Roy S, Mittal P, Tayi L, Bondada S, Ray MK, Patel HK, Sonti RV.
Xanthomonas oryzae pv.
oryzae Exoribonuclease R Is Required for Complete Virulence in Rice, Optimal Motility, and Growth Under Stress.
PHYTOPATHOLOGY 2022;
112:501-510. [PMID:
34384245 DOI:
10.1094/phyto-07-21-0310-r]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exoribonuclease R (RNase R) is a 3' hydrolytic exoribonuclease that can degrade structured RNA. Mutation in RNase R affects virulence of certain human pathogenic bacteria. The aim of this study was to determine whether RNase R is necessary for virulence of the phytopathogen that causes bacterial blight in rice, Xanthomonas oryzae pv. oryzae (Xoo). In silico analysis has indicated that RNase R is highly conserved among various xanthomonads. Amino acid sequence alignment of Xoo RNase R with RNase R from various taxa indicated that Xoo RNase R clustered with RNase R of order Xanthomonadales. To study its role in virulence, we generated a gene disruption mutant of Xoo RNase R. The Xoo rnr- mutant is moderately virulence deficient, and the complementing strain (rnr-/pHM1::rnr) rescued the virulence deficiency of the mutant. We investigated swimming and swarming motilities in both nutrient-deficient minimal media and nutrient-optimal media. We observed that RNase R mutation has adversely affected the swimming and swarming motilities of Xoo in optimal media. However, in nutrient-deficient media only swimming motility was noticeably affected. Growth curves in optimal media at suboptimal temperature (15°C cold stress) indicate that the Xoo rnr- mutant grows more slowly than the Xoo wild type and complementing strain (rnr-/pHM1::rnr). Given these findings, we report for the first time that RNase R function is necessary for complete virulence of Xoo in rice. It is also important for motility of Xoo in media and for growth of Xoo at suboptimal temperature.
Collapse