1
|
Zhang S, Huang A, Lv X, Zhang J, Zhang M, Chen Y, Yang L, Wang H, Guo D, Luo X, Ren M, Dong P. Anti-Oomycete Effect and Mechanism of Salicylic Acid on Phytophthora infestans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20613-20624. [PMID: 38100671 DOI: 10.1021/acs.jafc.3c05748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Pathogenic oomycetes infect a wide variety of organisms, including plants, animals, and humans, and cause massive economic losses in global agriculture, aquaculture, and human health. Salicylic acid (SA), an endogenous phytohormone, is regarded as an inducer of plant immunity. Here, the potato late blight pathogen Phytophthora infestans was used as a model system to uncover the inhibitory mechanisms of SA on pathogenic oomycetes. In this research, SA significantly inhibited the mycelial growth, sporulation, sporangium germination, and virulence of P. infestans. Inhibition was closely related to enhanced autophagy, suppression of translation initiation, and ribosomal biogenesis in P. infestans, as shown by multiomics analysis (transcriptomics, proteomics, and phosphorylated proteomics). Monodansylcadaverine (MDC) staining and Western blotting analysis showed that SA promoted autophagy in P. infestans by probably targeting the TOR signaling pathway. These observations suggest that SA has the potential to control late blight caused by P. infestans.
Collapse
Affiliation(s)
- Shumin Zhang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Airong Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiulan Lv
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jiaomei Zhang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Meiquan Zhang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Liting Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hanyan Wang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Dongmei Guo
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiumei Luo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Zhengzhou Research Base State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
- State Key Laboratory of Dao-di Herbs, Beijng 100700, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
| |
Collapse
|
2
|
Wang W, Long Y. A review of biocontrol agents in controlling late blight of potatoes and tomatoes caused by Phytophthora infestans and the underlying mechanisms. PEST MANAGEMENT SCIENCE 2023; 79:4715-4725. [PMID: 37555293 DOI: 10.1002/ps.7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Phytophthora infestans causes late blight on potatoes and tomatoes, which has a significant economic impact on agriculture. The management of late blight has been largely dependent on the application of synthetic fungicides, which is not an ultimate solution for sustainable agriculture and environmental safety. Biocontrol strategies are expected to be alternative methods to the conventional chemicals in controlling plant diseases in the integrated pest management (IPM) programs. Well-studied biocontrol agents against Phytophthora infestans include fungi, oomycetes, bacteria, and compounds produced by these antagonists, in addition to certain bioactive metabolites produced by plants. Laboratory and glasshouse experiments suggest a potential for using biocontrol in practical late blight disease management. However, the transition of biocontrol to field applications is problematic for the moment, due to low and variable efficacies. In this review, we provide a comprehensive summary on these biocontrol strategies and the underlying corresponding mechanisms. To give a more intuitive understanding of the promising biocontrol agents against Phytophthora infestans in agricultural systems, we discuss the utilizations, modes of action and future potentials of these antagonists based on their taxonomic classifications. To achieve a goal of best possible results produced by biocontrol agents, it is suggested to work on field trials, strain modifications, formulations, regulations, and optimizations of application. Combined biocontrol agents having different modes of action or biological adaptation traits may be used to strengthen the biocontrol efficacy. More importantly, biological control agents should be applied in the coordination of other existing and forthcoming methods in the IPM programs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weizhen Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| | - Youhua Long
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Kouki H, Souihi M, Saadouli I, Balti S, Ayed A, Majdoub N, Mosbah A, Amri I, Mabrouk Y. Biocontrol Potential of Some Rhizospheric Soil Bacterial Strains against Fusarium culmorum and Subsequent Effect on Growth of Two Tunisian Wheat Cultivars. Microorganisms 2023; 11:1165. [PMID: 37317140 DOI: 10.3390/microorganisms11051165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/16/2023] Open
Abstract
PGPR (Plant Growth Promoting Rhizobacteria) are used as biofertilizers and biological control agents against fungi. The objective of this work was to evaluate the antagonistic activities of some bacterial strains isolated from soil against four phytopathogenic fungal strains (Fusarium graminearum, F. culmorum, Phytophthora sp. and Verticillium dahlia). Two strains having an antagonist effect on fungi and displaying the maximum of plant growth promoting (PGP) traits were selected for further study and identified as Bacillus subtilis and B. amyloliquefaciens respectively. In planta assays demonstrated that the two Bacillus strains are able to enhance plant growth of two wheat cultivars in absence of nitrogen and protect them against F. culmorum. Pot experiments performed in a greenhouse showed that wheat plants inoculation with two bacterial strains reduce F. culmorum disease severity correlated with the accumulation of phenolic compounds and chlorophyll content. These could partly explain the effectiveness of these bacteria in protecting Tunisian durum wheat cultivars against F. culmorum. Application B. amyloliquefaciens, showed better protection than B. subtilis although the last one enhanced more the plant growth of two wheat cultivars in absence of fungus. Hence, combination of two bacterial strains could be a strategic approach to enhance plant growth and control plant diseases.
Collapse
Affiliation(s)
- Habiba Kouki
- Laboratory of Biotechnology and Nuclear Technology, National Centre for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet, Technopark, Ariana 2020, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna 7021, Tunisia
| | - Mouna Souihi
- Laboratory of Biotechnology and Nuclear Technology, National Centre for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet, Technopark, Ariana 2020, Tunisia
| | - Ilhem Saadouli
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Sabrine Balti
- Laboratory of Biotechnology and Nuclear Technology, National Centre for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet, Technopark, Ariana 2020, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna 7021, Tunisia
| | - Amira Ayed
- Laboratory of Biotechnology and Nuclear Technology, National Centre for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet, Technopark, Ariana 2020, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana 2020, Tunisia
| | - Nihed Majdoub
- Laboratory of Biotechnology and Nuclear Technology, National Centre for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet, Technopark, Ariana 2020, Tunisia
| | - Amor Mosbah
- Laboratory of Biotechnology and Valorization of Bio-Geo Resources, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana 2020, Tunisia
| | - Ismail Amri
- Laboratory of Biotechnology and Nuclear Technology, National Centre for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet, Technopark, Ariana 2020, Tunisia
| | - Yassine Mabrouk
- Laboratory of Biotechnology and Nuclear Technology, National Centre for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet, Technopark, Ariana 2020, Tunisia
| |
Collapse
|
4
|
Kadiri M, Sevugapperumal N, Nallusamy S, Ragunathan J, Ganesan MV, Alfarraj S, Ansari MJ, Sayyed RZ, Lim HR, Show PL. Pan-genome analysis and molecular docking unveil the biocontrol potential of Bacillus velezensis VB7 against Phytophthora infestans. Microbiol Res 2023; 268:127277. [PMID: 36577205 DOI: 10.1016/j.micres.2022.127277] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Management of late blight of potato incited by Phytophthora infestans remains a major challenge. Coevolution of pathogen with resistant strains and the rise of fungicide resistance have made it more challenging to prevent the spread of P. infestans. Here, the anti-oomycete potential of Bacillus velezensis VB7 against P. infestans through pan-genome analysis and molecular docking were explored. The Biocontrol potential of VB7 against P. infestans was assessed using a confrontational assay. The biomolecules from the inhibition zone were identified and subjected to in silico analysis against P. infestans target proteins. Nucleotide sequences for 54 B. velezensis strains from different geographical locations were used for pan-genome analysis. The confrontational assay revealed the anti-oomycetes potential of VB7 against P. infestans. Molecular docking confirmed that the penicillamine disulfide had the maximum binding energy with eight effector proteins of P. infestans. Besides, scanning electron microscopic observations of P. infestans interaction with VB7 revealed structural changes in hypha and sporangia. Pan-genome analysis between 54 strains of B. velezensis confirmed that the core genome had 2226 genes, and it has an open pan-genome. The present study confirmed the anti-oomycete potential of B. velezensis VB7 against P. infestans and paved the way to explore the genetic potential of VB7.
Collapse
Affiliation(s)
- Mahendra Kadiri
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Nakkeeran Sevugapperumal
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Janani Ragunathan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Malathi Varagur Ganesan
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India.
| | - R Z Sayyed
- Asian PGPR Society, Department of Entomology, Auburn University, Auburn, AL, 36849, USA.
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, India 602105.
| |
Collapse
|
5
|
Zhang J, Huang X, Hou Y, Xia X, Zhu Z, Huang A, Feng S, Li P, Shi L, Dong P. Isolation and Screening of Antagonistic Endophytes against Phytophthora infestans and Preliminary Exploration on Anti-oomycete Mechanism of Bacillus velezensis 6-5. PLANTS (BASEL, SWITZERLAND) 2023; 12:909. [PMID: 36840257 PMCID: PMC9962363 DOI: 10.3390/plants12040909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Phytophthora infestans, the notorious pathogen of potato late blight, leads to a severe decline in potato yields and even harvest failure. We isolated 201 endophytic isolates from healthy root tissues of potatoes, among which 41 showed strong antagonistic activity against P. infestans. Further, the tolerance to stress and the potential application against potato late blight of these antagonistic isolates were tested. Most of them were extremely tolerant to stresses such as acid-alkali, temperature, UV, salt, and heavy metal stress. However, some antagonistic isolates with excellent stress tolerance might be pathogenic to potatoes. Combining the screening results, a total of 14 endophytes had excellent comprehensive performance in all the tests. In this paper, the endophyte 6-5 was selected among them for the preliminary exploration of the anti-oomycete mechanism. Analysis of the 16S rDNA sequence revealed that 6-5 had a high homology to the corresponding sequence of Bacillus velezensis (99.72%) from the NCBI database. Endophyte 6-5 significantly inhibited the mycelial growth of P. infestans, with an inhibition rate of over 90% in vitro assays, and deformed the hyphal phenotype of P. infestans. In addition, endophyte 6-5 could secrete protease and cellulase, and produce antagonistic substances with high thermal stability, which might be helpful to its antagonistic activity against P. infestans. Furthermore, it was demonstrated that 6-5 had the ability to improve the resistance of potato tubers to late blight. In short, our study described the process of isolating and screening endophytes with antagonistic activity against P. infestans from potato roots, and further explored the potential of biocontrol candidate strain 6-5 in potato late blight control.
Collapse
Affiliation(s)
- Jiaomei Zhang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
| | - Xiaoqing Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yuqin Hou
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiangning Xia
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhiming Zhu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Airong Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
| | - Shun Feng
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Peihua Li
- College of Agronomy, Xichang University, Xichang 615013, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
| |
Collapse
|
6
|
Complete Genome Sequence of Antibiotic-Producing Bacillus velezensis H208, Isolated from Ginger Rhizosphere in Laifeng County, China. Microbiol Resour Announc 2023; 12:e0055122. [PMID: 36472451 PMCID: PMC9872608 DOI: 10.1128/mra.00551-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The genome of an antibiotic-producing bacterium, Bacillus velezensis H208, was sequenced. Strain H208 was isolated from ginger rhizosphere in Laifeng County, China. The genome consisted of 3,929,792 bp, with a GC content of 46.5%, and contained 3,773 protein-coding genes and 118 noncoding RNA genes.
Collapse
|
7
|
Ragunathan J, Appusami S, Kadiri M, Venkatesan R, Nallusamy S, Sevugapperumal N. Deciphering the Biomolecules from Bacillus atrophaeus NMB01 Untangles the Anti-Oomycetes Action of Trioxsalen and Corynan-17-ol, Against Phytophthora infestans Inciting Late Blight of Potato. Indian J Microbiol 2022; 62:641-650. [PMID: 36458213 PMCID: PMC9705679 DOI: 10.1007/s12088-022-01044-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
The antagonistic Bacillus spp. is known well for the production of versatile antimicrobial biomolecules with broad spectrum of action against different types of plant pathogens. Considering the significance of metabolically active biomolecules, attempts were made to decipher the anti-oomycete nature of biomolecules produced by Bacillus atrophaeus NMB01 during di-trophic interaction with Phytophthora infestans. Ten biomolecules produced by B. atrophaeus NMB01 during di-trophic interaction with P. infestans were docked against the twelve target proteins of P. infestans. Molecular docking of biomolecules reported trioxsalen and corynan-17-ol,18,19-didehydro-10-methoxy-acetate(ester) as best hits with highest binding energy in the range of - 7.5 to - 5 kcal/mol against target proteins of P. infestans. Comparatively less binding energy was observed for commercially available fungicides mandipropamid and metalaxyl on docking against the target proteins of P. infestans. We also confirmed the direct impact of trioxsalen andcorynan-17-ol, on P. infestans under in vitro with 66% and 50% inhibition of mycelial growth of P. infestans, respectively. This is the first study attempted to untangle the role of bioactive anti-oomycete compounds produced by B. atrophaeus strain NMB01 during di-trophic interaction with P. infestans against late blight pathogen P. infestans infecting potato. From the present study, we conclude that the biomolecules, trioxsalen and corynan-17-ol, can be explored for the management of P. infestans, the incitant of late blight of potato. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12088-022-01044-7.
Collapse
Affiliation(s)
- Janani Ragunathan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - Sudha Appusami
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - Mahendra Kadiri
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - Ragapriya Venkatesan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - Nakkeeran Sevugapperumal
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| |
Collapse
|
8
|
Troussieux S, Gilgen A, Souche JL. A New Biocontrol Tool to Fight Potato Late Blight Based on Willaertia magna C2c Maky Lysate. PLANTS (BASEL, SWITZERLAND) 2022; 11:2756. [PMID: 36297781 PMCID: PMC9607421 DOI: 10.3390/plants11202756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Potato late blight (PLB) is one of the most destructive disease affecting potatoes. Late blight control relies almost exclusively on the use of chemical pesticides, including copper products, which are efficient but controversial due to their environmental toxicity. Societal pressure and the quest for more sustainable agriculture reinforce the need for natural plant protection products. To respond to this demand, we tested the lysate of the amoeba Willaertia magna C2c Maky on PLB. This active substance exhibits plant protection properties against grape downy mildew thanks to a dual mode of action (plant elicitor and antifungal direct effect). We hypothesized that this active substance might also have an effect against other diseases caused by oomycetes on other crops, such as potato. In vitro, in planta, and in-field studies were conducted. The collected data demonstrate that the lysate of the amoeba Willaertia magna C2c Maky is able to elicit potato defenses, and direct fungicidal activity against Phytophtora infestans was observed. Proof of efficacy was first obtained in greenhouse, with up to 80% disease reduction, and confirmed in field trials. Formulated products provided up to 77% protection in field in the case of low infestation (28%) and up to 49% protection when the untreated plants were 100% destroyed. Willaertia magna C2c Maky was also able to significantly increase yield by up to 30% in field trials.
Collapse
|
9
|
Antifungal Activity and Plant Growth-Promoting Properties of Bacillus mojovensis B1302 against Rhizoctonia Cerealis. Microorganisms 2022; 10:microorganisms10081682. [PMID: 36014099 PMCID: PMC9413849 DOI: 10.3390/microorganisms10081682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Rhizoctonia cerealis is a worldwide soil-borne pathogenic fungus that significantly infects wheat and causes sharp eyespot in China. However, the biocontrol strains used for the control of Rhizoctonia cerealis are insufficient. In the present study, antagonistic strain B1302 from the rhizosphere of wheat were isolated and identified as Bacillus mojovensis based on their morphological, physiological, and biochemical characteristics, and their 16S rDNA sequence. Culture filtrate of strain B1302 had a broad antifungal spectrum. In order to improve the antifungal activity of B1302, response surface methodology (RSM) was used to optimize the culture conditions. The final medium composition and culture conditions were 13.2 g/L of wheat bran, 14.1 g/L of soybean meal, 224 r/min of rotation speed, 7.50 of initial pH, and 1.5 × 108 CFU/mL of inoculation amount at 35 °C for a culture duration of 72 h. B. mojavensis B1302 inhibited the hyphae growth of R.cerealis and produced hydrolytic enzymes (protease, chitinase, and glucanase), IAA, and had N-fixing potentiality and P-solubilisation capacity. It can also promote wheat seedling growth in potted plants. The disease incidence and index of wheat seedlings were consistent with the effect of commercial pesticides under treatment with culture filtrate. The biocontrol efficacy of culture filtrate was significant—up to 65.25%. An animal toxicological safety analysis suggested that culture filtrate was safe for use and could be developed into an effective microbial fungicide to control wheat sharp eyespot.
Collapse
|