1
|
Kaur A, Singh S, Sharma SC. Unlocking Trehalose's versatility: A comprehensive Journey from biosynthesis to therapeutic applications. Exp Cell Res 2024; 442:114250. [PMID: 39260672 DOI: 10.1016/j.yexcr.2024.114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
For over forty years, a sugar of rare configuration known as trehalose (two molecules of glucose linked at their 1-carbons), has been recognised for more than just its roles as a storage compound. The ability of trehalose to protect an extensive range of biological materials, for instance cell lines, tissues, proteins and DNA, has sparked considerable interest in the biotechnology and pharmaceutical industries. Currently, trehalose is now being investigated as a promising therapeutic candidate for human use, as it has shown potential to reduce disease severity in various experimental models. Despite its diverse biological effects, the precise mechanism underlying this observation remain unclear. Therefore, this review delves into the significance of trehalose biosynthesis pathway in the development of novel drug, investigates the inhibitors of trehalose synthesis and evaluates the binding efficiency of T6P with TPS1. Additionally, it also emphasizes the knowledge about the protective effect of trehalose on modulation of autophagy, combating viral infections, addressing the conditions like cancer and neurodegenerative diseases based on the recent advancement. Furthermore, review also highlight the trehalose's emerging role as a surfactant in delivering monoclonal antibodies that will further broadening its potential application in biomedicines.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| | - Sukhwinder Singh
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
2
|
Younis MK, Elakkad YE, Fakhr Eldeen RR, Ali IH, Khalil IA. Propranolol-Loaded Trehalosome as Antiproliferative Agent for Treating Skin Cancer: Optimization, Cytotoxicity, and In Silico Studies. Pharmaceutics 2023; 15:2033. [PMID: 37631247 PMCID: PMC10458383 DOI: 10.3390/pharmaceutics15082033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
This study aims at preparing propranolol-loaded trehalosomes (a trehalose-coated liposome) to be used as an antiproliferative agent for treating skin cancer. A factorial design was used to select the optimum formula, where trehalose, lecithin, and Tween 80 levels were studied. A total of 24 runs were prepared and characterized according to size, charge, entrapment efficiency, and release after 3 h to select the optimum formula. The optimized formula was investigated using TEM, DSC, and FTIR. Cell studies were carried out against the human melanoma cell line to measure cytotoxicity, apoptosis/necrosis, and cell cycle arrest. In silico studies were conducted to understand the interaction between propranolol and the influential receptors in melanoma. The results showed the selected formula consisted of trehalose (175 mg), lecithin (164 mg), and Tween 80 (200 mg) with a size of 245 nm, a charge of -9 mV, an EE% of 68%, and a Q3 of 62%. Moreover, the selected formula has good cytotoxicity compared to the free drug due to the synergistic effect of the drug and the designed carrier. IC50 of free propranolol and the encapsulation of propranolol were 17.48 μg/mL and 7.26 μg/mL, respectively. Also, propranolol and the encapsulation of propranolol were found to significantly increase early and late apoptosis, in addition to inducing G1 phase cell cycle arrest. An in silico virtual study demonstrated that the highest influential receptors in melanoma were the vitamin D receptor, CRH-R1, VEGFR 1, and c-Kit, which matches the results of experimental apoptotic and cell cycle analysis. In conclusion, the selected formula has good cytotoxicity compared to the free drug due to the synergistic effect of the drug and the designed carrier, which make it a good candidate as an antiproliferative agent for treating skin cancer.
Collapse
Affiliation(s)
- Mona K. Younis
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology, 6th of October City 12566, Egypt; (M.K.Y.); (Y.E.E.)
| | - Yara E. Elakkad
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology, 6th of October City 12566, Egypt; (M.K.Y.); (Y.E.E.)
| | - Rasha R. Fakhr Eldeen
- Department of Biochemistry, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology, 6th of October City 12566, Egypt;
| | - Isra H. Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt;
| | - Islam A. Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology, 6th of October City 12566, Egypt; (M.K.Y.); (Y.E.E.)
| |
Collapse
|
3
|
Pupyshev AB, Klyushnik TP, Akopyan AA, Singh SK, Tikhonova MA. Disaccharide Trehalose in Experimental Therapies for Neurodegenerative Disorders: Molecular Targets and Translational Potential. Pharmacol Res 2022; 183:106373. [PMID: 35907433 DOI: 10.1016/j.phrs.2022.106373] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Induction of autophagy is a prospective approach to the treatment of neurodegeneration. In the recent decade, trehalose attracted special attention. It is an autophagy inducer with negligible adverse effects and is approved for use in humans according to FDA requirements. Trehalose has a therapeutic effect in various experimental models of diseases. This glucose disaccharide with a flexible α-1-1'-glycosidic bond has unique properties: induction of mTOR-independent autophagy (with kinase AMPK as the main target) and a chaperone-like effect on proteins imparting them natural spatial structure. Thus, it can reduce the accumulation of neurotoxic aberrant/misfolded proteins. Trehalose has an anti-inflammatory effect and inhibits detrimental oxidative stress partially owing to the enhancement of endogenous antioxidant defense represented by the Nrf2 protein. The disaccharide activates lysosome and autophagosome biogenesis pathways through the protein factors TFEB and FOXO1. Here we review various mechanisms of the neuroprotective action of trehalose and touch on the possibility of pleiotropic effects. Current knowledge about specific features of trehalose pharmacodynamics is discussed. The neuroprotective effects of trehalose in animal models of major neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases are examined too. Attention is given to translational transition to clinical trials of this drug, especially oral and parenteral routes of administration. Besides, the possibility of enhancing the therapeutic benefit via a combination of mTOR-dependent and mTOR-independent autophagy inducers is analyzed. In general, trehalose appears to be a promising multitarget tool for the inhibition of experimental neurodegeneration and requires thorough investigation of its clinical capabilities.
Collapse
Affiliation(s)
- Alexander B Pupyshev
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| | - Tatyana P Klyushnik
- Mental Health Research Center, Kashirskoye shosse 34, Moscow 115522, Russia.
| | - Anna A Akopyan
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Krishna Bhawan, 594 Kha/123, Shahinoor Colony, Nilmatha, Uttar Pradesh, Lucknow 226002, India.
| | - Maria A Tikhonova
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| |
Collapse
|
4
|
Pupyshev AB, Belichenko VM, Tenditnik MV, Bashirzade AA, Dubrovina NI, Ovsyukova MV, Akopyan AA, Fedoseeva LA, Korolenko TA, Amstislavskaya TG, Tikhonova MA. Combined induction of mTOR-dependent and mTOR-independent pathways of autophagy activation as an experimental therapy for Alzheimer's disease-like pathology in a mouse model. Pharmacol Biochem Behav 2022; 217:173406. [DOI: 10.1016/j.pbb.2022.173406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/18/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022]
|
5
|
Singh R, Kumar P. Disaccharide-polyethylenimine organic nanoparticles as non-toxic in vitro gene transporters and their anticancer potential. Bioorg Chem 2021; 112:104918. [PMID: 33932768 DOI: 10.1016/j.bioorg.2021.104918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/26/2022]
Abstract
Polyethylenimines (PEIs) have been shown as efficient gene delivery vectors due to their unique properties, however, toxicity as well as non-specific interactions with the tissues/cells because of high charge density have hampered their use in clinical applications. To counter these concerns, here, we have prepared disachharide-PEI organic nanoparticles by mixing PEIs with non-reducing disaccharides, i.e. trehalose (TPONs) and sucrose (SPONs), under mild conditions. The fabricated nanoparticles were complexed with pDNA and size of these complexes was found in the range of ~130-162 nm with zeta potential ~ +8-25 mV. Further evaluation of these nanoparticles revealed that substitution of disaccharides on PEIs successfully augmented cell viability. Transfection efficiency exhibited by these complexes was significantly higher than the unmodified polymer and the standard, Lipofectamine, complexes. Fabrication of organic nanoparticles did not alter the buffering capacity considerably which was found to be instrumental during endosomal escape of the complexes. Among both the series of nanoparticles, trehalose-PEI organic nanoparticles (TPONs) exhibited greater pDNA transportation potential than sucrose-PEI organic nanoparticles (SPONs) which was also established by flow cytometric data, wherein percent cells expressing GFP was higher in case of TP/pDNA complexes as compared to SP/pDNA complexes. Interestingly, TPONs also showed promising anticancer activity on cancer cell lines i.e. Mg63, MCF-7 and HepG2. Overall, the results advocate promising potential of disaccharide-PEI organic nanoparticles as efficient gene delivery agents which can be used effectively in future gene therapy applications along with anti-cancer competence of TPONs.
Collapse
Affiliation(s)
- Reena Singh
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Opielka M, Sobocki B, Mierzejewska P, Smolenski RT. The effect of trehalose on intracellular and extracellular nucleotide metabolism. A pilot study. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1400-1409. [PMID: 32571143 DOI: 10.1080/15257770.2020.1772492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Trehalose is a stable, non-reducing disaccharide, which was found recently to stimulate autophagy, limit the inflammatory response and suppress the growth of specific types of cancer. Purinergic signaling and dysregulation of nucleotide metabolism are the key factors, which play a role in the pathophysiology of cancer development and inflammation. Therefore, this study took a novel approach and aimed to find the effect of trehalose on intracellular, and the extracellular metabolism of nucleotides and NAD + in endothelial and breast cancer cells. The results of this study indicated that in vitro concentrations of trehalose between 0.5 and 5 mM reduced the levels of intracellular NAD + in breast cancer cells. The decrease of intracellular guanosine, independent of GTP energy metabolism, was also observed in both endothelial and cancer cells. Trehalose decreased the activity of ecto-adenosine deaminase. Maximal 3-fold decrease in adenosine deamination was observed in both cell types. Trehalose causes changes in both intracellular and extracellular nucleotide metabolism that is more significant in cancer cells than in endothelium. This effect may have therapeutic potential in cancer and endothelial dysfunction, but its full clarification requires further studies.
Collapse
Affiliation(s)
- Mikolaj Opielka
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Sobocki
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | | | | |
Collapse
|
7
|
The Healing of Oxidative Injuries with Trehalose in UVB-Irradiated Rabbit Corneas. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1857086. [PMID: 31641422 PMCID: PMC6770344 DOI: 10.1155/2019/1857086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/25/2019] [Accepted: 08/20/2019] [Indexed: 11/17/2022]
Abstract
Our previous research revealed that trehalose, a nonreducing disaccharide of glucose and an important stress responsive factor, proved to have anti-inflammatory, antiapoptotic, and particularly antioxidant properties in UVB-irradiated corneas. Trehalose reduced oxidative stress in corneas induced by UVB irradiation, by means of a decrease in the antioxidant/prooxidant imbalance in the corneal epithelium. In this study, we demonstrate that trehalose of 3% or 6% concentration in eye drops directly decreases oxidative stress in UVB-irradiated corneas, by removing the excessive amount of reactive oxygen species (ROS). Trehalose drops applied on corneas during UVB irradiation once daily for four days resulted in a reduction or even absence of the oxidative stress, DNA damage, and peroxynitrite formation (detected by nitrotyrosine residues), seen in buffer-treated corneas. Furthermore, trehalose treatment applied curatively after repeated irradiation for the subsequent fourteen days led to the renewal of corneal transparency and significant suppression or even absence of neovascularization. This was in contrast to buffer-treated irradiated corneas, where the intracorneal inflammation was developed and the untransparent corneas were vascularized. In conclusion, the treatment of UVB-irradiated corneas with trehalose eye drops removed the excessive amount of ROS in the corneal epithelium, leading to the suppression of oxidative stress and favorable corneal healing. The 6% trehalose showed a higher intensive antioxidant effect.
Collapse
|
8
|
Allavena G, Del Bello B, Tini P, Volpi N, Valacchi G, Miracco C, Pirtoli L, Maellaro E. Trehalose inhibits cell proliferation and amplifies long‐term temozolomide‐ and radiation‐induced cytotoxicity in melanoma cells: A role for autophagy and premature senescence. J Cell Physiol 2018; 234:11708-11721. [DOI: 10.1002/jcp.27838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Giulia Allavena
- Department of Molecular and Developmental Medicine University of Siena Siena Italy
| | - Barbara Del Bello
- Department of Molecular and Developmental Medicine University of Siena Siena Italy
| | - Paolo Tini
- Unit of Radiation Oncology, University Hospital of Siena Siena Italy
- Sbarro Health Research Organization, Temple University Philadelphia Pennsylvania
| | - Nila Volpi
- Department of Medicine, Surgery and Neuroscience University of Siena Siena Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology University of Ferrara Ferrara Italy
- Department of Animal Sciences Plants for Human Health Institute, NC State University Kannapolis North Carolina
| | - Clelia Miracco
- Department of Medicine, Surgery and Neuroscience University of Siena Siena Italy
- Unit of Pathological Anatomy, University Hospital of Siena Siena Italy
| | - Luigi Pirtoli
- Unit of Radiation Oncology, University Hospital of Siena Siena Italy
- Department of Medicine, Surgery and Neuroscience University of Siena Siena Italy
- Department of Biology College of Science and Technology, Temple University Philadelphia Pennsylvania
| | - Emilia Maellaro
- Department of Molecular and Developmental Medicine University of Siena Siena Italy
| |
Collapse
|
9
|
Falk M, Falková I, Kopečná O, Bačíková A, Pagáčová E, Šimek D, Golan M, Kozubek S, Pekarová M, Follett SE, Klejdus B, Elliott KW, Varga K, Teplá O, Kratochvílová I. Chromatin architecture changes and DNA replication fork collapse are critical features in cryopreserved cells that are differentially controlled by cryoprotectants. Sci Rep 2018; 8:14694. [PMID: 30279538 PMCID: PMC6168476 DOI: 10.1038/s41598-018-32939-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/17/2018] [Indexed: 11/22/2022] Open
Abstract
In this work, we shed new light on the highly debated issue of chromatin fragmentation in cryopreserved cells. Moreover, for the first time, we describe replicating cell-specific DNA damage and higher-order chromatin alterations after freezing and thawing. We identified DNA structural changes associated with the freeze-thaw process and correlated them with the viability of frozen and thawed cells. We simultaneously evaluated DNA defects and the higher-order chromatin structure of frozen and thawed cells with and without cryoprotectant treatment. We found that in replicating (S phase) cells, DNA was preferentially damaged by replication fork collapse, potentially leading to DNA double strand breaks (DSBs), which represent an important source of both genome instability and defects in epigenome maintenance. This induction of DNA defects by the freeze-thaw process was not prevented by any cryoprotectant studied. Both in replicating and non-replicating cells, freezing and thawing altered the chromatin structure in a cryoprotectant-dependent manner. Interestingly, cells with condensed chromatin, which was strongly stimulated by dimethyl sulfoxide (DMSO) prior to freezing had the highest rate of survival after thawing. Our results will facilitate the design of compounds and procedures to decrease injury to cryopreserved cells.
Collapse
Affiliation(s)
- Martin Falk
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, CZ-612 65, Brno, Czech Republic.
| | - Iva Falková
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | - Olga Kopečná
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | - Alena Bačíková
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | - Eva Pagáčová
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | - Daniel Šimek
- The Czech Academy of Sciences, Institute of Physics, Na Slovance 2, CZ-182 21, Prague 8, Czech Republic
| | - Martin Golan
- The Czech Academy of Sciences, Institute of Physics, Na Slovance 2, CZ-182 21, Prague 8, Czech Republic
- Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 2, CZ-121 16, Czech Republic
| | - Stanislav Kozubek
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | - Michaela Pekarová
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | - Shelby E Follett
- Department of Chemistry, University of Wyoming, 1000 E. University Ave, WY 82071, Laramie, USA
| | - Bořivoj Klejdus
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, CZ-613 00, Czech Republic
- CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00, Brno, Czech Republic
| | - K Wade Elliott
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH, 03824, USA
| | - Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH, 03824, USA
| | - Olga Teplá
- ISCARE IVF a.s, Jankovcova 1692, CZ-160 00, Praha 6, Czech Republic
- VFN Gynekologicko-porodnická klinika, Apolinářská 18, CZ-120 00, Czech Republic
| | - Irena Kratochvílová
- The Czech Academy of Sciences, Institute of Physics, Na Slovance 2, CZ-182 21, Prague 8, Czech Republic.
| |
Collapse
|
10
|
El-Magd MA, Khamis A, Nasr Eldeen SK, Ibrahim WM, Salama AF. Trehalose enhances the antitumor potential of methotrexate against mice bearing Ehrlich ascites carcinoma. Biomed Pharmacother 2017; 92:870-878. [DOI: 10.1016/j.biopha.2017.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/29/2017] [Accepted: 06/04/2017] [Indexed: 01/22/2023] Open
|
11
|
Tapia IJ, Aris M, Arriaga JM, Blanco PA, Mazzobre F, Vega J, Mordoh J, Barrio MM. Development of a novel methodology for cryopreservation of melanoma cells applied to CSF470 therapeutic vaccine. Cryobiology 2013; 67:163-9. [PMID: 23850827 DOI: 10.1016/j.cryobiol.2013.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 01/20/2023]
Abstract
CSF470 vaccine is a mixture of four lethally irradiated melanoma cell lines, administered with BCG and GM-CSF, which is currently being tested in a Phase II/III Clinical trial in stage II/III melanoma patients. To prepare vaccine doses, irradiated melanoma cell lines are frozen using dimethyl sulfoxide (Me(2)SO) and stored in liquid nitrogen (liqN(2)). Prior to inoculation, doses must be thawed, washed to remove Me(2)SO and suspended for clinical administration. Avoiding the use of Me(2)SO and storage in liqN(2) would allow future freeze-drying of CSF470 vaccine to facilitate pharmaceutical production and distribution. We worked on the development of an alternative cryopreservation methodology while keeping the vaccine's biological and immunogenic properties. We tested different freezing media containing trehalose suitable to remain as excipients in a freeze-dried product, to cryopreserve melanoma cells either before or after gamma irradiation. Melanoma cells incorporated trehalose after 5 h incubation at 37°C by fluid-phase endocytosis, reaching an intracellular concentration that varied between 70-140 mM depending on the cell line. Optimal freezing conditions were 0.2 M trehalose and 30 mg/ml human serum albumin, at -84°C. Vaccine doses could be frozen in trehalose at -84°C for at least four months keeping their cellular integrity, antigen expression and apoptosis/necrosis profile after gamma-irradiation as compared to Me(2)SO control. Non-irradiated melanoma cell lines also showed comparable proliferative capacity after both cryopreservation procedures. Trehalose-freezing medium allowed us to cryopreserve melanoma cells, either alive or after gamma irradiation, at -84°C avoiding the use of Me(2)SO and liqN(2) storage. These cryopreservation conditions could be suitable for future freeze-drying of CSF470 vaccine.
Collapse
Affiliation(s)
- Ivana J Tapia
- Centro de Investigaciones Oncológicas FUCA, Crámer 1180, Primer Piso, CP1426, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|