1
|
Lin X, Wang J, Hou Z, Ren S, Wang W, Yang Y, Yi Y, Zhang Y, Li R. Antifungal Potential and Mechanism of Bacillus velezensis HeN-7 Isolated from Tobacco Leaves on Bipolaris sorokiniana. Curr Microbiol 2024; 81:340. [PMID: 39225871 DOI: 10.1007/s00284-024-03858-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Wheat leaf blight caused by Bipolaris sorokiniana is a widespread fungal disease that poses a serious risk to wheat. Biological control without causing environmental pollution is one of the safest and most effective method to control plant diseases. The antagonistic bacterial strain HeN-7 (identified as Bacillus velezensis) was isolated from tobacco leaves cultivated in Henan province, China. The results of different concentrations of cell-free supernatant (CFS) from HeN-7 culture against B. sorokiniana mycelia showed that 20% HeN-7 CFS (v/v) reached the maximum inhibition rate of 96%. In the potted plants control assay, B. velezensis HeN-7 CFS exhibited remarkable biocontrol activity on the wheat infected with B. sorokiniana, the best pot control efficacy was 65% at 20% CFS. The research on the mechanism of action demonstrated that HeN-7 CFS induced the membrane lipid peroxidation in B. sorokiniana, leading to the disruption of cell membrane integrity and resulting in the leakage of cell contents; in addition, the intracellular mitochondrial membrane potential in mycelium dissipated and reactive oxygen species accumulated, thereby inhibiting the growth of B. sorokiniana. These results indicate that B. velezensis HeN-7 is a promising candidate as a biological control agent against Bipolaris sorokiniana infection.
Collapse
Affiliation(s)
- Xiaojie Lin
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jianwei Wang
- Key Laboratory of Eco-Environment and Tobacco Leaf Quality, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhipeng Hou
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Shiming Ren
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wenxiu Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yanhui Yang
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yanjie Yi
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China.
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Yanling Zhang
- Key Laboratory of Eco-Environment and Tobacco Leaf Quality, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Ruifang Li
- Zhengzhou Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China.
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
2
|
Liu Y, Han S, Song L, Li L, Wang H, Pan M, Tan J. Screening of bacterial endophytes of larch against Neofusicoccum laricinum and validation of their safety. Microbiol Spectr 2024; 12:e0411223. [PMID: 38912806 PMCID: PMC11302231 DOI: 10.1128/spectrum.04112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/14/2024] [Indexed: 06/25/2024] Open
Abstract
In order to provide a highly feasible research pathway for the control of larch shoot blight, healthy larch branches and leaves were collected from 13 sampling sites in 8 provinces in China. The antagonistic endophytic bacteria obtained from the screening were used to carry out disease control experiments in potted seedlings. The safety evaluation test was conducted on the antagonistic bacteria. Subsequently, the strains with better preventive effect and high safety were identified by morphological and molecular methods. A total of 391 strains of endophytic bacteria were isolated from healthy larch branches and leaves. Seventy-eight strains of larch endophytic bacteria with antagonistic effect were obtained by primary sieving. Ten strains of endophytic bacteria with obvious antagonism were further obtained by secondary sieving, and all of them had an inhibition rate of more than 57%. Among them, strains YN 2, JL 6, NMG 23, and JL 54 showed the highest inhibition rate of 63.16%-65.08%, which was significantly different from the other treatments. The results of the pot test showed that 14 days after inoculation with the pathogen, strains YN 2 and JL 54 were more effective in the control of larch shoot blight, with the preventive effects reaching 57.7% and 50.0%, respectively. Strains JL 6 and JL 54 were biologically safe in the safety evaluation test. Therefore, strain JL 54 was selected for identification. It was identified as Bacillus amyloliquefaciens through morphological observation, 16S rDNA sequence, gyrB gene sequence and 16S rDNA-gyrB tandem feature sequence analysis. IMPORTANCE Larch shoot blight is a widely distributed, damaging, and rapidly spreading fungal disease of forest trees that poses a serious threat to larch plantations. Endophytic bacteria have biological effects on host plants against pests and diseases, and they have a growth-promoting effect on plants. In this paper, we investigated for the first time the biocontrol effect of endophytic bacteria on larch shoot blight by screening endophytic bacteria with the function of antagonizing dieback fungi. Bacillus amyloliquefaciens JL 54 has a better prospect of biocontrol against larch shoot blight, which lays the foundation for the application of this bacterium in the future.
Collapse
Affiliation(s)
- Yuqian Liu
- College of Forestry and Grassland, Collaborative Innovation Center of Modern Forestry in South China, Nanjing Forestry University, Nanjing, China
| | - Shengjie Han
- College of Forestry and Grassland, Collaborative Innovation Center of Modern Forestry in South China, Nanjing Forestry University, Nanjing, China
| | - Liwen Song
- Jilin Provincial Academy of Forestry Science, Changchun, China
| | - Limei Li
- Jilin Provincial Academy of Forestry Science, Changchun, China
| | - Haifeng Wang
- Forestry Bureau of Dunhua City, Jilin Province, Dunhua, China
| | - Min Pan
- College of Forestry and Grassland, Collaborative Innovation Center of Modern Forestry in South China, Nanjing Forestry University, Nanjing, China
| | - Jiajin Tan
- College of Forestry and Grassland, Collaborative Innovation Center of Modern Forestry in South China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
3
|
Peng W, Guo X, Shi H, Yang X. Draft genome sequence of Bacillus atrophaeus TL401, a biocontrol bacterium with plant growth-promoting properties. Microbiol Resour Announc 2024; 13:e0124923. [PMID: 38888324 PMCID: PMC11256835 DOI: 10.1128/mra.01249-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
Bacillus atrophaeus strain TL401 exhibits biocontrol activity against Botrytis cinerea on tomato and plant growth promotion. Here, we present the draft genome sequence of strain ITL401, which includes a circular chromosome with 4,213,034 bp and a guanine-cytosine content of 43.39%.
Collapse
Affiliation(s)
- Wanrong Peng
- College of Life Science, Chongqing Normal University, Chongqing, China
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Xueying Guo
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Hongli Shi
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Xingyong Yang
- College of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
4
|
Wang J, Liu J, Yang Y, Sun G, Yang D, Yin S, Zhang S, Jin W, Zhao D, Sun L, Jiang R. Inhibitory effect of phellodendrine on C48/80-induced allergic reaction in vitro and in vivo. Int Immunopharmacol 2024; 134:112256. [PMID: 38744172 DOI: 10.1016/j.intimp.2024.112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The incidence of allergic reactions has risen steadily in recent years, prompting growing interest in the identification of efficacious and safe natural compounds that can prevent or treat allergic diseases. Phellodendron amurense Rupr. has long been applied as a treatment for allergic diseases, whose primary component is phellodendrine. However, the efficacy of phellodendrine as a treatment for allergic diseases remains to be assessed. Mast cells are the primary effectors of allergic reactions, which are not only activated by IgE-dependent pathway, but also by IgE-independent pathways via human MRGPRX2, rat counterpart MRGPRB3. As such, this study explored the effect and mechanism of phellodendrine through this family receptors in treating allergic diseases in vitro and in vivo. These analyses revealed that phellodendrine administration was sufficient to protect against C48/80-induced foot swelling and Evans blue exudation in mice, and suppressed C48/80-induced RBL-2H3 rat basophilic leukemia cells degranulation, and β-HEX, HIS, IL-4, and TNF-α release. Moreover, phellodendrine could reduce the mRNA expression of MRGPRB3 and responsiveness of MRGPRX2 by altering its structure. It was able to decrease Ca2+ levels, phosphorylation levels of CaMK, PLCβ1, PKC, ERK, JNK, p38, and p65, and inhibit the degradation of IκB-α. These analyses indicate that berberine inhibits the activation of PLC and downregulates the release of Ca2+ in the endoplasmic reticulum by altering the conformation of MRGPRB3/MRGPRX2 protein, thereby inhibiting the activation of PKC and subsequently inhibiting downstream MAPK and NF-κB signaling, ultimately suppressing allergic reactions. There may thus be further value in studies focused on developing phellodendrine as a novel anti-allergic drug.
Collapse
Affiliation(s)
- Jing Wang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jianzeng Liu
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yang Yang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guang Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Dan Yang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Shuhe Yin
- Kanglong Huacheng (Ningbo) Technology Development Co., Ltd, Ningbo 315000, China
| | - Shuai Zhang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Wenqi Jin
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Daqing Zhao
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China; Jilin Province Traditional Chinese Medicine Characteristic Health Product Research and Development Cross-regional Cooperation Science and Technology Innovation Center, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China.
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China.
| |
Collapse
|
5
|
Luan P, Yi Y, Huang Y, Cui L, Hou Z, Zhu L, Ren X, Jia S, Liu Y. Biocontrol potential and action mechanism of Bacillus amyloliquefaciens DB2 on Bipolaris sorokiniana. Front Microbiol 2023; 14:1149363. [PMID: 37125175 PMCID: PMC10135310 DOI: 10.3389/fmicb.2023.1149363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Bipolaris sorokiniana is the popular pathogenic fungi fungus which lead to common root rot and leaf spot on wheat. Generally, chemical fungicides are used to control diseases. However, the environmental pollution resulting from fungicides should not be ignored. It is important to study the mode of antagonistic action between biocontrol microbes and plant pathogens to design efficient biocontrol strategies. Results An antagonistic bacterium DB2 was isolated and identified as Bacillus amyloliquefaciens. The inhibition rate of cell-free culture filtrate (CF, 20%, v/v) of DB2 against B. sorokiniana reached 92.67%. Light microscopy and scanning electron microscopy (SEM) showed that the CF significantly altered the mycelial morphology of B. sorokiniana and disrupted cellular integrity. Fluorescence microscopy showed that culture filtrate destroyed mycelial cell membrane integrity, decreased the mitochondrial transmembrane potential, induced reactive oxygen species (ROS) accumulation, and nuclear damage which caused cell death in B. sorokiniana. Moreover, the strain exhibited considerable production of protease and amylase, and showed a significant siderophore and indole-3-acetic acid (IAA) production. In the detached leaves and potted plants control assay, B. amyloliquefacien DB2 had remarkable inhibition activity against B. sorokiniana and the pot control efficacy was 75.22%. Furthermore, DB2 suspension had a significant promotion for wheat seedlings growth. Conclusion B. amyloliquefaciens DB2 can be taken as a potential biocontrol agent to inhibit B. sorokiniana on wheat and promote wheat growth.
Collapse
Affiliation(s)
- Pengyu Luan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
- *Correspondence: Yanjie Yi,
| | - Yifan Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Liuqing Cui
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Zhipeng Hou
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Lijuan Zhu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Xiujuan Ren
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Shao Jia
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Yang Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| |
Collapse
|
6
|
Antifungal Activity and Plant Growth-Promoting Properties of Bacillus mojovensis B1302 against Rhizoctonia Cerealis. Microorganisms 2022; 10:microorganisms10081682. [PMID: 36014099 PMCID: PMC9413849 DOI: 10.3390/microorganisms10081682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Rhizoctonia cerealis is a worldwide soil-borne pathogenic fungus that significantly infects wheat and causes sharp eyespot in China. However, the biocontrol strains used for the control of Rhizoctonia cerealis are insufficient. In the present study, antagonistic strain B1302 from the rhizosphere of wheat were isolated and identified as Bacillus mojovensis based on their morphological, physiological, and biochemical characteristics, and their 16S rDNA sequence. Culture filtrate of strain B1302 had a broad antifungal spectrum. In order to improve the antifungal activity of B1302, response surface methodology (RSM) was used to optimize the culture conditions. The final medium composition and culture conditions were 13.2 g/L of wheat bran, 14.1 g/L of soybean meal, 224 r/min of rotation speed, 7.50 of initial pH, and 1.5 × 108 CFU/mL of inoculation amount at 35 °C for a culture duration of 72 h. B. mojavensis B1302 inhibited the hyphae growth of R.cerealis and produced hydrolytic enzymes (protease, chitinase, and glucanase), IAA, and had N-fixing potentiality and P-solubilisation capacity. It can also promote wheat seedling growth in potted plants. The disease incidence and index of wheat seedlings were consistent with the effect of commercial pesticides under treatment with culture filtrate. The biocontrol efficacy of culture filtrate was significant—up to 65.25%. An animal toxicological safety analysis suggested that culture filtrate was safe for use and could be developed into an effective microbial fungicide to control wheat sharp eyespot.
Collapse
|