobacter virulence gene regulation could aid the development of novel anti-infective strategies. In A. baumannii, the abaR and abaI genes that code for the receptor and synthase components of an N-acylhomoserine (AHL) lactone-dependent quorum sensing system (QS) are separated by abaM Here, we show that although mutation of abaM increased AHL production, surface motility, and biofilm development, it resulted in the attenuation of virulence. AbaM was found to control both QS-dependent and QS-independent genes. The significance of this work lies in the identification of AbaM, an RsaM ortholog known to control virulence in plant pathogens, as a modulator of virulence in a human pathogen.
Collapse
Affiliation(s)
- Mario López-Martín
- Biodiscovery Institute, National Biofilms Innovation Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jean-Frédéric Dubern
- Biodiscovery Institute, National Biofilms Innovation Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Morgan R Alexander
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- Biodiscovery Institute, National Biofilms Innovation Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
4
|
Li X, Zhang G, Zhu Y, Bi J, Hao H, Hou H. Effect of the luxI/R gene on AHL-signaling molecules and QS regulatory mechanism in Hafnia alvei H4. AMB Express 2019; 9:197. [PMID: 31807954 PMCID: PMC6895348 DOI: 10.1186/s13568-019-0917-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 01/03/2023] Open
Abstract
Hafnia alvei H4 is a bacterium subject to regulation by a N-acyl-l-homoserine lactone (AHL)-mediated quorum sensing system and is closely related to the corruption of instant sea cucumber. Studying the effect of Hafnia alvei H4 quorum sensing regulatory genes on AHLs is necessary for the quality and preservation of instant sea cucumber. In this study, the draft genome of H. alvei H4, which comprises a single chromosome of 4,687,151 bp, was sequenced and analyzed and the types of AHLs were analyzed employing thin-layer chromatography (TLC) and high resolution triple quadrupole liquid chromatography/mass spectrometry (LC/MS). Then the wild-type strain of H. alvei H4 and the luxI/R double mutant (ΔluxIR) were compared by transcriptome sequencing (RNA-seq). The results indicate that the incomplete genome sequence revealed the presence of one quorum-sensing (QS) gene set, designated as lasI/expR. Three major AHLs, N-hexanoyl-l-homoserine lactone (C6-HSL), N-butyryl-l-homoserine lactone (C4-HSL), and N-(3-oxo-octanoyl)-l-homoserine lactone (3-oxo-C8-HSL) were found, with C6-HSL being the most abundant. C6-HSL was not detected in the culture of the luxI mutant (ΔluxI) and higher levels of C4-HSL was found in the culture of the luxR mutant (ΔluxR), which suggested that the luxR gene may have a positive effect on C4-HSL production. It was also found that AHL and QS genes are closely related in the absence of luxIR double deletion. The results of this study can further elucidate at the genetic level that luxI and luxR genes are involved in the regulation of AHL.
Collapse
|
5
|
In silico analyses of conservational, functional and phylogenetic distribution of the LuxI and LuxR homologs in Gram-positive bacteria. Sci Rep 2017; 7:6969. [PMID: 28765541 PMCID: PMC5539150 DOI: 10.1038/s41598-017-07241-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/26/2017] [Indexed: 11/08/2022] Open
Abstract
LuxI and LuxR are key factors that drive quorum sensing (QS) in bacteria through secretion and perception of the signaling molecules e.g. N-Acyl homoserine lactones (AHLs). The role of these proteins is well established in Gram-negative bacteria for intercellular communication but remain under-explored in Gram-positive bacteria where QS peptides are majorly responsible for cell-to-cell communication. Therefore, in the present study, we explored conservation, potential function, topological arrangements and evolutionarily aspects of these proteins in Gram-positive bacteria. Putative LuxI/LuxR containing proteins were retrieved using the domain-based strategy from InterPro v62.0 meta-database. Conservational analyses via multiple sequence alignment and domain showed that these are well conserved in Gram-positive bacteria and possess relatedness with Gram-negative bacteria. Further, Gene ontology and ligand-based functional annotation explain their active involvement in signal transduction mechanism via QS signaling molecules. Moreover, Phylogenetic analyses (LuxI, LuxR, LuxI + LuxR and 16s rRNA) revealed horizontal gene transfer events with significant statistical support among Gram-positive and Gram-negative bacteria. This in-silico study offers a detailed overview of potential LuxI/LuxR distribution in Gram-positive bacteria (mainly Firmicutes and Actinobacteria) and their functional role in QS. It would further help in understanding the extent of interspecies communications between Gram-positive and Gram-negative bacteria through QS signaling molecules.
Collapse
|
6
|
Hudaiberdiev S, Choudhary KS, Vera Alvarez R, Gelencsér Z, Ligeti B, Lamba D, Pongor S. Census of solo LuxR genes in prokaryotic genomes. Front Cell Infect Microbiol 2015; 5:20. [PMID: 25815274 PMCID: PMC4357305 DOI: 10.3389/fcimb.2015.00020] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/19/2015] [Indexed: 02/02/2023] Open
Abstract
luxR genes encode transcriptional regulators that control acyl homoserine lactone-based quorum sensing (AHL QS) in Gram negative bacteria. On the bacterial chromosome, luxR genes are usually found next or near to a luxI gene encoding the AHL signal synthase. Recently, a number of luxR genes were described that have no luxI genes in their vicinity on the chromosome. These so-called solo luxR genes may either respond to internal AHL signals produced by a non-adjacent luxI in the chromosome, or can respond to exogenous signals. Here we present a survey of solo luxR genes found in complete and draft bacterial genomes in the NCBI databases using HMMs. We found that 2698 of the 3550 luxR genes found are solos, which is an unexpectedly high number even if some of the hits may be false positives. We also found that solo LuxR sequences form distinct clusters that are different from the clusters of LuxR sequences that are part of the known luxR-luxI topological arrangements. We also found a number of cases that we termed twin luxR topologies, in which two adjacent luxR genes were in tandem or divergent orientation. Many of the luxR solo clusters were devoid of the sequence motifs characteristic of AHL binding LuxR proteins so there is room to speculate that the solos may be involved in sensing hitherto unknown signals. It was noted that only some of the LuxR clades are rich in conserved cysteine residues. Molecular modeling suggests that some of the cysteines may be involved in disulfide formation, which makes us speculate that some LuxR proteins, including some of the solos may be involved in redox regulation.
Collapse
Affiliation(s)
- Sanjarbek Hudaiberdiev
- Protein Structure and Bioinformatics, International Center for Genetic Engineering and Biotechnology Trieste, Italy
| | - Kumari S Choudhary
- Protein Structure and Bioinformatics, International Center for Genetic Engineering and Biotechnology Trieste, Italy
| | - Roberto Vera Alvarez
- Faculty of Information Technology and Bionics, Pázmány Peter Catholic University Budapest, Hungary
| | - Zsolt Gelencsér
- Faculty of Information Technology and Bionics, Pázmány Peter Catholic University Budapest, Hungary
| | - Balázs Ligeti
- Faculty of Information Technology and Bionics, Pázmány Peter Catholic University Budapest, Hungary
| | - Doriano Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, U.O.S di Trieste, Area Science Park Basovizza, Trieste, Italy
| | - Sándor Pongor
- Protein Structure and Bioinformatics, International Center for Genetic Engineering and Biotechnology Trieste, Italy ; Faculty of Information Technology and Bionics, Pázmány Peter Catholic University Budapest, Hungary
| |
Collapse
|
7
|
Modeling bacterial quorum sensing in open and closed environments: potential discrepancies between agar plate and culture flask experiments. J Mol Model 2014; 20:2248. [DOI: 10.1007/s00894-014-2248-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/10/2014] [Indexed: 01/12/2023]
|
8
|
Dogsa I, Choudhary KS, Marsetic Z, Hudaiberdiev S, Vera R, Pongor S, Mandic-Mulec I. ComQXPA quorum sensing systems may not be unique to Bacillus subtilis: a census in prokaryotic genomes. PLoS One 2014; 9:e96122. [PMID: 24788106 PMCID: PMC4008528 DOI: 10.1371/journal.pone.0096122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/03/2014] [Indexed: 11/19/2022] Open
Abstract
The comQXPA locus of Bacillus subtilis encodes a quorum sensing (QS) system typical of Gram positive bacteria. It encodes four proteins, the ComQ isoprenyl transferase, the ComX pre-peptide signal, the ComP histidine kinase, and the ComA response regulator. These are encoded by four adjacent genes all situated on the same chromosome strand. Here we present results of a comprehensive census of comQXPA-like gene arrangements in 2620 complete and 6970 draft prokaryotic genomes (sequenced by the end of 2013). After manually checking the data for false-positive and false-negative hits, we found 39 novel com-like predictions. The census data show that in addition to B. subtilis and close relatives, 20 comQXPA-like loci are predicted to occur outside the B. subtilis clade. These include some species of Clostridiales order, but none outside the phylum Firmicutes. Characteristic gene-overlap patterns were observed in comQXPA loci, which were different for the B. subtilis-like and non-B. subtilis-like clades. Pronounced sequence variability associated with the ComX peptide in B. subtilis clade is evident also in the non-B. subtilis clade suggesting grossly similar evolutionary constraints in the underlying quorum sensing systems.
Collapse
Affiliation(s)
- Iztok Dogsa
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kumari Sonal Choudhary
- Group of Protein Structure and Bioinformatics, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Ziva Marsetic
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sanjarbek Hudaiberdiev
- Group of Protein Structure and Bioinformatics, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Roberto Vera
- Group of Protein Structure and Bioinformatics, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Sándor Pongor
- Group of Protein Structure and Bioinformatics, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- * E-mail: (SP); (IMM)
| | - Ines Mandic-Mulec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (SP); (IMM)
| |
Collapse
|
9
|
Kuznetsov V, Lee HK, Maurer-Stroh S, Molnár MJ, Pongor S, Eisenhaber B, Eisenhaber F. How bioinformatics influences health informatics: usage of biomolecular sequences, expression profiles and automated microscopic image analyses for clinical needs and public health. Health Inf Sci Syst 2013; 1:2. [PMID: 25825654 PMCID: PMC4336111 DOI: 10.1186/2047-2501-1-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/05/2012] [Indexed: 01/25/2023] Open
Abstract
ABSTRACT The currently hyped expectation of personalized medicine is often associated with just achieving the information technology led integration of biomolecular sequencing, expression and histopathological bioimaging data with clinical records at the individual patients' level as if the significant biomedical conclusions would be its more or less mandatory result. It remains a sad fact that many, if not most biomolecular mechanisms that translate the human genomic information into phenotypes are not known and, thus, most of the molecular and cellular data cannot be interpreted in terms of biomedically relevant conclusions. Whereas the historical trend will certainly be into the general direction of personalized diagnostics and cures, the temperate view suggests that biomedical applications that rely either on the comparison of biomolecular sequences and/or on the already known biomolecular mechanisms have much greater chances to enter clinical practice soon. In addition to considering the general trends, we exemplarily review advances in the area of cancer biomarker discovery, in the clinically relevant characterization of patient-specific viral and bacterial pathogens (with emphasis on drug selection for influenza and enterohemorrhagic E. coli) as well as progress in the automated assessment of histopathological images. As molecular and cellular data analysis will become instrumental for achieving desirable clinical outcomes, the role of bioinformatics and computational biology approaches will dramatically grow. AUTHOR SUMMARY With DNA sequencing and computers becoming increasingly cheap and accessible to the layman, the idea of integrating biomolecular and clinical patient data seems to become a realistic, short-term option that will lead to patient-specific diagnostics and treatment design for many diseases such as cancer, metabolic disorders, inherited conditions, etc. These hyped expectations will fail since many, if not most biomolecular mechanisms that translate the human genomic information into phenotypes are not known yet and, thus, most of the molecular and cellular data collected will not lead to biomedically relevant conclusions. At the same time, less spectacular biomedical applications based on biomolecular sequence comparison and/or known biomolecular mechanisms have the potential to unfold enormous potential for healthcare and public health. Since the analysis of heterogeneous biomolecular data in context with clinical data will be increasingly critical, the role of bioinformatics and computational biology will grow correspondingly in this process.
Collapse
Affiliation(s)
- Vladimir Kuznetsov
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671 Singapore
- School of Computer Engineering (SCE), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553 Singapore
| | - Hwee Kuan Lee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671 Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671 Singapore
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Maria Judit Molnár
- Institute of Genomic Medicine and Rare Disorders, Tömö Street 25-29, 1083 Budapest, Hungary
| | - Sandor Pongor
- Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary (PPKE), Práter u. 50/a, 1083, Budapest, Hungary
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671 Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671 Singapore
- School of Computer Engineering (SCE), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553 Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore, 117597 Singapore
| |
Collapse
|
10
|
Classifying the topology of AHL-driven quorum sensing circuits in proteobacterial genomes. SENSORS 2012; 12:5432-44. [PMID: 22778593 PMCID: PMC3386692 DOI: 10.3390/s120505432] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 03/24/2012] [Accepted: 04/26/2012] [Indexed: 12/04/2022]
Abstract
Virulence and adaptability of many Gram-negative bacterial species are associated with an N-acylhomoserine lactone (AHL) gene regulation mechanism called quorum sensing (QS). The arrangement of quorum sensing genes is variable throughout bacterial genomes, although there are unifying themes that are common among the various topological arrangements. A bioinformatics survey of 1,403 complete bacterial genomes revealed characteristic gene topologies in 152 genomes that could be classified into 16 topological groups. We developed a concise notation for the patterns and show that the sequences of LuxR regulators and LuxI autoinducer synthase proteins cluster according to the topological patterns. The annotated topologies are deposited online with links to sequences and genome annotations at http://bacteria.itk.ppke.hu/QStopologies/.
Collapse
|