1
|
Petrov SA, Sukhovei YG, Kalenova LF, Kostolomova EG, Subbotin AM, Kastornov AA. The Influence of Permafrost Microorganisms on Monocytes Differentiation In Vitro. Bull Exp Biol Med 2023; 175:362-366. [PMID: 37563532 DOI: 10.1007/s10517-023-05868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 08/12/2023]
Abstract
Metabolites of fossil microorganisms of dispersed watered rocks that have passed into a frozen state (Bacillus sp. strains 2/09 and 9/08, Bacillus megaterium 8-75) can modulate the differentiation activity of human peripheral blood monocytes into phenotypically different subpopulations when cultured in vitro for 7 days. This effect is largely determined by the type of metabolites that depends on the temperature of their production: cold (collected after bacterium culturing at 5°C), medium (at 22°C), and warm temperature (at 37°C). All three types of metabolites had a weak negative influence on the level of classical (CD14hiCD16-) monocytes and stimulated the differentiation of intermediate (CD14+CD16+) and non-classical (CD14loCD16+) monocytes. The monocytes differentiation into the subpopulation of intermediate (CD14+CD16+) was stimulated to a greater extent by medium-temperature metabolites of the strain 8/75 and into the subpopulation of non-classical (CD14loCD16+) monocytes by warm metabolites of the strains 8/75 and 2/09 throughout culturing of mononuclear cells (days 1, 3, 7). Bearing in mind the anti-infection activity of intermediate and non-classical monocytes, we can consider strains 8/75 Bacillus megaterium and 2/09 Bacillus sp. promising for their in-depth testing.
Collapse
Affiliation(s)
- S A Petrov
- Federal Research Center Tyumen Research Center, Siberian Division of the Russian Academy of Sciences, Tyumen, Russia
| | - Yu G Sukhovei
- Federal Research Center Tyumen Research Center, Siberian Division of the Russian Academy of Sciences, Tyumen, Russia
| | - L F Kalenova
- Federal Research Center Tyumen Research Center, Siberian Division of the Russian Academy of Sciences, Tyumen, Russia.
| | - E G Kostolomova
- Tyumen State Medical University, Ministry of Health of the Russian Federation, Tyumen, Russia
| | - A M Subbotin
- Federal Research Center Tyumen Research Center, Siberian Division of the Russian Academy of Sciences, Tyumen, Russia
| | - A A Kastornov
- Federal Research Center Tyumen Research Center, Siberian Division of the Russian Academy of Sciences, Tyumen, Russia
| |
Collapse
|
2
|
Naqvi I, Giroux N, Olson L, Morrison SA, Llanga T, Akinade TO, Zhu Y, Zhong Y, Bose S, Arvai S, Abramson K, Chen L, Que L, Kraft B, Shen X, Lee J, Leong KW, Nair SK, Sullenger B. DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists. Biomaterials 2022; 283:121393. [PMID: 35349874 PMCID: PMC8797062 DOI: 10.1016/j.biomaterials.2022.121393] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
Millions of COVID-19 patients have succumbed to respiratory and systemic inflammation. Hyperstimulation of toll-like receptor (TLR) signaling is a key driver of immunopathology following infection by viruses. We found that severely ill COVID-19 patients in the Intensive Care Unit (ICU) display hallmarks of such hyper-stimulation with abundant agonists of nucleic acid-sensing TLRs present in their blood and lungs. These nucleic acid-containing Damage and Pathogen Associated Molecular Patterns (DAMPs/PAMPs) can be depleted using nucleic acid-binding microfibers to limit the patient samples' ability to hyperactivate such innate immune receptors. Single-cell RNA-sequencing revealed that CD16+ monocytes from deceased but not recovered ICU patients exhibit a TLR-tolerant phenotype and a deficient anti-viral response after ex vivo TLR stimulation. Plasma proteomics confirmed such myeloid hyperactivation and revealed DAMP/PAMP carrier consumption in deceased patients. Treatment of these COVID-19 patient samples with MnO nanoparticles effectively neutralizes TLR activation by the abundant nucleic acid-containing DAMPs/PAMPs present in their lungs and blood. Finally, MnO nanoscavenger treatment limits the ability of DAMPs/PAMPs to induce TLR tolerance in monocytes. Thus, treatment with microfiber- or nanoparticle-based DAMP/PAMP scavengers may prove useful for limiting SARS-CoV-2 induced hyperinflammation, preventing monocytic TLR tolerance, and improving outcomes in severely ill COVID-19 patients.
Collapse
Affiliation(s)
- Ibtehaj Naqvi
- Duke University School of Medicine, Department of Surgery, Division of Surgical Sciences, USA
| | - Nicholas Giroux
- Duke University, Department of Biomedical Engineering, Pratt School of Engineering, USA; Duke University, Graduate School, USA
| | - Lyra Olson
- Duke University, Graduate School, USA; Duke University School of Medicine, Department of Pharmacology and Cancer Biology, USA
| | - Sarah Ahn Morrison
- Duke University School of Medicine, Department of Surgery, Division of Surgical Sciences, USA
| | | | - Tolu O Akinade
- Columbia University, Department of Biomedical Engineering, USA
| | - Yuefei Zhu
- Columbia University, Department of Biomedical Engineering, USA
| | - Yiling Zhong
- Columbia University, Department of Biomedical Engineering, USA
| | - Shree Bose
- Duke University, Graduate School, USA; Duke University School of Medicine, Department of Pharmacology and Cancer Biology, USA
| | - Stephanie Arvai
- Duke University Center for Genomic and Computational Biology, RNA Sequencing Core, USA
| | - Karen Abramson
- Duke University Center for Genomic and Computational Biology, RNA Sequencing Core, USA
| | - Lingye Chen
- Duke University School of Medicine, Department of Medicine, Division of Pulmonary Medicine, USA
| | - Loretta Que
- Duke University School of Medicine, Department of Medicine, Division of Pulmonary Medicine, USA
| | - Bryan Kraft
- Duke University School of Medicine, Department of Medicine, Division of Pulmonary Medicine, USA
| | - Xiling Shen
- Duke University, Department of Biomedical Engineering, Pratt School of Engineering, USA
| | - Jaewoo Lee
- Duke University School of Medicine, Department of Surgery, Division of Surgical Sciences, USA
| | - Kam W Leong
- Columbia University, Department of Biomedical Engineering, USA
| | - Smita K Nair
- Duke University School of Medicine, Department of Surgery, Division of Surgical Sciences, USA; Duke University School of Medicine, Department of Pathology, USA; Duke University School of Medicine, Department of Neurosurgery, USA.
| | - Bruce Sullenger
- Duke University School of Medicine, Department of Surgery, Division of Surgical Sciences, USA; Duke University, Department of Biomedical Engineering, Pratt School of Engineering, USA; Duke University School of Medicine, Department of Pharmacology and Cancer Biology, USA; Duke University School of Medicine, Department of Neurosurgery, USA.
| |
Collapse
|
3
|
Leukocytes from Patients with Drug-Sensitive and Multidrug-Resistant Tuberculosis Exhibit Distinctive Profiles of Chemokine Receptor Expression and Migration Capacity. J Immunol Res 2021; 2021:6654220. [PMID: 33977111 PMCID: PMC8084684 DOI: 10.1155/2021/6654220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/13/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains as a leading infectious cause of death worldwide. The increasing number of multidrug-resistant TB (MDR-TB) cases contributes to the poor control of the TB epidemic. Currently, little is known about the immunological requirements of protective responses against MDR-TB. This is of major relevance to identify immune markers for treatment monitoring and targets for adjuvant immunotherapies. Here, we hypothesized that MDR-TB patients display unique immunophenotypical features and immune cell migration dynamics compared to drug-sensitive TB (DS-TB). Hence, we prospectively conducted an extensive characterization of the immune profile of MDR-TB patients at different time points before and after pharmacological therapy. For this purpose, we focused on the leukocyte expression of chemokine receptors, distribution of different monocyte and lymphocyte subsets, plasma levels of chemotactic factors, and in vitro migration capacity of immune cells. Our comparative cohort consisted of DS-TB patients and healthy volunteer donors (HD). Our results demonstrate some unique features of leukocyte migration dynamics during MDR-TB. These include increased and prolonged circulation of CD3+ monocytes, CCR4+ monocytes, EM CD4+ T cells, EM/CM CD8+ T cells, and CXCR1+CXCR3+ T cells that is sustained even after the administration of anti-TB drugs. We also observed shared characteristics of both MDR-TB and DS-TB that include CCR2+ monocyte depletion in the blood; high plasma levels of MPC-1, CCL-7, and IP-10; and increased responsiveness of leukocytes to chemotactic signals in vitro. Our study contributes to a better understanding of the MDR-TB pathobiology and uncovers immunological readouts of treatment efficacy.
Collapse
|
4
|
Participation of Monocyte Subpopulations in Progression of Experimental Endotoxemia (EE) and Systemic Inflammation. J Immunol Res 2021; 2021:1762584. [PMID: 33628841 PMCID: PMC7895567 DOI: 10.1155/2021/1762584] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 01/01/2023] Open
Abstract
Systemic inflammation plays a crucial role in formation of various pathological conditions, including sepsis, burns, and traumas. The main effector cells participating in progression of systemic inflammation response and sepsis are monocytes, which regulate both innate and acquired immunity via phagocytosis, synthesis of cytokines and chemokines, antigen presentation, and lymphocyte activation. Thus, the monocytes are considered as a link between innate and acquired immunity. The monocyte subpopulations taken into consideration in the study essentially determine the progression of systemic inflammation and could serve as targets for therapeutic intervention. The complexity of the analysis of pathophysiology of systemic inflammation lies in its high variability conditioned by individual peculiarities of the patients and inflammation progression specifications. To overcome these limitation, model of experimental endotoxemia (EE) is used. The results of EE, in turn, cannot be directly extrapolated on patients with the systemic inflammatory response. This review is dedicated to discussing the role of monocyte subpopulations in progression of systemic inflammation/sepsis and EE.
Collapse
|
5
|
Ożańska A, Szymczak D, Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand J Immunol 2020; 92:e12883. [PMID: 32243617 DOI: 10.1111/sji.12883] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Monocytes are important cells of the innate system. They are a heterogeneous type of cells consisting of phenotypically and functionally distinct subpopulations, which play a specific role in the control, development and escalation of the immunological processes. Based on the expression of superficial CD14 and CD16 in flow cytometry, they can be divided into three subsets: classical, intermediate and non-classical. Variation in the levels of human monocyte subsets in the blood can be observed in patients in numerous pathological states, such as infections, cardiovascular and inflammatory diseases, cancer and autoimmune diseases. The aim of this review is to summarize current knowledge of human monocyte subsets and their significance in homeostasis and in pathological conditions.
Collapse
|
6
|
Wong ME, Jaworowski A, Hearps AC. The HIV Reservoir in Monocytes and Macrophages. Front Immunol 2019; 10:1435. [PMID: 31297114 PMCID: PMC6607932 DOI: 10.3389/fimmu.2019.01435] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022] Open
Abstract
In people living with HIV (PLWH) who are failing or unable to access combination antiretroviral therapy (cART), monocytes and macrophages are important drivers of pathogenesis and progression to AIDS. The relevance of the monocyte/macrophage reservoir in PLWH receiving cART is debatable as in vivo evidence for infected cells is limited and suggests the reservoir is small. Macrophages were assumed to have a moderate life span and lack self-renewing potential, but recent discoveries challenge this dogma and suggest a potentially important role of these cells as long-lived HIV reservoirs. This, combined with new HIV infection animal models, has led to a resurgence of interest in monocyte/macrophage reservoirs. Infection of non-human primates with myeloid-tropic SIV implicates monocyte/macrophage activation and infection in the brain with neurocognitive disorders, and infection of myeloid-only humanized mouse models are consistent with the potential of the monocyte/macrophage reservoir to sustain infection and be a source of rebound viremia following cART cessation. An increased resistance to HIV-induced cytopathic effects and a reduced susceptibility to some antiretroviral drugs implies macrophages may be relevant to residual replication under cART and to rebound viremia. With a reappraisal of monocyte circulation dynamics, and the development of techniques to differentiate between self-renewing tissue-resident, and monocyte-derived macrophages in different tissues, a new framework exists to contextualize and evaluate the significance and relevance of the monocyte/macrophage HIV reservoir. In this review, we discuss recent developments in monocyte and macrophage biology and appraise current and emerging techniques to quantify the reservoir. We discuss how this knowledge influences our evaluation of the myeloid HIV reservoir, the implications for HIV pathogenesis in both viremic and virologically-suppressed PLWH and the need to address the myeloid reservoir in future treatment and cure strategies.
Collapse
Affiliation(s)
- Michelle E Wong
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Anthony Jaworowski
- Chronic Inflammatory and Infectious Diseases Program, School of Health and Biomedical Sciences, Bundoora, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Anna C Hearps
- Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|