1
|
Aguayo-Morales H, Sierra-Rivera CA, Claudio-Rizo JA, Cobos-Puc LE. Horsetail (Equisetum hyemale) Extract Accelerates Wound Healing in Diabetic Rats by Modulating IL-10 and MCP-1 Release and Collagen Synthesis. Pharmaceuticals (Basel) 2023; 16:ph16040514. [PMID: 37111271 PMCID: PMC10141616 DOI: 10.3390/ph16040514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Traditionally, Equisetum hyemale has been used for wound healing. However, its mechanism of action remains to be elucidated. For this purpose, a 40% ethanolic extract of E. hyemale was prepared. Phytochemical screening revealed the presence of minerals, sterols, phenolic acids, flavonols, a lignan, and a phenylpropenoid. The extract reduced the viability of RAW 264.7 cells and skin fibroblasts at all times evaluated. On the third day of treatment, this reduction was 30–40% and 15–40%, respectively. In contrast, the extract increased the proliferation of skin fibroblasts only after 48 h. In addition, the extract increased IL-10 release and inhibited MCP-1 release. However, the extract did not affect both TGF-β1 and TNF-α released by RAW 264.7 cells. The higher release of IL-10 could be related to the up-/downregulation of inflammatory pathways mediated by the extract components associated with their bioactivity. The extract inhibited the growth of Staphylococcus aureus and Escherichia coli. Topical application of the extract accelerated wound healing in diabetic rats by increasing fibroblast collagen synthesis. These results suggest that E. hyemale extract has great potential for use in the treatment of wounds thanks to its phytochemical composition that modulates cytokine secretion, collagen synthesis, and bacterial growth.
Collapse
Affiliation(s)
- Hilda Aguayo-Morales
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Crystel A. Sierra-Rivera
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Jesús A. Claudio-Rizo
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Luis E. Cobos-Puc
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| |
Collapse
|
2
|
Effects of an 8-week aerobic exercise program on plasma markers for cholesterol absorption and synthesis in older overweight and obese men. Lipids Health Dis 2021; 20:112. [PMID: 34548089 PMCID: PMC8454109 DOI: 10.1186/s12944-021-01537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increased physical activity is inversely related to the risk to develop cardiovascular disease (CVD). In a recent systematic review, it was reported that CVD patients had an increased cholesterol absorption and a decreased synthesis as compared with control participants. As increased physical activity levels reduce CVD risk, we hypothesized that exercise training will reduce cholesterol absorption and increase endogenous cholesterol synthesis in older overweight and obese men. METHODS A randomized, controlled, crossover trial was performed. Seventeen apparently healthy older overweight and obese men were randomized to start with an aerobic exercise or no-exercise control period for 8 weeks, separated by 12 weeks washout. Fasting serum total cholesterol (TC) and non-cholesterol sterol concentrations were measured at baseline, and after 4 and 8 weeks. RESULTS The aerobic exercise program did not affect serum TC concentrations. In addition, exercise did not affect TC-standardized serum concentrations of sitosterol and cholestanol that are markers for cholesterol absorption. However, a trend for reduced TC-standardized campesterol concentrations, which is another validated marker for cholesterol absorption, was observed as compared with control. Lathosterol concentrations, reflecting cholesterol synthesis, did not differ between both periods. CONCLUSIONS Aerobic exercise training for 8 weeks did not lower serum TC concentrations in older overweight and obese men, but a trend towards a decrease in the cholesterol absorption marker campesterol was found. The cholesterol synthesis marker lathosterol did not change. TRIAL REGISTRATION posted on www.clinicaltrials.gov as NCT03272061 on 7 September 2017.
Collapse
|
3
|
Schroor MM, Plat J, Konings MCJM, Smeets ETHC, Mensink RP. Effect of dietary macronutrients on intestinal cholesterol absorption and endogenous cholesterol synthesis: a randomized crossover trial. Nutr Metab Cardiovasc Dis 2021; 31:1579-1585. [PMID: 33744041 DOI: 10.1016/j.numecd.2021.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/23/2020] [Accepted: 01/19/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Extensive research showed a diurnal rhythm of endogenous cholesterol synthesis, whereas recent research reported no diurnal rhythm of intestinal cholesterol absorption in males who consumed low-fat meals. Little is known about the acute effect of macronutrient consumption on cholesterol metabolism, and hence if meal composition may explain this absence of rhythmicity in cholesterol absorption. Therefore, we examined the effect of a high-fat, high-carbohydrate, and high-protein meal on postprandial intestinal cholesterol absorption and endogenous cholesterol synthesis in apparently healthy overweight and slightly obese males. METHODS AND RESULTS Eighteen males consumed in random order an isoenergetic high-fat, high-carbohydrate, and high-protein meal on three occasions. Serum total cholesterol concentrations, cholesterol absorption markers (campesterol, cholestanol, and sitosterol), and cholesterol synthesis intermediates (7-dehydrocholesterol, 7-dehydrodesmosterol, desmosterol, dihydrolanosterol, lanosterol, lathosterol, zymostenol, and zymosterol) were measured at baseline (T0) and 240 min postprandially (T240). Meal consumption did not significantly change total cholesterol concentrations and cholesterol absorption marker levels (all p > 0.05). Serum levels of 7-dehydrocholesterol, lanosterol, lathosterol, zymostenol, and zymosterol decreased significantly between T0 and T240 (all p < 0.05). These decreases were not significantly different between the three meals (all p > 0.05), except for a larger decrease in dihydrolanosterol levels after the high-fat versus the high-carbohydrate meal (p = 0.009). CONCLUSION The high-fat, high-carbohydrate, and high-protein meal did not significantly influence postprandial intestinal cholesterol absorption. Several cholesterol synthesis intermediates decreased postprandially, but the individual macronutrients did not differentially affect these intermediates, except for a possible effect on dihydrolanosterol. TRIAL REGISTRATION ClinicalTrials.gov, NCT03139890.
Collapse
Affiliation(s)
- Maite M Schroor
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, the Netherlands.
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Maurice C J M Konings
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Ellen T H C Smeets
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
4
|
van den Driessche JJ, Plat J, Konings MCJM, Mensink RP. Effects of spirulina and wakame consumption on intestinal cholesterol absorption and serum lipid concentrations in non-hypercholesterolemic adult men and women. Eur J Nutr 2020; 59:2229-2236. [PMID: 31388739 PMCID: PMC7351869 DOI: 10.1007/s00394-019-02073-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Consumption of the algae spirulina (Arthrospira platensis or maxima) and wakame (Undaria pinnatifida) has been shown to lower LDL cholesterol concentrations in animals and humans, possibly due to the inhibition of intestinal cholesterol absorption. This mechanism, however, has never been investigated in humans. Therefore, we examined in non-hypercholesterolemic men and women the effects of spirulina and wakame consumption on serum markers for intestinal cholesterol absorption. METHODS Thirty-five healthy men and women without hypercholesterolemia consumed in a random order daily 4.8 g spirulina, wakame or placebo for 17 days, separated by 14-day washouts. After 17 days, serum cholesterol-standardized campesterol, sitosterol and cholestanol, and lathosterol concentrations were measured as markers for intestinal cholesterol absorption and cholesterol synthesis, respectively. Concentrations of serum total cholesterol, LDL and HDL cholesterol, triacylglycerol, and plasma glucose, and blood pressure were measured as well. RESULTS Compared with placebo, spirulina or wakame did not affect serum cholesterol-standardized campesterol (CI - 0.23 to 0.10 μmol/mmol, P = 0.435 and CI - 0.14 to 0.19 μmol/mmol, P = 0.729, respectively), sitosterol (P = 0.314 and P = 0.112), cholestanol (P = 0.610 and P = 0.809), or lathosterol (P = 0.388 and P = 0.102) concentrations. In addition, serum lipid and plasma glucose concentrations, and blood pressure were not changed. CONCLUSIONS Daily consumption of 4.8 g spirulina or wakame for 17 days did not affect plasma markers for intestinal cholesterol absorption or cholesterol synthesis in non-hypercholesterolemic men and women. Serum lipid and glucose concentrations, and blood pressure were also not altered.
Collapse
Affiliation(s)
- José J van den Driessche
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+ (MUMC+), P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+ (MUMC+), P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Maurice C J M Konings
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+ (MUMC+), P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+ (MUMC+), P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
5
|
Diurnal Variation of Markers for Cholesterol Synthesis, Cholesterol Absorption, and Bile Acid Synthesis: A Systematic Review and the Bispebjerg Study of Diurnal Variations. Nutrients 2019; 11:nu11071439. [PMID: 31247945 PMCID: PMC6683063 DOI: 10.3390/nu11071439] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/20/2023] Open
Abstract
Human studies have shown diurnal rhythms of cholesterol and bile acid synthesis, but a better understanding of the role of the circadian system in cholesterol homeostasis is needed for the development of targeted interventions to improve metabolic health. Therefore, we performed a systematic literature search on the diurnal rhythms of cholesterol synthesis and absorption markers and of bile acid synthesis markers. We also examined the diurnal rhythms of the cholesterol synthesis markers lathosterol and desmosterol, and of the cholesterol absorption markers cholestanol, campesterol, and sitosterol in serum samples from the Bispebjerg study. These samples were collected every three hours over a 24-h period in healthy males (n = 24) who consumed low-fat meals. The systematic search identified sixteen papers that had examined the diurnal rhythms of the cholesterol synthesis markers lathosterol (n = 3), mevalonate (n = 9), squalene (n = 2), or the bile acid synthesis marker 7α-hydroxy-4-cholesten-3-one (C4) (n = 4). Results showed that lathosterol, mevalonate, and squalene had a diurnal rhythm with nocturnal peaks, while C4 had a diurnal rhythm with daytime peaks. Furthermore, cosinor analyses of the serum samples showed a significant diurnal rhythm for lathosterol (cosinor p < 0.001), but not for desmosterol, campesterol, sitosterol, and cholestanol (cosinor p > 0.05). In conclusion, cholesterol synthesis and bile acid synthesis have a diurnal rhythm, though no evidence for a diurnal rhythm of cholesterol absorption was found under highly standardised conditions. More work is needed to further explore the influence of external factors on the diurnal rhythms regulating cholesterol homeostasis.
Collapse
|
6
|
Lütjohann D, Stellaard F, Mulder MT, Sijbrands EJG, Weingärtner O. The emerging concept of "individualized cholesterol-lowering therapy": A change in paradigm. Pharmacol Ther 2019; 199:111-116. [PMID: 30877023 DOI: 10.1016/j.pharmthera.2019.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/06/2019] [Indexed: 12/17/2022]
Abstract
High LDL-cholesterol concentrations constitute a risk for atherosclerotic cardiovascular disease. By consensus, cholesterol-lowering therapy is initiated with a statin that reduces endogenous cholesterol synthesis, upregulates hepatic LDL receptor activity, increases LDL clearance and lowers LDL-cholesterol concentrations in the bloodstream. The efficacy of statin treatment is dose dependent and achieves a risk reduction of up to 50%. However, a substantial body of evidence suggests that a quarter of statin-treated patients do not respond adequately as a result of low endogenous cholesterol synthesis. In humans fractional cholesterol absorption varies from 20% to 80%. High cholesterol absorbers, which are characterized by a low-to-normal cholesterol synthesis, exhibit poor responsiveness to statin treatment. On the other hand, the cholesterol absorption inhibitor ezetimibe effectively reduces serum cholesterol levels in these patients. On this background, we suggest to "get personal" and individualize cholesterol-lowering therapies, according to the individual's status of cholesterol synthesis and absorption.
Collapse
Affiliation(s)
- Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Frans Stellaard
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Monique T Mulder
- Department of Internal Medicine, Section of Pharmacology Vascular and Metabolic Diseases, Cardiovascular Research School COEUR, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Section of Pharmacology Vascular and Metabolic Diseases, Cardiovascular Research School COEUR, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
7
|
Jones PJH, Shamloo M, MacKay DS, Rideout TC, Myrie SB, Plat J, Roullet JB, Baer DJ, Calkins KL, Davis HR, Barton Duell P, Ginsberg H, Gylling H, Jenkins D, Lütjohann D, Moghadasian M, Moreau RA, Mymin D, Ostlund RE, Ras RT, Ochoa Reparaz J, Trautwein EA, Turley S, Vanmierlo T, Weingärtner O. Progress and perspectives in plant sterol and plant stanol research. Nutr Rev 2018; 76:725-746. [PMID: 30101294 PMCID: PMC6130982 DOI: 10.1093/nutrit/nuy032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current evidence indicates that foods with added plant sterols or stanols can lower serum levels of low-density lipoprotein cholesterol. This review summarizes the recent findings and deliberations of 31 experts in the field who participated in a scientific meeting in Winnipeg, Canada, on the health effects of plant sterols and stanols. Participants discussed issues including, but not limited to, the health benefits of plant sterols and stanols beyond cholesterol lowering, the role of plant sterols and stanols as adjuncts to diet and drugs, and the challenges involved in measuring plant sterols and stanols in biological samples. Variations in interindividual responses to plant sterols and stanols, as well as the personalization of lipid-lowering therapies, were addressed. Finally, the clinical aspects and treatment of sitosterolemia were reviewed. Although plant sterols and stanols continue to offer an efficacious and convenient dietary approach to cholesterol management, long-term clinical trials investigating the endpoints of cardiovascular disease are still lacking.
Collapse
Affiliation(s)
- Peter J H Jones
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maryam Shamloo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dylan S MacKay
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, University of Buffalo, Buffalo, New York, USA
| | - Semone B Myrie
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jogchum Plat
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Jean-Baptiste Roullet
- Division of Metabolism, Child Development and Rehabilitation Center—Portland, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - David J Baer
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland, USA
| | - Kara L Calkins
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and the UCLA Mattel’s Children’s Hospital, Los Angeles, California, USA
| | | | - P Barton Duell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Henry Ginsberg
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, USA
| | - Helena Gylling
- University of Helsinki and the Helsinki University Central Hospital, Helsinki, Finland
| | - David Jenkins
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; and the Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Mohammad Moghadasian
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert A Moreau
- Eastern Regional Research Center, US Department of Agriculture, Agricultural Research Service, Wyndmoor, Pennsylvania, USA
| | - David Mymin
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard E Ostlund
- Division of Endocrinology, Metabolism and Lipid Research, Washington University, St Louis, USA
| | - Rouyanne T Ras
- Unilever Research & Development Vlaardingen, Vlaardingen, the Netherlands
| | | | - Elke A Trautwein
- Unilever Research & Development Vlaardingen, Vlaardingen, the Netherlands
| | | | - Tim Vanmierlo
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Oliver Weingärtner
- Klinik für Innere Medizin I, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany; Abteilung für Kardiologie, Klinikum Oldenburg, European Medical School Oldenburg-Groningen, Oldenburg, Germany
| |
Collapse
|
8
|
Weingärtner O, Bogeski I, Kummerow C, Schirmer SH, Husche C, Vanmierlo T, Wagenpfeil G, Hoth M, Böhm M, Lütjohann D, Laufs U. Plant sterol ester diet supplementation increases serum plant sterols and markers of cholesterol synthesis, but has no effect on total cholesterol levels. J Steroid Biochem Mol Biol 2017; 169:219-225. [PMID: 27473562 DOI: 10.1016/j.jsbmb.2016.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 12/17/2022]
Abstract
This double-blind, randomized, placebo-controlled, cross-over intervention-study was conducted in healthy volunteers to evaluate the effects of plant sterol ester supplemented margarine on cholesterol, non-cholesterol sterols and oxidative stress in serum and monocytes. Sixteen volunteers, average age 34 years, with no or mild hypercholesterolemia were subjected to a 4 week period of daily intake of 3g plant sterols per day supplied via a supplemented margarine on top of regular eating habits. After a wash-out period of one week, volunteers switched groups. Compared to placebo, a diet supplementation with plant sterols increased serum levels of plant sterols such as campesterol (+0.16±0.19mg/dL, p=0.005) and sitosterol (+0.27±0.18mg/dL, p<0.001) and increased markers of cholesterol synthesis such as desmosterol (+0.05±0.07mg/dL, p=0.006) as well as lathosterol (+0.11±0.16mg/dL, p=0.012). Cholesterol serum levels, however, were not changed significantly (+18.68±32.6mg/dL, p=0.052). These findings could not be verified in isolated circulating monocytes. Moreover, there was no effect on monocyte activation and no differences with regard to redox state after plant sterol supplemented diet. Therefore, in a population of healthy volunteers with no or mild hypercholesterolemia, consumption of plant sterol ester supplemented margarine results in increased concentrations of plant sterols and cholesterol synthesis markers without affecting total cholesterol in the serum, activation of circulating monocytes or redox state.
Collapse
Affiliation(s)
- Oliver Weingärtner
- Abteilung für Kardiologie, Klinikum Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky Universität, Oldenburg, Germany; Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany.
| | - Ivan Bogeski
- Abteilung für Biophysik, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Department of Biophysics Faculty of Medicine CIPMM, Building 48, D-66421 Homburg, Germany
| | - Carsten Kummerow
- Abteilung für Biophysik, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Department of Biophysics Faculty of Medicine CIPMM, Building 48, D-66421 Homburg, Germany
| | - Stephan H Schirmer
- Klinik für Innere Medizin III, Kardiologie, Angiologie und internistische Intensivmedizin, Germany
| | - Constanze Husche
- Institut für klinische Chemie und klinische Pharmakologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Tim Vanmierlo
- Institut für klinische Chemie und klinische Pharmakologie, Universitätsklinikum Bonn, Bonn, Germany; Dept. of Immunology and Biochemistry, BIOMED, Hasselt University, Hasselt, Belgium
| | - Gudrun Wagenpfeil
- Abteilung für Kardiologie, Klinikum Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky Universität, Oldenburg, Germany; Klinik für Innere Medizin III, Kardiologie, Angiologie und internistische Intensivmedizin, Germany; Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Abteilung für Biophysik, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Institut für klinische Chemie und klinische Pharmakologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Markus Hoth
- Abteilung für Biophysik, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; Department of Biophysics Faculty of Medicine CIPMM, Building 48, D-66421 Homburg, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Kardiologie, Angiologie und internistische Intensivmedizin, Germany
| | - Dieter Lütjohann
- Institut für klinische Chemie und klinische Pharmakologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Ulrich Laufs
- Klinik für Innere Medizin III, Kardiologie, Angiologie und internistische Intensivmedizin, Germany
| |
Collapse
|
9
|
Weingärtner O, Lütjohann D, Plösch T, Elsässer A. Individualized lipid-lowering therapy to further reduce residual cardiovascular risk. J Steroid Biochem Mol Biol 2017; 169:198-201. [PMID: 27215141 DOI: 10.1016/j.jsbmb.2016.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 11/24/2022]
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular diseases. Serum cholesterol concentrations are regulated by enteral absorption, biliary secretion, and hepatic synthesis. Statins inhibit the rate-limiting enzyme of cholesterol synthesis, HMG-CoA-reductase, and reduce serum cholesterol concentrations as well as cardiovascular morbidity and mortality. Some studies indicate that patients with high baseline cholesterol absorption may show only a small response to statin treatment in terms of cholesterol lowering. Data from genetic association studies and from the IMPROVE-IT trial show that reducing intestinal cholesterol absorption via NCP1L1 further reduces cardiovascular risk. However, some patients do not attain LDL-cholesterol targets on combination therapy. For these patients PCSK9-antibody treatment and lipid-apheresis are options to be considered. This article reviews the current literature on this issue and suggests 'individualized lipid-lowering therapy' as an approach to optimize and personalize lipid-lowering treatment of patients with hypercholesterolemia to further reduce residual cardiovascular risk.
Collapse
Affiliation(s)
- Oliver Weingärtner
- Department of Cardiology, University Hospital Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Bonn, Germany
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Albrecht Elsässer
- Department of Cardiology, University Hospital Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Mackay DS, Gebauer SK, Eck PK, Baer DJ, Jones PJH. Lathosterol-to-cholesterol ratio in serum predicts cholesterol-lowering response to plant sterol consumption in a dual-center, randomized, single-blind placebo-controlled trial. Am J Clin Nutr 2015; 101:432-9. [PMID: 25733626 DOI: 10.3945/ajcn.114.095356] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Benefits of plant sterols (PS) for cholesterol lowering are compromised by large variability in efficacy across individuals. High fractional cholesterol synthesis measured by deuterium incorporation has been associated with nonresponse to PS consumption; however, prospective studies that show this association have yet to be conducted. OBJECTIVE The goal was to test whether the lathosterol-to-cholesterol ratio (L:C ratio), a surrogate marker of endogenous cholesterol synthesis, serves as an a priori predictor of cholesterol lowering in response to PS consumption. DESIGN Sixty-three mildly hypercholesterolemic adults who were preselected as possessing either high endogenous cholesterol synthesis [HS; n = 24; L:C = 2.03 ± 0.39 μmol/mmol (mean ± SD)] or low endogenous cholesterol synthesis (LS; n = 39; L:C = 0.99 ± 0.28 μmol/mmol) on the basis of baseline L:C consumed 2 g PS/d or a placebo for 28 d with the use of a dual-center, single-blind, randomized crossover design. Plasma lipid and noncholesterol sterol concentrations were measured at the end of each phase. RESULTS PS consumption lowered total cholesterol (TC; -0.25 ± 0.05 mmol/L; P < 0.0001) and LDL cholesterol (-0.17 ± 0.04 mmol/L; P < 0.0001) overall. Specifically, LS individuals responded to PS treatment with a reduction in TC (-0.40 ± 0.07 mmol/L; P < 0.0001) and LDL cholesterol (-0.29 ± 0.05 mmol/L; P = 0.0002), whereas HS individuals failed to show cholesterol lowering (TC: -0.09 ± 0.09 mmol/L; P = 0.2843; LDL cholesterol: -0.05 ± 0.07 mmol/L; P = 0.4917). The odds of LS participants responding to PS consumption with cholesterol lowering better than the mean cholesterol lowering in all participants were 4.25 (95% CI: 1.242, 14.556; P = 0.0211) for TC and 3.36 (95% CI: 1.112, 10.161; P = 0.0317) for LDL cholesterol, which was higher than for HS participants. CONCLUSIONS The L:C ratio predicts the extent of reduction in circulating TC and LDL cholesterol in response to PS consumption. Cholesterol synthesis assessment may thus have a use in identifying responders and nonresponders to PS therapy.
Collapse
Affiliation(s)
- Dylan S Mackay
- From the Richardson Centre for Functional Foods and Nutraceuticals (DSM, PKE, and PJHJ) and the Departments of Food Science (PJHJ) and Human Nutritional Sciences (DSM, PKE, and PJHJ), University of Manitoba, Winnipeg, Manitoba, Canada, and the USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD (SKG and DJB)
| | - Sarah K Gebauer
- From the Richardson Centre for Functional Foods and Nutraceuticals (DSM, PKE, and PJHJ) and the Departments of Food Science (PJHJ) and Human Nutritional Sciences (DSM, PKE, and PJHJ), University of Manitoba, Winnipeg, Manitoba, Canada, and the USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD (SKG and DJB)
| | - Peter K Eck
- From the Richardson Centre for Functional Foods and Nutraceuticals (DSM, PKE, and PJHJ) and the Departments of Food Science (PJHJ) and Human Nutritional Sciences (DSM, PKE, and PJHJ), University of Manitoba, Winnipeg, Manitoba, Canada, and the USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD (SKG and DJB)
| | - David J Baer
- From the Richardson Centre for Functional Foods and Nutraceuticals (DSM, PKE, and PJHJ) and the Departments of Food Science (PJHJ) and Human Nutritional Sciences (DSM, PKE, and PJHJ), University of Manitoba, Winnipeg, Manitoba, Canada, and the USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD (SKG and DJB)
| | - Peter J H Jones
- From the Richardson Centre for Functional Foods and Nutraceuticals (DSM, PKE, and PJHJ) and the Departments of Food Science (PJHJ) and Human Nutritional Sciences (DSM, PKE, and PJHJ), University of Manitoba, Winnipeg, Manitoba, Canada, and the USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD (SKG and DJB)
| |
Collapse
|
11
|
De Smet E, Mensink RP, Lütjohann D, Plat J. Acute effects of plant stanol esters on postprandial metabolism and its relation with changes in serum lipids after chronic intake. Eur J Clin Nutr 2014; 69:127-33. [DOI: 10.1038/ejcn.2014.200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/28/2014] [Accepted: 08/14/2014] [Indexed: 01/25/2023]
|
12
|
van der Made SM, Kelly ER, Berendschot TTJM, Kijlstra A, Lütjohann D, Plat J. Consuming a buttermilk drink containing lutein-enriched egg yolk daily for 1 year increased plasma lutein but did not affect serum lipid or lipoprotein concentrations in adults with early signs of age-related macular degeneration. J Nutr 2014; 144:1370-7. [PMID: 24991045 DOI: 10.3945/jn.114.195503] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dietary lutein intake is postulated to interfere with the development of age-related macular degeneration (AMD). Because egg yolk-derived lutein has a high bioavailability, long-term consumption of lutein-enriched eggs might be effective in preventing AMD development, but alternatively might increase cardiovascular disease risk. Here, we report the effect of 1-y daily consumption of a buttermilk drink containing 1.5 lutein-rich egg yolks on serum lipid and lipoprotein and plasma lutein concentrations. Additionally, subgroups that could potentially benefit the most from the intervention were identified. Men and women who had early signs of AMD in at least 1 eye, but were otherwise healthy, participated in a 1-y randomized, placebo-controlled parallel intervention trial. At the start of the study, 101 participants were included: 52 in the experimental (Egg) group and 49 in the control (Con) group. Final analyses were performed with 45 participants in the Egg group and 43 participants in the Con group. As expected, the increase in plasma lutein concentrations in the Egg group was 83% higher than that in the Con group (P < 0.001). Changes in serum total, HDL, and LDL cholesterol, as well as the ratio of total cholesterol to HDL cholesterol, were not different between the 2 groups. Interestingly, participants classified as cholesterol absorbers had higher serum HDL cholesterol concentrations than participants classified as cholesterol synthesizers or participants with average campesterol-to-lathosterol ratios (P < 0.05) at baseline. In addition, cholesterol absorbers had a 229% higher increase in plasma lutein concentrations than participants who were classified as having an average campesterol-to-lathosterol ratio upon consumption of the lutein-enriched egg yolk drink (P < 0.05). Moreover, the change in serum HDL cholesterol upon consumption was significantly different between these 3 groups (P < 0.05). We suggest that cholesterol absorbers particularly might benefit from the lutein-enriched buttermilk drink. This study was registered at clinicaltrials.gov as NCT00902408.
Collapse
Affiliation(s)
- Sanne M van der Made
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology, and Metabolism, and
| | - Elton R Kelly
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands; and
| | - Tos T J M Berendschot
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands; and
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands; and
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Bonn, Germany
| | - Jogchum Plat
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology, and Metabolism, and
| |
Collapse
|
13
|
Naumann E, Plat J, Kester AD, Mensink RP. The Baseline Serum Lipoprotein Profile Is Related to Plant Stanol Induced Changes in Serum Lipoprotein Cholesterol and Triacylglycerol Concentrations. J Am Coll Nutr 2013; 27:117-26. [DOI: 10.1080/07315724.2008.10719683] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Grundy SM. Plasma noncholesterol sterols as indicators of cholesterol absorption. J Lipid Res 2013; 54:873-5. [PMID: 23402986 DOI: 10.1194/jlr.e036806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Scott M Grundy
- University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Progress and prospective of plant sterol and plant stanol research: Report of the Maastricht meeting. Atherosclerosis 2012; 225:521-33. [DOI: 10.1016/j.atherosclerosis.2012.09.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/16/2012] [Indexed: 12/29/2022]
|
16
|
|
17
|
Effects of plant sterol esters in skimmed milk and vegetable-fat-enriched milk on serum lipids and non-cholesterol sterols in hypercholesterolaemic subjects: a randomised, placebo-controlled, crossover study. Br J Nutr 2011; 107:1766-75. [DOI: 10.1017/s0007114511005162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Plant sterol (PS)-supplemented foods are recommended to help in lowering serum LDL-cholesterol (LDL-C). Few studies have examined the efficacy of PS-enriched skimmed milk (SM) or semi-SM enriched with vegetable fat (PS-VFM). There is also insufficient information on factors predictive of LDL-C responses to PS. We examined the effects of PS-SM (0·1 % dairy fat) and PS-VFM (0·1 % dairy fat plus 1·5 % vegetable fat) on serum lipids and non-cholesterol sterols in hypercholesterolaemic individuals. In a placebo-controlled, crossover study, forty-three subjects with LDL-C>1300 mg/l were randomly assigned to three 4-week treatment periods: control SM, PS-SM and PS-VFM, with 500 ml milk with or without 3·4 g PS esters (2 g free PS). Serum concentrations of lipids and non-cholesterol sterols were measured. Compared to control, LDL-C decreased by 8·0 and 7·4 % (P < 0·015, both) in the PS-SM and PS-VFM periods, respectively. Serum lathosterol:cholesterol (C) ratios increased by 11–25 %, while sitosterol:C and campesterol:C ratios increased by 70–120 % with both the PS-fortified milk. Adjusted LDL-C reductions were variably enhanced in participants with basal low serum lathosterol/C or conversely high sitosterol/C and campesterol/C. Subjects with post-treatment serum PS:C ratios above the median showed mean LDL-C changes of − 5·9 to − 10·4 %, compared with 1·7 to − 2·9 % below the median. In conclusion, consumption of 2 g/d of PS as PS-SM and PS-VFM lowered LDL-C in hypercholesterolaemic subjects to a similar extent. Basal and post-treatment changes in markers of cholesterol metabolism indicating low cholesterol synthesis and high cholesterol absorption predicted improved LDL-C responses to PS.
Collapse
|
18
|
Rideout TC. Getting personal: considering variable interindividual responsiveness to dietary lipid-lowering therapies. Curr Opin Lipidol 2011; 22:37-42. [PMID: 21102329 DOI: 10.1097/mol.0b013e3283414e71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW There is substantial interindividual variation in the response of blood lipids to dietary therapies. The purpose of this review is to highlight recent developments in identifying patient-specific factors that contribute to the significant heterogeneity of responsiveness in lipids to dietary changes and consumption of dietary bioactive compounds. RECENT FINDINGS Recent findings suggest that a variety of patient-specific physiological, pathological, environmental, and genetic factors influence the effectiveness of dietary lipid-lowering therapies. SUMMARY Although genetic markers of responsiveness will revolutionize future personalized nutrition therapies, current research priorities should emphasize the identification of readily accessible metabolic biomarkers of responsiveness in patient subgroups.
Collapse
Affiliation(s)
- Todd C Rideout
- Department of Exercise & Nutrition Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
19
|
Rideout TC, Harding SV, Mackay D, Abumweis SS, Jones PJ. High basal fractional cholesterol synthesis is associated with nonresponse of plasma LDL cholesterol to plant sterol therapy. Am J Clin Nutr 2010; 92:41-6. [PMID: 20444957 DOI: 10.3945/ajcn.2009.29073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The cholesterol-lowering effectiveness of plant sterol (PS) therapy is hindered by wide-ranging variability in LDL-cholesterol responsiveness across individuals. To capitalize on the LDL-cholesterol-lowering potential of PS in the clinical setting, it is paramount to characterize the metabolic factors that underlie this heterogeneity of responsiveness. OBJECTIVE The objective was to investigate the relation between cholesterol synthesis and plasma LDL-cholesterol reductions in response to PS consumption. DESIGN We evaluated previously conducted clinical PS interventions incorporating stable-isotope measures of cholesterol synthesis and conducted feeding studies in animal models of response (Syrian Golden hamsters) and nonresponse (C57BL/6J mice) to PS consumption. RESULTS From our clinical study population (n = 113), we identified 47 nonresponders (3.73 +/- 1.10% change in LDL cholesterol) and 66 responders (-15.16 +/- 1.04% change in LDL cholesterol) to PS therapy. The basal cholesterol fractional synthesis rate (FSR) as measured by direct deuterium incorporation was 23% higher (P = 0.003) in the nonresponder subgroup than in responders to PS therapy. The basal cholesterol FSR correlated (r = 0.22, P = 0.02) with the percentage change in LDL cholesterol after PS intervention. In support of our clinical observations, nonresponding mice showed a 77% higher (P = 0.001) basal cholesterol FSR than that of responding hamsters. Compared with control mice, PS-fed mice showed an increase in hepatic nuclear sterol regulatory element binding protein 2 abundance (1.3-fold of control, P = 0.04) and beta-hydroxy-beta-methylglutaryl coenzyme A reductase-mRNA expression (2.4-fold of control, P = 0.00). CONCLUSION The results suggest that subjects with high basal cholesterol synthesis are less responsive to PS treatment than are subjects with low basal cholesterol synthesis.
Collapse
Affiliation(s)
- Todd C Rideout
- Richardson Centre for Functional Foods and Nutraceuticals, Winnipeg, Canada.
| | | | | | | | | |
Collapse
|
20
|
Weingärtner O, Lütjohann D, Böhm M, Laufs U. Relationship between cholesterol synthesis and intestinal absorption is associated with cardiovascular risk. Atherosclerosis 2010; 210:362-5. [DOI: 10.1016/j.atherosclerosis.2010.01.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/14/2009] [Accepted: 01/04/2010] [Indexed: 11/27/2022]
|
21
|
Alterations in cholesterol homeostasis are associated with coronary heart disease in patients with aortic stenosis. Coron Artery Dis 2009; 20:376-82. [DOI: 10.1097/mca.0b013e32832fa947] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Carr TP, Krogstrand KLS, Schlegel VL, Fernandez ML. Stearate-enriched plant sterol esters lower serum LDL cholesterol concentration in normo- and hypercholesterolemic adults. J Nutr 2009; 139:1445-50. [PMID: 19535421 DOI: 10.3945/jn.109.106328] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Studies in our laboratory have previously demonstrated in hamsters a superior cholesterol-lowering ability of plant sterol (PS) esters enriched in stearate compared with linoleate. We therefore conducted a randomized, double-blind, 2-group parallel, placebo-controlled study to test the cholesterol-lowering properties of stearate-enriched PS esters in normo- and hypercholesterolemic adults. Thirty-two adults, 16 per group with equal number of males and females in each group, participated in the 4-wk study. Participants consumed 3 g/d (1 g three times per day with meals) of either PS esters or placebo delivered in capsules. Serum LDL cholesterol concentration significantly decreased 0.42 mmol/L (11%) and the LDL:HDL cholesterol ratio decreased 10% with PS ester supplementation, whereas LDL particle size and lipoprotein subclass particle concentrations (as measured by NMR) were not affected. The percent change in LDL cholesterol was positively correlated with baseline lathosterol concentration (r = 0.729; P = 0.0014), indicating an association between the magnitude of LDL change and the rate of whole-body cholesterol synthesis. Serum campesterol (but not sitosterol) concentration significantly increased in the PS ester group. Serum tocopherol, retinol, and beta-carotene concentrations were not affected by PS ester supplementation. Thus, our findings demonstrate the usefulness of a novel stearate-enriched PS ester compound in decreasing LDL cholesterol in both normo- and hypercholesterolemic adults. The extent to which PS ester fatty acid composition affects intestinal micelle formation and cholesterol absorption in humans requires further study.
Collapse
Affiliation(s)
- Timothy P Carr
- Departments of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| | | | | | | |
Collapse
|
23
|
Baseline plasma plant sterol concentrations do not predict changes in serum lipids, C-reactive protein (CRP) and plasma plant sterols following intake of a plant sterol-enriched food. Eur J Clin Nutr 2007; 63:543-51. [PMID: 18073779 DOI: 10.1038/sj.ejcn.1602969] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES Plant sterol (PS) consumption lowers serum cholesterol levels, while modestly increasing plasma PS concentrations. Plasma PS concentrations may reflect sterol absorption, thus individuals with high plasma plant sterol (HPS) concentrations may show greater changes in circulating cholesterol and PS than individuals with low plasma plant sterol (LPS) concentrations. The objective of this study was to examine whether HPS and LPS concentrations are related to subsequent changes in plasma PS, serum lipid and C-reactive protein (CRP) concentrations, following dietary PS intake in otherwise healthy hypercholesterolemic men. SUBJECTS/METHODS This single-blinded, randomized, diet-controlled study consisted of two 4-week phases, separated by a 4-week washout, where a diet with a placebo or the 2.0 g per day PS-enriched spread was consumed during the phases. RESULTS At baseline, men with HPS possessed higher (P<0.01) mean serum cholesterol concentration, while those with LPS had higher (P<0.05) body mass index. Following PS intake, plasma sum of campesterol plus sitosterol concentrations were elevated from 34.6+/-4.2 to 46.2+/-3.3 micromol l(-1) (mean+/-SE) and 16.5+/-0.9 to 20.8+/-1.2 micromol l(-1) after PS intake in men with HPS and LPS, respectively. Changes in plasma PS concentrations, however, were not different between individuals with either HPS or LPS baseline concentrations. Total cholesterol and low-density lipoprotein cholesterol levels were decreased (P<0.0001) by 6.3 and 7.8%, respectively, with PS consumption for all individuals. Changes in lipid parameters were not different between individuals with HPS or LPS baseline concentrations. No changes in CRP were apparent subsequent to PS intervention. CONCLUSIONS Baseline plasma PS concentrations are not associated or predictive of changes in serum cholesterol or plasma PS concentrations after PS intervention. Thus, individuals with HPS show similar increases in PS concentrations as individuals with LPS following PS supplementation. Plasma PS remained in the range of previously reported concentrations.
Collapse
|