1
|
Kon E, de Girolamo L, Laver L, Andriolo L, Andia I, Bastos R, Beaufils P, Biant L, Bøe B, Boffa A, Cugat R, Di Martino A, Erggelet C, Iosifidis M, Kocaoglu B, Magalon J, Marinescu R, Nehrer S, Niemeyer P, Ostojić M, Piontek T, Sánchez M, Sas K, Skarpas G, Tischer T, Vonk L, Filardo G. Platelet-rich plasma injections for the management of knee osteoarthritis: The ESSKA-ICRS consensus. Recommendations using the RAND/UCLA appropriateness method for different clinical scenarios. Knee Surg Sports Traumatol Arthrosc 2024; 32:2938-2949. [PMID: 38961773 DOI: 10.1002/ksa.12320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024]
Abstract
PURPOSE The aim of this consensus was to develop evidence- and expert-based patient-focused recommendations on the appropriateness of intra-articular platelet-rich plasma (PRP) injections in different clinical scenarios of patients with knee osteoarthritis (OA). METHODS The RAND/UCLA Appropriateness Method was used by the European Society of Sports Traumatology, Knee Surgery, and Arthroscopy (ESSKA), as well as the International Cartilage Regeneration and Joint Preservation Society (ICRS) to reach a consensus and produce recommendations for specific patient categories combining best available scientific evidence with the collective judgement of a panel of experts. RESULTS Scenarios were defined based on first treatment vs first injective treatment vs second injective treatment, age (<50/50-65/66-80/>80), tibiofemoral vs patellofemoral involvement, OA level (Kellgren-Lawrence/KL 0-I/II-III/IV), and joint effusion (dry knee, minor-mild or major effusion). Out of 216 scenarios, in 84 (38.9%) the indication was considered appropriate, in 9 (4.2%) inappropriate and in 123 (56.9%) uncertain. The parameters associated with the highest consensus were PRP use after failed injective treatments (62.5%), followed by PRP after failed conservative treatments and KL 0-III scenarios (58.3%), while the highest uncertainty was found for PRP use as first treatment and KL IV OA (91.7% and 87.5% of uncertain scenarios, respectively). CONCLUSION This ESSKA-ICRS consensus established recommendations on the appropriateness or inappropriateness of PRP injections for the treatment of knee OA, providing a useful reference for clinical practice. PRP injections are considered appropriate in patients aged ≤80 years with knee KL 0-III OA grade after failed conservative non-injective or injective treatments, while they are not considered appropriate as first treatment nor in KL IV OA grade. LEVEL OF EVIDENCE Level I.
Collapse
Affiliation(s)
- Elizaveta Kon
- IRCCS Humanitas Research Center, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Laura de Girolamo
- IRCCS Ospedale Galeazzi Sant'Ambrogio, Orthopaedic Biotechnology Laboratory, Milano, Italy
| | - Lior Laver
- Department of Orthopaedics, Hillel Yaffe Medical Center (HYMC), Hadera, Israel
- Rappaport Faculty of Medicine, Technion University Hospital, Israel Institute of Technology, Haifa, Israel
- Arthrosport Clinic, Tel-Aviv, Israel
| | - Luca Andriolo
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Isabel Andia
- Regenerative Therapies, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Ricardo Bastos
- Clinica Espregueira - Fifa Medical Centre of Excellence, Porto, Portugal; Hospital Lusíadas Santa Maria da Feira, Santa Maria da Feira, Portugal
- Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | | | - Leela Biant
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Department of Orthopaedics, Trafford General Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Berte Bøe
- Division of Orthopaedic Surgery, Oslo University Hospital, Oslo, Norway
| | - Angelo Boffa
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Ramon Cugat
- Mutualidad de Futbolistas Españoles - Delegación Catalana, Barcelona, Spain
- Instituto Cugat, Hospital Quironsalud Barcelona, Barcelona, Spain
- Fundación García Cugat, Barcelona, Spain
| | - Alessandro Di Martino
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Christoph Erggelet
- Alphaclinic Zurich, University of Freiburg Medical Center, Zurich, Switzerland
| | - Michael Iosifidis
- 3rd Orthopaedic Department, Interbalkan Medical Center, Thessaloniki, Greece
- OrthoBiology Surgery Center, Thessaloniki, Greece
| | - Baris Kocaoglu
- Department of Orthopedic Surgery, Faculty of Medicine, Acibadem University, Istanbul, Turkey
| | - Jérémy Magalon
- Cell Therapy Laboratory, Hôpital De La Conception, AP-HM, Marseille, France
- INSERM, INRA, C2VN, Aix Marseille Univ, Marseille, France
- Remedex Network, Marseille, France
| | - Rodica Marinescu
- Department of Orthopedics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Stefan Nehrer
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, Krems, Austria
- Department of Orthopaedics and Traumatology, University Hospital Krems, Krems, Austria
| | | | - Marko Ostojić
- Department of Orthopaedics, University Hospital Mostar, Mostar, Bosnia and Herzegovina; Osteon Orthopedics and Sports Medicine Clinic, Mostar, Bosnia and Herzegovina
| | - Tomasz Piontek
- Rehasport Clinic, Department of Spine Disorders and Pediatric Orthopedics, University of Medical Sciences Poznan, Poznan, Poland
| | - Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Kristof Sas
- Orthopaedic Center (ORTHOCA), Antwerp, Belgium
- La clinique du Sport, Hôpital Erasme, Bruxelles, Belgium
| | - Georges Skarpas
- Heal Academy-HHG, University of Nicosia, Nicosia, Cyprus
- 3rd Orthopaedic Department for Sports Injuries & Regenerative Medicine, "MITERA" General Hospital-HHG, Attiki, Greece
- Hellenic Open University, Patra, Greece
| | - Thomas Tischer
- Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
| | - Lucienne Vonk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Xintela AB, Lund, Sweden
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
2
|
Singh A, Mantebea H, Badar F, Batool S, Tetmeyer A, Abdelmessih G, Sebastian T, Newton M, Baker K, Salem S, Xia Y. Assessment of post-trauma microstructural alterations in the rabbit knee cartilage and subchondral bone. J Anat 2024; 245:740-750. [PMID: 38924533 PMCID: PMC11470779 DOI: 10.1111/joa.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Early diagnosis of post-traumatic osteoarthritis (PTOA) is critical for designing better treatments before the degradation becomes irreversible. We utilized multimodal high-resolution imaging to investigate early-stage deterioration in articular cartilage and the subchondral bone plate from a sub-critical impact to the knee joint, which initiates PTOA. The knee joints of 12 adult rabbits were mechanically impacted once on the femoral articular surface to initiate deterioration. At 2- and 14-week post-impact surgery, cartilage-bone blocks were harvested from the impact region in the animals (N = 6 each). These blocks were assessed for deterioration using polarized light microscopy (PLM), microcomputed tomography (μCT), and biochemical analysis. Statistically significant changes were noted in the impact tissues across the calcified zone (CZ) at 14 weeks post-impact: the optical retardation values in the CZ of impact cartilage had a drop of 29.0% at 14 weeks, while the calcium concentration in the CZ of impact cartilage also had a significant drop at 14 weeks. A significant reduction of 6.3% in bone mineral density (BMD) was noted in the subchondral bone plate of the impact samples at 14 weeks. At 2 weeks post-impact, only minor, non-significant changes were measured. Furthermore, the impact knees after 14 weeks had greater structural changes compared with the 2-week impact knees, indicating progressive degradation over time. The findings of this study facilitated a connection between mineralization alterations and the early deterioration of knee cartilage after a mechanical injury. In a broader context, these findings can be beneficial in improving clinical strategies to manage joint injuries.
Collapse
Affiliation(s)
- Amanveer Singh
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, Michigan, USA
| | - Hannah Mantebea
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, Michigan, USA
| | - Farid Badar
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, Michigan, USA
| | - Syeda Batool
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, Michigan, USA
| | - Austin Tetmeyer
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, Michigan, USA
| | | | - Talia Sebastian
- Department of Chemistry, Oakland University, Rochester, Michigan, USA
| | - Michael Newton
- Orthopedic Research Laboratories, Beaumont Hospital, Royal Oak, Michigan, USA
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin Baker
- Orthopedic Research Laboratories, Beaumont Hospital, Royal Oak, Michigan, USA
- Bone & Joint Center, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Sarah Salem
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, Michigan, USA
| | - Yang Xia
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
3
|
Wang L, Yang H, Wang C, Wang M, Huang J, Nyunt T, Osorio C, Sun SY, Pacifici M, Lefebvre V, Moore DC, Wang S, Yang W. SHP2 ablation mitigates osteoarthritic cartilage degeneration by promoting chondrocyte anabolism through SOX9. FASEB J 2024; 38:e70013. [PMID: 39225365 PMCID: PMC11404350 DOI: 10.1096/fj.202400642r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Articular cartilage phenotypic homeostasis is crucial for life-long joint function, but the underlying cellular and molecular mechanisms governing chondrocyte stability remain poorly understood. Here, we show that the protein tyrosine phosphatase SHP2 is differentially expressed in articular cartilage (AC) and growth plate cartilage (GPC) and that it negatively regulates cell proliferation and cartilage phenotypic program. Postnatal SHP2 deletion in Prg4+ AC chondrocytes increased articular cellularity and thickness, whereas SHP2 deletion in Acan+ pan-chondrocytes caused excessive GPC chondrocyte proliferation and led to joint malformation post-puberty. These observations were verified in mice and in cultured chondrocytes following treatment with the SHP2 PROTAC inhibitor SHP2D26. Further mechanistic studies indicated that SHP2 negatively regulates SOX9 stability and transcriptional activity by influencing SOX9 phosphorylation and promoting its proteasome degradation. In contrast to published work, SHP2 ablation in chondrocytes did not impact IL-1-evoked inflammation responses, and SHP2's negative regulation of SOX9 could be curtailed by genetic or chemical SHP2 inhibition, suggesting that manipulating SHP2 signaling has translational potential for diseases of cartilage dyshomeostasis.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Huiliang Yang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Changwei Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Mingliang Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiahui Huang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Thedoe Nyunt
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Camilo Osorio
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Véronique Lefebvre
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Douglas C Moore
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Wentian Yang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Al-Namnam NM, Luczak AT, Yang I, Li X, Lucas M, Hall AC, Simpson AHR. Chondroprotection of articular cartilage integrity: Utilizing ultrasonic scalpel and hyperosmolar irrigation solution during cutting. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100499. [PMID: 39076683 PMCID: PMC11284703 DOI: 10.1016/j.ocarto.2024.100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Objectives Ultrasonic (US) cutting of cartilage in orthopaedic surgery has received little attention despite its potential to reduce chondrocyte death which could enhance cartilage repair. We aimed to investigate whether an ultrasonically-vibrating scalpel to cut human articular cartilage could reduce chondrocyte death, and to determine if hyper-osmolarity could provide chondroprotection during the procedure. Methods A scalpel (no. 15) was mounted on an ultrasonic transducer to resonate at 35 kHz with 30 μm vibrational displacement. Thirty-six fresh human femoral cartilage samples were divided into four groups based on ultrasonic activation (US or non-US) and saline osmolarity (300 or 600 mOsm/L). Cell viability was assessed using a live/dead cell assay and analysed quantitatively by confocal microscopy. Histology illustrated tissue surface changes at the cut site. Results The overall chondrocyte death percentage at both the US and non-US cut sites showed comparable results (p > 0.05) in both osmolarities. However, the zone of chondrocyte death was reduced by 31 ± 5% and 36 ± 6%, respectively, when comparing US cutting at 300 mOsm/L and 600 mOsm/L to the control group (non-US cutting; 300 mOsm/L) (p < 0.05). The width of the cut was consistent at both sites, regardless of the method of cutting. Conclusion Cutting human cartilage with US in the presence of 300 or 600 mOsm/L media was chondroprotective compared to normal (non-US) scalpel cutting in 300 mOsm/L medium. These results suggest chondroprotection can be achieved while cutting using a US scalpel and raised osmolarity, potentially improving cartilage regeneration and repair following injury.
Collapse
Affiliation(s)
| | - Aneta T. Luczak
- Department of Orthopaedics and Trauma, University of Edinburgh, Edinburgh, UK
| | - Irene Yang
- Department of Orthopaedics and Trauma, University of Edinburgh, Edinburgh, UK
| | - Xuan Li
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Margaret Lucas
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Andrew C. Hall
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - A. Hamish R.W. Simpson
- Department of Orthopaedics and Trauma, University of Edinburgh, Edinburgh, UK
- Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Ayala S, Matan SO, Delco ML, Fortier LA, Cohen I, Bonassar LJ. Degradation of lubricating molecules in synovial fluid alters chondrocyte sensitivity to shear strain. J Orthop Res 2024. [PMID: 39182184 DOI: 10.1002/jor.25960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/01/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
Articular joints facilitate motion and transfer loads to underlying bone through a combination of cartilage tissue and synovial fluid, which together generate a low-friction contact surface. Traumatic injury delivered to cartilage and the surrounding joint capsule causes secretion of proinflammatory cytokines by chondrocytes and the synovium, triggering cartilage matrix breakdown and impairing the ability of synovial fluid to lubricate the joint. Once these inflammatory processes become chronic, posttraumatic osteoarthritis (PTOA) development begins. However, the exact mechanism by which negative alterations to synovial fluid leads to PTOA pathogenesis is not fully understood. We hypothesize that removing the lubricating macromolecules from synovial fluid alters the relationship between mechanical loads and subsequent chondrocyte behavior in injured cartilage. To test this hypothesis, we utilized an ex vivo model of PTOA that involves subjecting cartilage explants to a single rapid impact followed by continuous articulation within a lubricating bath of either healthy synovial fluid, phosphate-buffered saline (PBS), synovial fluid treated with hyaluronidase, or synovial fluid treated with trypsin. These treatments degrade the main macromolecules attributed with providing synovial fluid with its lubricating properties; hyaluronic acid and lubricin. Explants were then bisected and fluorescently stained to assess global and depth-dependent cell death, caspase activity, and mitochondrial depolarization. Explants were tested via confocal elastography to determine the local shear strain profile generated in each lubricant. These results show that degrading hyaluronic acid or lubricin in synovial fluid significantly increases middle zone chondrocyte damage and shear strain loading magnitudes, while also altering chondrocyte sensitivity to loading.
Collapse
Affiliation(s)
- Steven Ayala
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Salman O Matan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Michelle L Delco
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Lisa A Fortier
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Li CJ, Park JH, Jin GS, Mandakhbayar N, Yeo D, Lee JH, Lee JH, Kim HS, Kim HW. Strontium/Silicon/Calcium-Releasing Hierarchically Structured 3D-Printed Scaffolds Accelerate Osteochondral Defect Repair. Adv Healthc Mater 2024; 13:e2400154. [PMID: 38647029 DOI: 10.1002/adhm.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Articular cartilage defects are a global challenge, causing substantial disability. Repairing large defects is problematic, often exceeding cartilage's self-healing capacity and damaging bone structures. To tackle this problem, a scaffold-mediated therapeutic ion delivery system is developed. These scaffolds are constructed from poly(ε-caprolactone) and strontium (Sr)-doped bioactive nanoglasses (SrBGn), creating a unique hierarchical structure featuring macropores from 3D printing, micropores, and nanotopologies due to SrBGn integration. The SrBGn-embedded scaffolds (SrBGn-µCh) release Sr, silicon (Si), and calcium (Ca) ions, which improve chondrocyte activation, adhesion, proliferation, and maturation-related gene expression. This multiple ion delivery significantly affects metabolic activity and maturation of chondrocytes. Importantly, Sr ions may play a role in chondrocyte regulation through the Notch signaling pathway. Notably, the scaffold's structure and topological cues expedite the recruitment, adhesion, spreading, and proliferation of chondrocytes and bone marrow-derived mesenchymal stem cells. Si and Ca ions accelerate osteogenic differentiation and blood vessel formation, while Sr ions enhance the polarization of M2 macrophages. The findings show that SrBGn-µCh scaffolds accelerate osteochondral defect repair by delivering multiple ions and providing structural/topological cues, ultimately supporting host cell functions and defect healing. This scaffold holds great promise for osteochondral repair applications.
Collapse
Affiliation(s)
- Cheng Ji Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Gang Shi Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Donghyeon Yeo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
7
|
Ponce A, Ogazon del Toro A, Jimenez L, Roldan ML, Shoshani L. Osmotically Sensitive TREK Channels in Rat Articular Chondrocytes: Expression and Functional Role. Int J Mol Sci 2024; 25:7848. [PMID: 39063089 PMCID: PMC11277475 DOI: 10.3390/ijms25147848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Articular chondrocytes are the primary cells responsible for maintaining the integrity and functionality of articular cartilage, which is essential for smooth joint movement. A key aspect of their role involves mechanosensitive ion channels, which allow chondrocytes to detect and respond to mechanical forces encountered during joint activity; nonetheless, the variety of mechanosensitive ion channels involved in this process has not been fully resolved so far. Because some members of the two-pore domain potassium (K2P) channel family have been described as mechanosensors in other cell types, in this study, we investigate whether articular chondrocytes express such channels. RT-PCR analysis reveals the presence of TREK-1 and TREK-2 channels in these cells. Subsequent protein expression assessments, including Western blotting and immunohistochemistry, confirm the presence of TREK-1 in articular cartilage samples. Furthermore, whole-cell patch clamp assays demonstrate that freshly isolated chondrocytes exhibit currents attributable to TREK-1 channels, as evidenced by activation by arachidonic acid (AA) and ml335 and further inhibition by spadin. Additionally, exposure to hypo-osmolar shock activates currents, which can be attributed to the presence of TREK-1 channels, as indicated by their inhibition with spadin. Therefore, these findings highlight the expression of TREK channels in rat articular chondrocytes and suggest their potential involvement in regulating the integrity of cartilage extracellular matrix.
Collapse
Affiliation(s)
- Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Ciudad de México 07360, Mexico; (A.O.d.T.); (L.J.); (M.L.R.); (L.S.)
| | | | | | | | | |
Collapse
|
8
|
Li HZ, Zhang JL, Yuan DL, Xie WQ, Ladel CH, Mobasheri A, Li YS. Role of signaling pathways in age-related orthopedic diseases: focus on the fibroblast growth factor family. Mil Med Res 2024; 11:40. [PMID: 38902808 PMCID: PMC11191355 DOI: 10.1186/s40779-024-00544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Fibroblast growth factor (FGF) signaling encompasses a multitude of functions, including regulation of cell proliferation, differentiation, morphogenesis, and patterning. FGFs and their receptors (FGFR) are crucial for adult tissue repair processes. Aberrant FGF signal transduction is associated with various pathological conditions such as cartilage damage, bone loss, muscle reduction, and other core pathological changes observed in orthopedic degenerative diseases like osteoarthritis (OA), intervertebral disc degeneration (IVDD), osteoporosis (OP), and sarcopenia. In OA and IVDD pathologies specifically, FGF1, FGF2, FGF8, FGF9, FGF18, FGF21, and FGF23 regulate the synthesis, catabolism, and ossification of cartilage tissue. Additionally, the dysregulation of FGFR expression (FGFR1 and FGFR3) promotes the pathological process of cartilage degradation. In OP and sarcopenia, endocrine-derived FGFs (FGF19, FGF21, and FGF23) modulate bone mineral synthesis and decomposition as well as muscle tissues. FGF2 and other FGFs also exert regulatory roles. A growing body of research has focused on understanding the implications of FGF signaling in orthopedic degeneration. Moreover, an increasing number of potential targets within the FGF signaling have been identified, such as FGF9, FGF18, and FGF23. However, it should be noted that most of these discoveries are still in the experimental stage, and further studies are needed before clinical application can be considered. Presently, this review aims to document the association between the FGF signaling pathway and the development and progression of orthopedic diseases. Besides, current therapeutic strategies targeting the FGF signaling pathway to prevent and treat orthopedic degeneration will be evaluated.
Collapse
Affiliation(s)
- Heng-Zhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jing-Lve Zhang
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine Central, South University, Changsha, 410083, China
| | - Dong-Liang Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine Central, South University, Changsha, 410083, China
| | - Wen-Qing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | | | - Ali Mobasheri
- Faculty of Medicine, Research Unit of Health Sciences and Technology, University of Oulu, 90014, Oulu, Finland.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406, Vilnius, Lithuania.
- Department of Rheumatology and Clinical Immunology, Universitair Medisch Centrum Utrecht, Utrecht, 3508, GA, the Netherlands.
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, B-4000, Liège, Belgium.
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
9
|
Rajankunte Mahadeshwara M, Al-Jawad M, Hall RM, Pandit H, El-Gendy R, Bryant M. How Do Cartilage Lubrication Mechanisms Fail in Osteoarthritis? A Comprehensive Review. Bioengineering (Basel) 2024; 11:541. [PMID: 38927777 PMCID: PMC11200606 DOI: 10.3390/bioengineering11060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Cartilage degeneration is a characteristic of osteoarthritis (OA), which is often observed in aging populations. This degeneration is due to the breakdown of articular cartilage (AC) mechanical and tribological properties primarily attributed to lubrication failure. Understanding the reasons behind these failures and identifying potential solutions could have significant economic and societal implications, ultimately enhancing quality of life. This review provides an overview of developments in the field of AC, focusing on its mechanical and tribological properties. The emphasis is on the role of lubrication in degraded AC, offering insights into its structure and function relationship. Further, it explores the fundamental connection between AC mechano-tribological properties and the advancement of its degradation and puts forth recommendations for strategies to boost its lubrication efficiency.
Collapse
Affiliation(s)
- Manoj Rajankunte Mahadeshwara
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Maisoon Al-Jawad
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Richard M. Hall
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Chapel Allerton Hospital, Leeds LS7 4SA, UK;
| | - Reem El-Gendy
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia 3, Ismailia Governorate 8366004, Egypt
| | - Michael Bryant
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
10
|
Rufino AT, Freitas M, Proença C, Ferreira de Oliveira JMP, Fernandes E, Ribeiro D. Rheumatoid arthritis molecular targets and their importance to flavonoid-based therapy. Med Res Rev 2024; 44:497-538. [PMID: 37602483 DOI: 10.1002/med.21990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive, chronic, autoimmune, inflammatory, and systemic condition that primarily affects the synovial joints and adjacent tissues, including bone, muscle, and tendons. The World Health Organization recognizes RA as one of the most prevalent chronic inflammatory diseases. In the last decade, there was an expansion on the available RA therapeutic options which aimed to improve patient's quality of life. Despite the extensive research and the emergence of new therapeutic approaches and drugs, there are still significant unwanted side effects associated to these drugs and still a vast number of patients that do not respond positively to the existing therapeutic strategies. Over the years, several references to the use of flavonoids in the quest for new treatments for RA have emerged. This review aimed to summarize the existing literature about the flavonoids' effects on the major pathogenic/molecular targets of RA and their potential use as lead compounds for the development of new effective molecules for RA treatment. It is demonstrated that flavonoids can modulate various players in synovial inflammation, regulate immune cell function, decrease synoviocytes proliferation and balance the apoptotic process, decrease angiogenesis, and stop/prevent bone and cartilage degradation, which are all dominant features of RA. Although further investigation is necessary to determine the effectiveness of flavonoids in humans, the available data from in vitro and in vivo models suggest their potential as new disease-modifying anti-rheumatic drugs. This review highlights the use of flavonoids as a promising avenue for future research in the treatment of RA.
Collapse
Affiliation(s)
- Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José M P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Agrarian Sciences and Environment, University of the Azores, Açores, Portugal
| |
Collapse
|
11
|
van Kampen KA, Olaret E, Stancu IC, Duarte Campos DF, Fischer H, Mota C, Moroni L. Hypotrochoidal scaffolds for cartilage regeneration. Mater Today Bio 2023; 23:100830. [PMID: 37876709 PMCID: PMC10590751 DOI: 10.1016/j.mtbio.2023.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
The main function of articular cartilage is to provide a low friction surface and protect the underlying subchondral bone. The extracellular matrix composition of articular cartilage mainly consists of glycosaminoglycans and collagen type II. Specifically, collagen type II fibers have an arch-like organization that can be mimicked with segments of a hypotrochoidal curve. In this study, a script was developed that allowed the fabrication of scaffolds with a hypotrochoidal design. This design was investigated and compared to a regular 0-90 woodpile design. The mechanical analyses revealed that the hypotrochoidal design had a lower component Young's modulus while the toughness and strain at yield were higher compared to the woodpile design. Fatigue tests showed that the hypotrochoidal design lost more energy per cycle due to the damping effect of the unique microarchitecture. In addition, data from cell culture under dynamic stimulation demonstrated that the collagen type II deposition was improved and collagen type X reduced in the hypotrochoidal design. Finally, Alcian blue staining revealed that the areas where the stress was higher during the stimulation produced more glycosaminoglycans. Our results highlight a new and simple scaffold design based on hypotrochoidal curves that could be used for cartilage tissue engineering.
Collapse
Affiliation(s)
- Kenny A. van Kampen
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER, Maastricht, the Netherlands
| | - Elena Olaret
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Izabela-Cristina Stancu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Daniela F. Duarte Campos
- Bioprinting & Tissue Engineering Group, Center for Molecular Biology Heidelberg (ZMBH), Heidelberg University, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER, Maastricht, the Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER, Maastricht, the Netherlands
| |
Collapse
|
12
|
Filho JPAG, Sousa EBD. Treatment of Chondral Lesions in the Knee. Rev Bras Ortop 2023; 58:e551-e556. [PMID: 37663186 PMCID: PMC10468252 DOI: 10.1055/s-0043-1772196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/12/2023] [Indexed: 09/05/2023] Open
Abstract
Articular cartilage injuries are common and lead to early joint deterioration and osteoarthritis. Articular cartilage repair techniques aim at forming a cartilaginous neo-tissue to support the articular load and prevent progressive degeneration. Several techniques are available for this purpose, such as microfracture and chondrocyte transplantation. However, the procedural outcome is often fibrocartilage, which does not have the same mechanical resistance as cartilaginous tissue. Procedures with autologous osteochondral graft have a morbidity risk, and tissue availability limits their use. As such, larger lesions undergo osteochondral transplantation using fresh or frozen grafts. New techniques using minced or particulate cartilage fragments or mesenchymal stem cells are promising. This paper aims to update the procedures for treating chondral lesions of the knee.
Collapse
Affiliation(s)
- José Paulo Aramburu Gabbi Filho
- Médico Ortopedista e Traumatologista, Serviço de Traumato-Ortopedia, Hospital Central da Polícia Militar do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Médico Ortopedista e Traumatologista, Serviço de Traumatologia e Ortopedia, Hospital Quinta D'Or, Rio de Janeiro, RJ, Brasil
| | - Eduardo Branco de Sousa
- Ortopedista e Traumatologista, Centro de Cirurgia do Joelho, Divisão de Traumatologia e Ortopedia, Instituto Nacional de Traumatologia e Ortopedia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
13
|
Alcaide-Ruggiero L, Cugat R, Domínguez JM. Proteoglycans in Articular Cartilage and Their Contribution to Chondral Injury and Repair Mechanisms. Int J Mol Sci 2023; 24:10824. [PMID: 37446002 DOI: 10.3390/ijms241310824] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Proteoglycans are vital components of the extracellular matrix in articular cartilage, providing biomechanical properties crucial for its proper functioning. They are key players in chondral diseases, specifically in the degradation of the extracellular matrix. Evaluating proteoglycan molecules can serve as a biomarker for joint degradation in osteoarthritis patients, as well as assessing the quality of repaired tissue following different treatment strategies for chondral injuries. Despite ongoing research, understanding osteoarthritis and cartilage repair remains unclear, making the identification of key molecules essential for early diagnosis and effective treatment. This review offers an overview of proteoglycans as primary molecules in articular cartilage. It describes the various types of proteoglycans present in both healthy and damaged cartilage, highlighting their roles. Additionally, the review emphasizes the importance of assessing proteoglycans to evaluate the quality of repaired articular tissue. It concludes by providing a visual and narrative description of aggrecan distribution and presence in healthy cartilage. Proteoglycans, such as aggrecan, biglycan, decorin, perlecan, and versican, significantly contribute to maintaining the health of articular cartilage and the cartilage repair process. Therefore, studying these proteoglycans is vital for early diagnosis, evaluating the quality of repaired cartilage, and assessing treatment effectiveness.
Collapse
Affiliation(s)
- Lourdes Alcaide-Ruggiero
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
| | - Ramón Cugat
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
- Instituto Cugat y Mutualidad de Futbolistas Españoles, Delegación Catalana, 08023 Barcelona, Spain
| | - Juan Manuel Domínguez
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
| |
Collapse
|
14
|
Zujur D, Al-Akashi Z, Nakamura A, Zhao C, Takahashi K, Aritomi S, Theoputra W, Kamiya D, Nakayama K, Ikeya M. Enhanced chondrogenic differentiation of iPS cell-derived mesenchymal stem/stromal cells via neural crest cell induction for hyaline cartilage repair. Front Cell Dev Biol 2023; 11:1140717. [PMID: 37234772 PMCID: PMC10206169 DOI: 10.3389/fcell.2023.1140717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Background: To date, there is no effective long-lasting treatment for cartilage tissue repair. Primary chondrocytes and mesenchymal stem/stromal cells are the most commonly used cell sources in regenerative medicine. However, both cell types have limitations, such as dedifferentiation, donor morbidity, and limited expansion. Here, we report a stepwise differentiation method to generate matrix-rich cartilage spheroids from induced pluripotent stem cell-derived mesenchymal stem/stromal cells (iMSCs) via the induction of neural crest cells under xeno-free conditions. Methods: The genes and signaling pathways regulating the chondrogenic susceptibility of iMSCs generated under different conditions were studied. Enhanced chondrogenic differentiation was achieved using a combination of growth factors and small-molecule inducers. Results: We demonstrated that the use of a thienoindazole derivative, TD-198946, synergistically improves chondrogenesis in iMSCs. The proposed strategy produced controlled-size spheroids and increased cartilage extracellular matrix production with no signs of dedifferentiation, fibrotic cartilage formation, or hypertrophy in vivo. Conclusion: These findings provide a novel cell source for stem cell-based cartilage repair. Furthermore, since chondrogenic spheroids have the potential to fuse within a few days, they can be used as building blocks for biofabrication of larger cartilage tissues using technologies such as the Kenzan Bioprinting method.
Collapse
Affiliation(s)
- Denise Zujur
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ziadoon Al-Akashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Anna Nakamura
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan
| | - Chengzhu Zhao
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Kazuma Takahashi
- Research Institute for Bioscience Product and Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Japan
| | - Shizuka Aritomi
- Research Institute for Bioscience Product and Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Japan
| | - William Theoputra
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Daisuke Kamiya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan
| | - Makoto Ikeya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| |
Collapse
|
15
|
Burdis R, Kronemberger GS, Kelly DJ. Engineering High-Quality Cartilage Microtissues Using Hydrocortisone Functionalized Microwells. Tissue Eng Part C Methods 2023; 29:121-133. [PMID: 36719783 DOI: 10.1089/ten.tec.2022.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Engineering clinically relevant musculoskeletal tissues at a human scale is a considerable challenge. Developmentally inspired scaffold-free approaches for engineering cartilage tissues have shown great promise in recent years, enabling the generation of highly biomimetic tissues. Despite the relative success of these approaches, the absence of a supporting scaffold or hydrogel creates challenges in the development of large-scale tissues. Combining numerous scaled-down tissue units (herein termed microtissues) into a larger macrotissue represents a promising strategy to address this challenge. The overall success of such approaches, however, relies on the development of strategies which support the robust and consistent chondrogenic differentiation of clinically relevant cell sources such as mesenchymal stem/stromal cells (MSCs) within microwell arrays to biofabricate numerous microtissues rich in cartilage-specific extracellular matrix components. In this article, we first describe a simple method to manufacture cartilage microtissues at various scales using novel microwell array stamps. This system allows the rapid and reliable generation of cartilage microtissues and can be used as a platform to study microtissue phenotype and development. Based on the unexpected discovery that Endothelial Growth Medium (EGM) enhanced MSC aggregation and chondrogenic capacity within the microwell arrays, this work also sought to identify soluble factors within the media capable of supporting robust differentiation using heterogeneous MSC populations. Hydrocortisone was found to be the key factor within EGM that enhanced the chondrogenic capacity of MSCs within these microwell arrays. This strategy represents a promising means of generating large numbers of high-quality, scaffold-free cartilage microtissues for diverse biofabrication applications. Impact statement This study addresses a key challenge facing emerging modular biofabrication strategies that use microtissues as biological building blocks. Namely, achieving the necessary robust and consistent differentiation of clinically relevant cell sources, for example, mesenchymal stem/stromal cells (MSCs), and the accumulation of sufficient tissue-specific extracellular matrix (ECM) to engineer tissue of scale. We achieved this by establishing hydrocortisone as a simple and potent method for improving MSC chondrogenesis, resulting in the biofabrication of high-quality (ECM rich) cartilage microtissues. These findings could enable the generation of more scalable engineered cartilage by ensuring the formation of high-quality microtissue building blocks generated using heterogeneous MSC populations.
Collapse
Affiliation(s)
- Ross Burdis
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Gabriela S Kronemberger
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.,Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
16
|
Zhang QY, Zhou H, Zhou XX, Yu FB, Liu YY, Chen ZY, Ma YQ, Li XL, Tian B. Small non-coding RNAome changes during human chondrocyte senescence as potential epigenetic targets in age-related osteoarthritis. Genomics 2023; 115:110574. [PMID: 36758878 DOI: 10.1016/j.ygeno.2023.110574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/25/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Chondrocyte senescence is a decisive component of age-related osteoarthritis, however, the function of small noncoding RNAs (sncRNAs) in chondrocyte senescence remains underexplored. Human hip joint cartilage chondrocytes were cultivated up to passage 4 to induce senescence. RNA samples were extracted and then analyzed using small RNA sequencing and qPCR. β-galactosidase staining was used to detect the effect of sncRNA on chondrocyte aging. Results of small RNA sequencing showed that 279 miRNAs, 136 snoRNAs, 30 snRNAs, 102 piRNAs, and 5 rasiRNAs were differentially expressed in senescent chondrocytes. The differential expression of 150 sncRNAs was further validated by qPCR. Transfection of sncRNAs and β-galactosidase staining were also performed to further revealed that hsa-miR-135b-5p, SNORA80B-201, and RNU5E-1-201 have the function to restrain chondrocyte senescence, while has-piR-019102 has the function to promote chondrocyte senescence. Our data suggest that sncRNAs have therapeutic potential as novel epigenetic targets in age-related osteoarthritis.
Collapse
Affiliation(s)
- Qian-Yi Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Zhou
- Department of Orthopaedic Surgery, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
| | - Xiao-Xiao Zhou
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Feng-Bin Yu
- Department of Orthopaedics, the 72nd Group Army Hospital of PLA, Huzhou, Zhejiang, China
| | - Yu-Yi Liu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhi-Yang Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi-Qun Ma
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xi-Lei Li
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Bo Tian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
17
|
Torga T, Suutre S, Kisand K, Aunapuu M, Arend A. Expression of CILP-2 and DDR2 and ultrastructural changes in the articular cartilage of patients with knee osteoarthritis undergoing total knee arthroplasty: a pilot morphological study. Med Mol Morphol 2023; 56:46-57. [PMID: 36370214 DOI: 10.1007/s00795-022-00339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022]
Abstract
The aim of the study was to correlate the immunohistochemical expression of cartilage intermediate layer protein 2 (CILP-2) and discoidin domain receptor 2 (DDR2), and the ultrastructural changes in the cartilage with the degree of articular cartilage damage in osteoarthritis (OA) patients. Cartilage samples were obtained from twenty patients aged from 46 to 68 years undergoing total knee arthroplasty. In each patient, medial and lateral tibial plateau samples were analysed applying OARSI histopathology grading. Positive correlation was noted between the extent of CILP-2 staining intensity and OARSI grades. Abundant staining for CILP-2 was found in the superficial and middle layers and in the pericellular matrix (PCM) of the deep zone. Transmission electron microscopy studies demonstrated strong damage of chondrocytes, the organelles were often diminished or focally aggregated. As a characteristic finding, PCM was frequently expanded, which may reflect a pathogenic step in OA progression. In conclusion, CILP-2 may potentially be a relevant marker of OA progression as its expression correlated better with cartilage damage than the known marker of articular cartilage damage, DDR2.
Collapse
Affiliation(s)
- Taavi Torga
- Department of Anatomy, University of Tartu, Ravila 19, 50411, Tartu, Estonia.
| | - Siim Suutre
- Department of Anatomy, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Kalle Kisand
- Department of Internal Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia
| | - Marina Aunapuu
- Department of Anatomy, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Andres Arend
- Department of Anatomy, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| |
Collapse
|
18
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8:56. [PMID: 36737426 PMCID: PMC9898571 DOI: 10.1038/s41392-023-01330-w] [Citation(s) in RCA: 291] [Impact Index Per Article: 291.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder that leads to disability and affects more than 500 million population worldwide. OA was believed to be caused by the wearing and tearing of articular cartilage, but it is now more commonly referred to as a chronic whole-joint disorder that is initiated with biochemical and cellular alterations in the synovial joint tissues, which leads to the histological and structural changes of the joint and ends up with the whole tissue dysfunction. Currently, there is no cure for OA, partly due to a lack of comprehensive understanding of the pathological mechanism of the initiation and progression of the disease. Therefore, a better understanding of pathological signaling pathways and key molecules involved in OA pathogenesis is crucial for therapeutic target design and drug development. In this review, we first summarize the epidemiology of OA, including its prevalence, incidence and burdens, and OA risk factors. We then focus on the roles and regulation of the pathological signaling pathways, such as Wnt/β-catenin, NF-κB, focal adhesion, HIFs, TGFβ/ΒΜP and FGF signaling pathways, and key regulators AMPK, mTOR, and RUNX2 in the onset and development of OA. In addition, the roles of factors associated with OA, including MMPs, ADAMTS/ADAMs, and PRG4, are discussed in detail. Finally, we provide updates on the current clinical therapies and clinical trials of biological treatments and drugs for OA. Research advances in basic knowledge of articular cartilage biology and OA pathogenesis will have a significant impact and translational value in developing OA therapeutic strategies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Herman K, Gobbi A. Evidence-Based Approach to Orthobiologics for Osteoarthritis and Other Joint Disorders. Phys Med Rehabil Clin N Am 2023; 34:71-81. [DOI: 10.1016/j.pmr.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Minced Cartilage Is a One-Step Cartilage Repair Procedure for Small Defects in the Knee-A Systematic-Review and Meta-Analysis. J Pers Med 2022; 12:jpm12111923. [PMID: 36422099 PMCID: PMC9697450 DOI: 10.3390/jpm12111923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose: Approximately 60% of patients undergoing arthroscopy of the knee present with chondral defects. If left untreated, osteochondral lesions can trigger an early onset of osteoarthritis. Many cartilage repair techniques are mainly differentiated in techniques aiming for bone marrow stimulation, or cell-based methods. Cartilage repair can also be categorized in one- and two-stage procedures. Some two-stage procedures come with a high cost for scaffolds, extensive cell-processing, strict regulatory requirements, and limited logistical availability. Minced cartilage, however, is a one-stage procedure delivering promising results in short term follow-up, as noted in recent investigations. However, there is no available literature summarizing or synthesizing clinical data. The purpose of this study was to analyze and synthesize data from the latest literature in a meta-analysis of outcomes after the minced cartilage procedure and to compare its effectiveness to standard repair techniques. Methods: We conducted a systematic review searching the Cochrane, PubMed, and Ovid databases. Inclusion criteria were the modified Coleman methodology Score (mCMS) >60, cartilaginous knee-joint defects, and adult patients. Patient age < 18 years, biomechanical and animal studies were excluded. Relevant articles were reviewed independently by referring to title and abstract. In a systematic review, we compared three studies and 52 patients with a total of 63 lesions. Results: Analysis of Knee Injury and Osteoarthritis Outcome Score (KOOS) sub scores at 12 and 24 months showed a significant score increase in every sub score. Highest mean difference was seen in KOOS sport, lowest in KOOS symptoms (12 month: KOOS sport (Mean difference: 35.35 [28.16, 42.53]; p < 0.0001), lowest in KOOS symptoms (Mean difference: 20.12 [15.43, 24.80]; p < 0.0001)). A comparison of International Knee Documentation Committee (IKDC ) scores visualized a significant score increase for both time points too ((12 month: pooled total mean: 73.00 ± 14.65; Mean difference: 34.33 [26.84, 41.82]; p < 0.00001) (24 month: pooled total mean: 77.64 ± 14.46; mean difference: 35.20 [39.49, 40.92]; p < 0.00001)). Conclusion: Due to no need for separate cell-processing, and thanks to being a one-step procedure, minced cartilage is a promising method for cartilage repair in small defect sizes (mean 2.77 cm2, range 1.3−4.7 cm2). However, the most recent evidence is scarce, and takes only results two years post-surgery into account. Summarized, minced cartilage presents nearly equal short-term improvement of clinical scores (IKDC, KOOS) compared to standard cartilage repair techniques.
Collapse
|
21
|
The synovial microenvironment suppresses chondrocyte hypertrophy and promotes articular chondrocyte differentiation. NPJ Regen Med 2022; 7:51. [PMID: 36114234 PMCID: PMC9481641 DOI: 10.1038/s41536-022-00247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
During the development of the appendicular skeleton, the cartilaginous templates undergo hypertrophic differentiation and remodels into bone, except for the cartilage most adjacent to joint cavities where hypertrophic differentiation and endochondral bone formation are prevented, and chondrocytes instead form articular cartilage. The mechanisms that prevent hypertrophic differentiation and endochondral bone formation of the articular cartilage have not been elucidated. To explore the role of the synovial microenvironment in chondrocyte differentiation, osteochondral allografts consisting of articular cartilage, epiphyseal bone, and growth plate cartilage from distal femoral epiphyses of inbred Lewis rats expressing enhanced green fluorescent protein from a ubiquitous promoter were transplanted either in inverted or original (control) orientation to matching sites in wildtype littermates, thereby allowing for tracing of transplanted cells and their progenies. We found that no hypertrophic differentiation occurred in the growth plate cartilage ectopically placed at the joint surface. Instead, the transplanted growth plate cartilage, with time, remodeled into articular cartilage. This finding suggests that the microenvironment at the articular surface inhibits hypertrophic differentiation and supports articular cartilage formation. To explore this hypothesis, rat chondrocyte pellets were cultured with and without synoviocyte-conditioned media. Consistent with the hypothesis, hypertrophic differentiation was inhibited and expression of the articular surface marker lubricin (Prg4) was dramatically induced when chondrocyte pellets were exposed to synovium- or synoviocyte-conditioned media, but not to chondrocyte- or osteoblast-conditioned media. Taken together, we present evidence for a novel mechanism by which synoviocytes, through the secretion of a factor or factors, act directly on chondrocytes to inhibit hypertrophic differentiation and endochondral bone formation and promote articular cartilage formation. This mechanism may have important implications for articular cartilage development, maintenance, and regeneration.
Collapse
|
22
|
Topographic Orientation of Scaffolds for Tissue Regeneration: Recent Advances in Biomaterial Design and Applications. Biomimetics (Basel) 2022; 7:biomimetics7030131. [PMID: 36134935 PMCID: PMC9496066 DOI: 10.3390/biomimetics7030131] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Tissue engineering to develop alternatives for the maintenance, restoration, or enhancement of injured tissues and organs is gaining more and more attention. In tissue engineering, the scaffold used is one of the most critical elements. Its characteristics are expected to mimic the native extracellular matrix and its unique topographical structures. Recently, the topographies of scaffolds have received increasing attention, not least because different topographies, such as aligned and random, have different repair effects on various tissues. In this review, we have focused on various technologies (electrospinning, directional freeze-drying, magnetic freeze-casting, etching, and 3-D printing) to fabricate scaffolds with different topographic orientations, as well as discussed the physicochemical (mechanical properties, porosity, hydrophilicity, and degradation) and biological properties (morphology, distribution, adhesion, proliferation, and migration) of different topographies. Subsequently, we have compiled the effect of scaffold orientation on the regeneration of vessels, skin, neural tissue, bone, articular cartilage, ligaments, tendons, cardiac tissue, corneas, skeletal muscle, and smooth muscle. The compiled information in this review will facilitate the future development of optimal topographical scaffolds for the regeneration of certain tissues. In the majority of tissues, aligned scaffolds are more suitable than random scaffolds for tissue repair and regeneration. The underlying mechanism explaining the various effects of aligned and random orientation might be the differences in “contact guidance”, which stimulate certain biological responses in cells.
Collapse
|
23
|
Progress in Osteochondral Regeneration with Engineering Strategies. Ann Biomed Eng 2022; 50:1232-1242. [PMID: 35994165 DOI: 10.1007/s10439-022-03060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/01/2022]
Abstract
Osteoarthritis, the main cause of disability worldwide, involves not only cartilage injury but also subchondral bone injury, which brings challenges to clinical repair. Tissue engineering strategies provide a promising solution to this degenerative disease. Articular cartilage connects to subchondral bone through the osteochondral interfacial tissue, which has a complex anatomical architecture, distinct cell distribution and unique biomechanical properties. Forming a continuous and stable osteochondral interface between cartilage tissue and subchondral bone is challenging. Thus, successful osteochondral regeneration with engineering strategies requires intricately coordinated interplay between cells, materials, biological factors, and physical/chemical factors. This review provides an overview of the anatomical composition, microstructure, and biomechanical properties of the osteochondral interface. Additionally, the latest research on the progress related to osteochondral regeneration is reviewed, especially discussing the fabrication of biomimetic scaffolds and the regulation of biological factors for osteochondral defects.
Collapse
|
24
|
Wu G, Ma F, Liu Z, Liu J, Xue Y, Zhang M, Wen C, Tang B, Lin L. Hybrid composites with magnesium-containing glycosaminoglycans as a chondroconducive matrix for osteoarthritic cartilage repair. Int J Biol Macromol 2022; 220:1104-1113. [PMID: 35981680 DOI: 10.1016/j.ijbiomac.2022.08.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
The alteration of the extracellular matrix (ECM) homeostasis plays an important role in the development of osteoarthritis (OA). The pathological changes of OA are mainly manifested in the large reduction of components in ECM, like type II collagen and aggrecan, especially hyaluronic acid and chondroitin sulfate and often accompanied by inflammation. Rebuilding ECM and inhibiting inflammation may reverse OA progression. In this work, we developed new magnesium-containing glycosaminoglycans (Mg-GAGs), to create a positive ECM condition for promoting cartilage regeneration and alleviating OA. In vitro results suggested that the introduction of Mg-GAGs contributed to promoting chondrocyte proliferation and facilitated upregulating chondrogenic genes and suppressed inflammation-related factors. Moreover, Mg-GAGs exhibited positive effects on suppressing synovial inflammation, reducing chondrocyte apoptosis and preserving the subchondral bone in the ACLT-induced OA rabbit model. This study provides new insight into ECM-based therapeutic strategy and opens a new avenue for the development of novel OA treatment.
Collapse
Affiliation(s)
- Guofeng Wu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Orthopedics, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Fenbo Ma
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Zhengwei Liu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Jiayi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Yizhebang Xue
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Mengdi Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, PR China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, PR China.
| | - Lijun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
25
|
Wang N, Yang J, Gan G, Bao X, Wang L. Self-assembled insulin-like growth factor 1 peptides induce adipose stem cell differentiation to repair cartilage injury. BIOMATERIALS ADVANCES 2022; 137:212845. [PMID: 35929274 DOI: 10.1016/j.bioadv.2022.212845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Tissue engineering using adipose-derived mesenchymal stem cells (ADSCs) promotes the regeneration of articular cartilage. However, insulin-like growth factor 1 (IGF-1), which is used to induce the differentiation of ADSCs into chondrocytes during treatment, is prone to instability and short tissue retention. METHODS Nap-FFG-GYGSSSRRAPQT was used as an IGF-1 mimicking molecule. MTT and CCK-8 assays were performed to evaluate the proliferation ability of ADSCs. QRT-PCR and Western blot assays were used to assess the expression of cartilage-related genes. International Cartilage Regeneration and Joint Preservation Society (ICRS) scoring was used for the evaluation of cartilage repair. Repaired tissues were analyzed by hematoxylin-eosin, Safranin-O and immunohistochemical staining. RESULTS Nap-FFG-GYGSSRRAPQT stimulated the proliferation and migration of ADSCs through the activation of IGF-1 receptor. Gel Nap-FFG-GYGSSRRAPQT treatment upregulated the expression of cartilage-related genes in ADSCs. ADSCs/Gel Nap-FFG-GYGSSRRAPQT treatment significantly promoted the regeneration of cartilages. CONCLUSION Self-assembled IGF-1 peptide, Nap-FFG-GYGSSRRAPQT, can induce ADSC differentiation and proliferation to repair cartilage injury.
Collapse
Affiliation(s)
- Nan Wang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Henan Medical Key Laboratory of Emergency and Trauma Research, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| | - Jihao Yang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Henan Medical Key Laboratory of Emergency and Trauma Research, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Guoli Gan
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Henan Medical Key Laboratory of Emergency and Trauma Research, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Xiaoyue Bao
- Pharmaceutical Department, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Luyao Wang
- Stomatological Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
26
|
Zhou H, Jia H, Lei G, Zhou T, Wu J, Chang Y, Wang L, Sheng M, Yang X. Quantitative assessment of normal hip cartilage in children under 9 years old by T2 mapping. MAGMA (NEW YORK, N.Y.) 2022; 35:459-466. [PMID: 34652541 DOI: 10.1007/s10334-021-00962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate the variation in T2 at different zones of normal hip cartilage in children and the relationship between T2 value and age. MATERIALS AND METHODS Nineteen children with 30 normal hip joints were evaluated with a coronal T2 mapping sequence at a 3-Tesla MRI system. The femoral cartilage and acetabular cartilage were firstly segmented by mask-based interactive method and then equally divided into eight and six radial sections, respectively. Moreover, each radial section was further divided into two layers referring to the superficial and deep halves of the corresponding cartilage. Cartilage T2 of these sections and layers were measured and subsequently analyzed. RESULTS There was a negative correlation between the T2 values in the hip cartilage and the age of children (rs < - 0.6, P1 < 0.05). Articular cartilage T2 increased at angles close to the magic angle (54.7°). Femoral cartilage and acetabular cartilage had a relatively shorter T2 in the radial sections near the vertex of the femoral head. The T2 values in superficial layers of both cartilages were significantly higher than those in deep layers (P < 0.05). CONCLUSION The T2 value decreases as the cartilage developing into a more mature state. Cartilage T2 values in the weight-bearing areas are relatively low due to an increase of collagen density and the loss of interstitial water. The restriction of the water molecules by solid components in the deeper layer of cartilage may decrease the T2 values.
Collapse
Affiliation(s)
- Hongyan Zhou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Huihui Jia
- Department of Radiology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Gege Lei
- School of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tianli Zhou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jizhi Wu
- Department of Radiology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Yan Chang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Lei Wang
- School of Ophthalmology and Optometry, Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Mao Sheng
- Department of Radiology, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Xiaodong Yang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China.
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| |
Collapse
|
27
|
Biodegradable Poly(D-L-lactide-co-glycolide) (PLGA)-Infiltrated Bioactive Glass (CAR12N) Scaffolds Maintain Mesenchymal Stem Cell Chondrogenesis for Cartilage Tissue Engineering. Cells 2022; 11:cells11091577. [PMID: 35563883 PMCID: PMC9100331 DOI: 10.3390/cells11091577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Regeneration of articular cartilage remains challenging. The aim of this study was to increase the stability of pure bioactive glass (BG) scaffolds by means of solvent phase polymer infiltration and to maintain cell adherence on the glass struts. Therefore, BG scaffolds either pure or enhanced with three different amounts of poly(D-L-lactide-co-glycolide) (PLGA) were characterized in detail. Scaffolds were seeded with primary porcine articular chondrocytes (pACs) and human mesenchymal stem cells (hMSCs) in a dynamic long-term culture (35 days). Light microscopy evaluations showed that PLGA was detectable in every region of the scaffold. Porosity was greater than 70%. The biomechanical stability was increased by polymer infiltration. PLGA infiltration did not result in a decrease in viability of both cell types, but increased DNA and sulfated glycosaminoglycan (sGAG) contents of hMSCs-colonized scaffolds. Successful chondrogenesis of hMSC-colonized scaffolds was demonstrated by immunocytochemical staining of collagen type II, cartilage proteoglycans and the transcription factor SOX9. PLGA-infiltrated scaffolds showed a higher relative expression of cartilage related genes not only of pAC-, but also of hMSC-colonized scaffolds in comparison to the pure BG. Based on the novel data, our recommendation is BG scaffolds with single infiltrated PLGA for cartilage tissue engineering.
Collapse
|
28
|
Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration. Int J Mol Sci 2022; 23:ijms23031147. [PMID: 35163071 PMCID: PMC8835677 DOI: 10.3390/ijms23031147] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
The articular cartilage has insufficient intrinsic healing abilities, and articular cartilage injuries often progress to osteoarthritis. Alginate-based scaffolds are attractive biomaterials for cartilage repair and regeneration, allowing for the delivery of cells and therapeutic drugs and gene sequences. In light of the heterogeneity of findings reporting the benefits of using alginate for cartilage regeneration, a better understanding of alginate-based systems is needed in order to improve the approaches aiming to enhance cartilage regeneration with this compound. This review provides an in-depth evaluation of the literature, focusing on the manipulation of alginate as a tool to support the processes involved in cartilage healing in order to demonstrate how such a material, used as a direct compound or combined with cell and gene therapy and with scaffold-guided gene transfer procedures, may assist cartilage regeneration in an optimal manner for future applications in patients.
Collapse
|
29
|
The essential anti-angiogenic strategies in cartilage engineering and osteoarthritic cartilage repair. Cell Mol Life Sci 2022; 79:71. [PMID: 35029764 PMCID: PMC9805356 DOI: 10.1007/s00018-021-04105-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/01/2021] [Accepted: 12/18/2021] [Indexed: 01/16/2023]
Abstract
In the cartilage matrix, complex interactions occur between angiogenic and anti-angiogenic components, growth factors, and environmental stressors to maintain a proper cartilage phenotype that allows for effective load bearing and force distribution. However, as seen in both degenerative disease and tissue engineering, cartilage can lose its vascular resistance. This vascularization then leads to matrix breakdown, chondrocyte apoptosis, and ossification. Research has shown that articular cartilage inflammation leads to compromised joint function and decreased clinical potential for regeneration. Unfortunately, few articles comprehensively summarize what we have learned from previous investigations. In this review, we summarize our current understanding of the factors that stabilize chondrocytes to prevent terminal differentiation and applications of these factors to rescue the cartilage phenotype during cartilage engineering and osteoarthritis treatment. Inhibiting vascularization will allow for enhanced phenotypic stability so that we are able to develop more stable implants for cartilage repair and regeneration.
Collapse
|
30
|
Liu Y, Shah KM, Luo J. Strategies for Articular Cartilage Repair and Regeneration. Front Bioeng Biotechnol 2022; 9:770655. [PMID: 34976967 PMCID: PMC8719005 DOI: 10.3389/fbioe.2021.770655] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Articular cartilage is an avascular tissue, with limited ability to repair and self-renew. Defects in articular cartilage can induce debilitating degenerative joint diseases such as osteoarthritis. Currently, clinical treatments have limited ability to repair, for they often result in the formation of mechanically inferior cartilage. In this review, we discuss the factors that affect cartilage homeostasis and function, and describe the emerging regenerative approaches that are informing the future treatment options.
Collapse
Affiliation(s)
- Yanxi Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Karan M Shah
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Chen E, Hou W, Wang H, Li J, Lin Y, Liu H, Du M, Li L, Wang X, Yang J, Yang R, Zhou C, Chen P, Zeng M, Yao Q, Chen W. Quantitative MRI evaluation of articular cartilage in patients with meniscus tear. Front Endocrinol (Lausanne) 2022; 13:911893. [PMID: 35966082 PMCID: PMC9372396 DOI: 10.3389/fendo.2022.911893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The aim of this study was to assess quantitatively articular cartilage volume, thickness, and T2 value alterations in meniscus tear patients. MATERIALS AND METHODS The study included 32 patients with meniscus tears (17 females, 15 males; mean age: 40.16 ± 11.85 years) and 24 healthy controls (12 females; 12 males; mean age: 36 ± 9.14 years). All subjects were examined by 3 T magnetic resonance imaging (MRI) with 3D dual-echo steady-state (DESS) and T2 mapping images. All patients underwent diagnostic arthroscopy and treatment. Cartilage thickness, cartilage volume and T2 values of 21 subregions of knee cartilage were measured using the prototype KneeCaP software (version 2.1; Siemens Healthcare, Erlangen, Germany). Mann-Whitney-U tests were utilized to determine if there were any significant differences among subregional articular cartilage volume, thickness and T2 value between patients with meniscus tear and the control group. RESULTS The articular cartilage T2 values in all subregions of the femur and tibia in the meniscus tear group were significantly higher (p< 0.05) than in the healthy control group. The cartilage thickness of the femoral condyle medial, femur trochlea, femur condyle lateral central, tibia plateau medial anterior and patella facet medial inferior in the meniscus tear group were slightly higher than in the control group (p< 0.05). In the femur trochlea medial, patella facet medial inferior, tibia plateau lateral posterior and tibia plateau lateral central, there were significant differences in relative cartilage volume percentage between the meniscus tear group and the healthy control group (p< 0.05). Nineteen patients had no cartilage abnormalities (Grade 0) in the meniscus tear group, as confirmed by arthroscopic surgery, and their T2 values in most subregions were significantly higher (p< 0.05) than those of the healthy control group. CONCLUSION The difference in articular cartilage indexes between patients with meniscus tears and healthy people without such tears can be detected by using quantitative MRI. Quantitative T2 values enable early and sensitive detection of early cartilage lesions.
Collapse
Affiliation(s)
- Enqi Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenjing Hou
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hu Wang
- Department of Radiology, Sichuan Science City Hospital, Mianyang, China
| | - Jing Li
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yangjing Lin
- Centre of Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - He Liu
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mingshan Du
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lian Li
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianqi Wang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Yang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Rui Yang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Changru Zhou
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pinzhen Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meng Zeng
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiandong Yao
- Department of Radiology, Sichuan Science City Hospital, Mianyang, China
- *Correspondence: Wei Chen, ; Qiandong Yao,
| | - Wei Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Wei Chen, ; Qiandong Yao,
| |
Collapse
|
32
|
Platelet-rich plasma injections induce disease-modifying effects in the treatment of osteoarthritis in animal models. Knee Surg Sports Traumatol Arthrosc 2021; 29:4100-4121. [PMID: 34341845 DOI: 10.1007/s00167-021-06659-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE The mechanisms of action and disease-modifying potential of platelet-rich plasma (PRP) injection for osteoarthritis (OA) treatment are still not fully established. The aim of this systematic review of preclinical evidence was to determine if PRP injections can induce disease-modifying effects in OA joints. METHODS A systematic review was performed on animal studies evaluating intra-articular PRP injections as treatment for OA joints. A synthesis of the results was performed investigating the disease-modifying effects of PRP by evaluating studies that compared PRP with OA controls or other injectable products, different PRP formulations or injection intervals, and the combination of PRP with other products. The risk of bias was assessed according to the SYRCLE's tool. RESULTS Forty-four articles were included, for a total of 1251 animals. The publication trend remarkably increased over time. PRP injections showed clinical effects in 80% and disease-modifying effects in 68% of the studies, attenuating cartilage damage progression and reducing synovial inflammation, coupled with changes in biomarker levels. Evidence is limited on the best PRP formulation, injection intervals, and synergistic effect with other injectables. The risk of bias was low in 40%, unclear in 56%, and high in 4% of items. CONCLUSION Intra-articular PRP injections showed disease-modifying effects in most studies, both at the cartilage and synovial level. These findings in animal OA models can play a crucial role in understanding mechanism of action and structural effects of this biological approach. Nevertheless, the overall low quality of the published studies warrants further preclinical studies to confirm the positive findings, as well as high-level human trials to demonstrate if these results translate into disease-modifying effects when PRP is used in the clinical practice to treat OA. LEVEL OF EVIDENCE Level II.
Collapse
|
33
|
Sdeek M, Sabry D, El-Sdeek H, Darweash A. Intra-articular injection of Platelet rich plasma versus Hyaluronic acid for moderate knee osteoarthritis. A prospective, double-blind randomized controlled trial on 189 patients with follow-up for three years. Acta Orthop Belg 2021; 87:729-734. [PMID: 35172440 DOI: 10.52628/87.4.18] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platelet-rich plasma injections have been proposed as an option for Conservative management of knee Osteoarthritis to provide symptomatic relief and also to delay the need for surgical intervention. Although almost all the current literatures provide some evidence on the benefits of this technique compared with Visco- supplementation, no studies have been performed to compare their Clinical outcomes. The purpose is to compare the Clinical outcomes provided by intra- articular injection of either Platelet rich plasma or Hyaluronic acid to treat knee Osteoarthritis. Study Design: Randomized Controlled Trial 200 Patients with a history of Symptomatic knee Osteo- arthritis (Kellgren-Lawrence grade 2 or 3) were randomized to undergo 3 blinded intra-articular in- jections of either Platelet rich plasma or Hyaluronic acid. The Interval between successive injections was 2 weeks. Patients were evaluated prospectively before the injection and then at 2, 6, 12, 24, 30 and 36 months. Evaluation was based on International Knee Documentation Committee (IKDC), Visual analog scale, VOMAC Score and the re- injection rate; 189 patients reached the final evaluation. Both platelet rich plasma and Hyaluronic acid were effective in improving knee Symptoms and functional status over time and remained stable over time up to 18 months Post-injection (No re-injection has been performed to any patient incorporated in this study during the first 18 months). The performed re-injections have been significantly lower in the PRP group. Both platelet rich plasma and Hyaluronic acid were effective in improving knee Symptoms and functional status over time and remained stable over time up to 18 months Post-injection. The rate of the required re-injections has been significantly lower in platelet rich plasma group. platelet rich plasma provide longer duration of symptomatic relief, longer duration of functional status improvement and lesser number of needed re-injections than Hyaluronic acid when the patients have been followed through 36 months.
Collapse
|
34
|
Gögele C, Wiltzsch S, Lenhart A, Civilleri A, Weiger TM, Schäfer-Eckart K, Minnich B, Forchheimer L, Hornfeck M, Schulze-Tanzil G. Highly porous novel chondro-instructive bioactive glass scaffolds tailored for cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112421. [PMID: 34702508 DOI: 10.1016/j.msec.2021.112421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
Cartilage injuries remain challenging since the regenerative capacity of cartilage is extremely low. The aim was to design a novel type of bioactive glass (BG) scaffold with suitable topology that allows the formation of cartilage-specific extracellular matrix (ECM) after colonization with chondrogenic cells for cartilage repair. Highly porous scaffolds with interconnecting pores consisting of 100 % BG were manufactured using a melting, milling, sintering and leaching technique. Scaffolds were colonized with porcine articular chondrocytes (pAC) and undifferentiated human mesenchymal stromal cells (hMSC) for up to 35 days. Scaffolds displayed high cytocompatibility with no major pH shift. Scanning electron microscopy revealed the intimate pAC-scaffold interaction with typical cell morphology. After 14 days MSCs formed cell clusters but still expressed cartilage markers. Both cell types showed aggrecan, SOX9 gene and protein expression, cartilage proteoglycan and sulfated glycosaminoglycan synthesis for the whole culture time. Despite type II collagen gene expression could not anymore be detected at day 35, protein synthesis was visualized for both cell types during the whole culturing period, increasing in pAC and declining after day 14 in hMSC cultures. The novel BG scaffold was stable, cytocompatible and cartilage-specific protein synthesis indicated maintenance of pAC's differentiated phenotype and chondro-instructive effects on hMSCs.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst-Nathan Str. 1, 90419 Nuremberg, Germany; Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Sven Wiltzsch
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany.
| | - Armin Lenhart
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany.
| | - Aurelio Civilleri
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst-Nathan Str. 1, 90419 Nuremberg, Germany; Department of Civil, Environmental, Aerospace, Materials Engineering, Universita' di Palermo, Palermo, Italy.
| | - Thomas Martin Weiger
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Kerstin Schäfer-Eckart
- Bone marrow Transplantation Unit, Medizinische Klinik 5, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Nuremberg, Germany.
| | - Bernd Minnich
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Lukas Forchheimer
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany
| | - Markus Hornfeck
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany.
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst-Nathan Str. 1, 90419 Nuremberg, Germany.
| |
Collapse
|
35
|
Vayas R, Reyes R, Arnau MR, Évora C, Delgado A. Injectable Scaffold for Bone Marrow Stem Cells and Bone Morphogenetic Protein-2 to Repair Cartilage. Cartilage 2021; 12:293-306. [PMID: 30971092 PMCID: PMC8236655 DOI: 10.1177/1947603519841682] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The limits of the microfracture (MFX) treatment in terms of lesion size and long-term tissue functionality makes it necessary to investigate different alternatives to repair focal cartilage lesions. The present study aims at evaluating the efficacy of a minimally invasive approach against the conventional MFX to repair a chondral defect in rabbits. An injectable scaffold of BMP-2 pre-encapsulated in PLGA microspheres dispersed in a Pluronic F-127 solution is proposed as support of cells and controlled delivery system for the growth factor. DESIGN MFX was compared versus the injectable system seeded with mesenchymal stem cells (MSCs), both without BMP-2 and under controlled release of BMP-2 at 2 different doses (3 and 12 µg/scaffold). The different treatments were evaluated on a 4-mm diameter chondral defect model using 9 experimental groups of 4 rabbits (8 knees) each, throughout 24 weeks. RESULTS Histologically, all the treated groups, except MFX treated, responded significantly better than the control group (nontreated defect). Although no significant differences were found between the treated groups, only BMP(12), MSC-BMP(12), and MFX-BMP(3) groups showed nonsignificant differences when compared with the normal cartilage. CONCLUSIONS The hydrogel system proposed to control the release rate of the BMP-2 was safe, easily injectable, and also provided good support for cells. Treatments with MSCs or BMP-2 repaired efficiently the chondral lesion created in rabbits, being less invasive than MFX treatment.
Collapse
Affiliation(s)
- Raquel Vayas
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, La Laguna, Spain
- Servicio de Cirugía Ortopédica y Traumatología, Complejo Hospitalario Universitario Ntra, Sra. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ricardo Reyes
- Institute of Biomedical Technologies, Center for Biomedical Research of the Canary Islands, Universidad de La Laguna, La Laguna, Spain
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Spain
| | - María Rosa Arnau
- Servicio de Estabulario y Animalario del Servicio General de Apoyo a la Investigación, Universidad de La Laguna, La Laguna, Spain
| | - Carmen Évora
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, La Laguna, Spain
- Institute of Biomedical Technologies, Center for Biomedical Research of the Canary Islands, Universidad de La Laguna, La Laguna, Spain
| | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, La Laguna, Spain
- Institute of Biomedical Technologies, Center for Biomedical Research of the Canary Islands, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
36
|
Delman CM, Kreulen C, Giza E. Editorial Commentary: Drill and Fill: Bone Marrow Stimulation Plus Allograft Matrix May Optimize the Treatment of Osteochondral Lesions of the Talus. Arthroscopy 2021; 37:2270-2271. [PMID: 34226013 DOI: 10.1016/j.arthro.2021.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 02/02/2023]
Abstract
Osteochondral lesions of the talus remain a challenging pathologic entity facing orthopaedic foot and ankle surgeons. Although multiple treatment options exist, there is limited evidence supporting one technique over another. The ultimate goal of surgical intervention is to achieve lesion infill with tissue properties that best mimic those of hyaline articular cartilage. Restoring the anatomic surface of the talus may provide long-term clinical success and improve function. Augmentation of bone marrow stimulation with extracellular matrix cartilage allograft aims to achieve this goal.
Collapse
|
37
|
Jin H, Jiang S, Wang R, Zhang Y, Dong J, Li Y. Mechanistic Insight Into the Roles of Integrins in Osteoarthritis. Front Cell Dev Biol 2021; 9:693484. [PMID: 34222261 PMCID: PMC8250141 DOI: 10.3389/fcell.2021.693484] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/19/2021] [Indexed: 01/13/2023] Open
Abstract
Osteoarthritis (OA), one of the most common degenerative diseases, is characterized by progressive degeneration of the articular cartilage and subchondral bone, as well as the synovium. Integrins, comprising a family of heterodimeric transmembrane proteins containing α subunit and β subunit, play essential roles in various physiological functions of cells, such as cell attachment, movement, growth, differentiation, and mechanical signal conduction. Previous studies have shown that integrin dysfunction is involved in OA pathogenesis. This review article focuses on the roles of integrins in OA, especially in OA cartilage, subchondral bone and the synovium. A clear understanding of these roles may influence the future development of treatments for OA.
Collapse
Affiliation(s)
- Hongfu Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shigang Jiang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruomei Wang
- Department of Endocrinology and Metabolic Diseases, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiangtao Dong
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Shala R. Platelet-rich plasma for tendinopathy and osteoarthritis: a narrative review. BULLETIN OF FACULTY OF PHYSICAL THERAPY 2021. [DOI: 10.1186/s43161-021-00028-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Musculoskeletal disorders include a wide range of degenerative and inflammatory problems, which can affect any part of the muscular and skeletal system. Platelet-rich plasma (PRP) has been a breakthrough in musculoskeletal medicine, especially with its effects to speed up soft tissue, cartilage, and bone healing. It is now thought that stem cells are able to reverse the degenerative process and promote rapid healing. Platelet-rich plasma (PRP) has received special attention in treating tendinopathy and osteoarthritis. This review aims to do a comprehensive review of the scientific evidence for the efficiency of PRP application in tendinopathy and osteoarthritis.
Main body of the abstract
In osteoarthritis treatment, platelet-rich plasma is thought to influence the whole joint environment by increasing chondrocyte proliferation. The injection of autologous PRP into the joint space and surrounding soft tissues delivers a concentrated dose of these growth factors, which accelerate the healing process and reduce pain.
Short conclusion
Many studies report some benefits in regard to pain and functionality, especially in tendinopathy, but further investigations are needed to incorporate PRP into clinical practice and be a common form of therapy for tendinopathy and osteoarthritis. Caution should be applied with any treatment we use in clinical practice, especially with PRP and other forms of injections.
Collapse
|
39
|
Karjalainen VP, Kestilä I, Finnilä M, Folkesson E, Turkiewicz A, Önnerfjord P, Hughes V, Tjörnstrand J, Englund M, Saarakkala S. Quantitative three-dimensional collagen orientation analysis of human meniscus posterior horn in health and osteoarthritis using micro-computed tomography. Osteoarthritis Cartilage 2021; 29:762-772. [PMID: 33588085 PMCID: PMC7610734 DOI: 10.1016/j.joca.2021.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/11/2020] [Accepted: 01/22/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Knee osteoarthritis (OA) is associated with meniscal degeneration that may involve disorganization of the meniscal collagen fiber network. Our aims were to quantitatively analyze the microstructural organization of human meniscus samples in 3D using micro-computed tomography (μCT), and to compare the local microstructural organization between OA and donor samples. METHOD We collected posterior horns of both medial and lateral human menisci from 10 end-stage medial compartment knee OA patients undergoing total knee replacement (medial & lateral OA) and 10 deceased donors without knee OA (medial & lateral donor). Posterior horns were dissected and fixed in formalin, dehydrated in ascending ethanol concentrations, treated with hexamethyldisilazane (HMDS), and imaged with μCT. We performed local orientation analysis of collagenous microstructure in 3D by calculating structure tensors from greyscale gradients within selected integration window to determine the polar angle for each voxel. RESULTS In donor samples, meniscus bundles were aligned circumferentially around the inner border of meniscus. In medial OA menisci, the organized structure of collagen network was lost, and main orientation was shifted away from the circumferential alignment. Quantitatively, medial OA menisci had the lowest mean orientation angle compared to all groups, -24° (95%CI -31 to -18) vs medial donor and -25° (95%CI -34 to -15) vs lateral OA. CONCLUSIONS HMDS-based μCT imaging enabled quantitative analysis of meniscal collagen fiber bundles and their orientations in 3D. In human medial OA menisci, the collagen disorganization was profound with overall lower orientation angles, suggesting collagenous microstructure disorganization as an important part of meniscus degradation.
Collapse
Affiliation(s)
- V-P. Karjalainen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - I. Kestilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - M.A. Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland,Medical Research Center, University of Oulu, Oulu, Finland
| | - E. Folkesson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Sweden,Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Rheumatology and Molecular Skeletal Biology, Lund, Sweden
| | - A. Turkiewicz
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Sweden
| | - P. Önnerfjord
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Rheumatology and Molecular Skeletal Biology, Lund, Sweden
| | - V. Hughes
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Sweden
| | - J. Tjörnstrand
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden
| | - M. Englund
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Sweden
| | - S. Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
40
|
Potential of Exosomes for Diagnosis and Treatment of Joint Disease: Towards a Point-of-Care Therapy for Osteoarthritis of the Knee. Int J Mol Sci 2021; 22:ijms22052666. [PMID: 33800860 PMCID: PMC7961842 DOI: 10.3390/ijms22052666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
In the knee joint, articular cartilage injury can often lead to osteoarthritis of the knee (OAK). Currently, no point-of-care treatment can completely address OAK symptoms and regenerate articular cartilage to restore original functions. While various cell-based therapies are being developed to address OAK, exosomes containing various components derived from their cells of origin have attracted attention as a cell-free alternative. The potential for exosomes as a novel point-of-care treatment for OAK has been studied extensively, especially in the context of intra-articular treatments. Specific exosomal microRNAs have been identified as possibly effective in treating cartilage defects. Additionally, exosomes have been studied as biomarkers through their differences in body fluid composition between joint disease patients and healthy subjects. Exosomes themselves can be utilized as a drug delivery system through their manipulation and encapsulation of specific contents to be delivered to specific cells. Through the combination of exosomes with tissue engineering, novel sustained release drug delivery systems are being developed. On the other hand, many of the functions and activities of exosomes are unknown and challenges remain for clinical applications. In this review, the possibilities of intra-articular treatments utilizing exosomes and the challenges in using exosomes in therapy are discussed.
Collapse
|
41
|
Piper D, Taylor C, Howells N, Murray J, Porteous A, Robinson JR. Use of a Novel Variable Power Radiofrequency Ablation System Specific for Knee Chondroplasty: Surgical Experience and Two-Year Patient Results. Cureus 2021; 13:e12864. [PMID: 33520559 PMCID: PMC7834590 DOI: 10.7759/cureus.12864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Although stabilisation of knee cartilage lesions (chondroplasty) may be performed with an arthroscopic shaver, more recently, radiofrequency (RF) ablation has gained in popularity. However, their remain some concerns about the avoidance of thermal injury, chondrolysis, and osteonecrosis with the use of RF devices. Methods We reviewed the outcomes of 85 knee chondroplasties performed with a new RF ablation wand designed for knee chondroplasty. Lesion details and Chondropaenia Severity Score (CSS) were recorded for each patient. We evaluated the occurrence of adverse outcomes, post-operative complications, and the need for further surgery. Post-operative outcomes scores (Oxford Knee Score [OKS], Knee injury and Osteoarthritis Outcome Score [KOOS], and International Knee Documentation Committee [IKDC] subjective knee outcome) were recorded at a minimum of one-year follow-up. Results At the final mean follow-up of 27.5 months (range: 12-46.6 months), 12 (14%) knees had undergone or were listed for further surgery. Four patients had corticosteroid injections for ongoing pain at a median 7.5 months (range: 5-20 months) post-operatively. There were no observed re-operations considered to be caused by complications related to thermal injury. Of the six patients listed for or undergoing knee arthroplasty, five (83%) had grade 4 lesions found at the arthroscopic chondroplasty. A negative correlation was noted between CCS, and post-operative IKDC subjective score (R=-0.35), KOOS Sports (R=-0.39), and KOOS QoL (R=-0.36). Conclusions We found that RF chondroplasty appeared safe, and there were no concerns with regard to thermal injury. Functional outcome appeared to be related to the quality of chondral and meniscal tissue throughout all knee compartments, with better results for isolated grade 2 and 3 cartilage lesions.
Collapse
Affiliation(s)
- Danielle Piper
- Trauma and Orthopaedics, Avon Orthopaedic Centre, Bristol, GBR
| | - Clare Taylor
- Trauma and Orthopaedics, Avon Orthopaedic Centre, Bristol, GBR
| | - Nick Howells
- Trauma and Orthopaedics, Avon Orthopaedic Centre, Bristol, GBR
| | - James Murray
- Trauma and Orthopaedics, Avon Orthopaedic Centre, Bristol, GBR
- Trauma and Orthopaedics, North Bristol NHS Trust, Bristol, GBR
| | - Andrew Porteous
- Trauma and Orthopaedics, Avon Orthopaedic Centre, Bristol, GBR
| | | |
Collapse
|
42
|
Schreiner AJ, Stoker AM, Bozynski CC, Kuroki K, Stannard JP, Cook JL. Clinical Application of the Basic Science of Articular Cartilage Pathology and Treatment. J Knee Surg 2020; 33:1056-1068. [PMID: 32583400 DOI: 10.1055/s-0040-1712944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The joint is an organ with each tissue playing critical roles in health and disease. Intact articular cartilage is an exquisite tissue that withstands incredible biologic and biomechanical demands in allowing movement and function, which is why hyaline cartilage must be maintained within a very narrow range of biochemical composition and morphologic architecture to meet demands while maintaining health and integrity. Unfortunately, insult, injury, and/or aging can initiate a cascade of events that result in erosion, degradation, and loss of articular cartilage such that joint pain and dysfunction ensue. Importantly, articular cartilage pathology affects the health of the entire joint and therefore should not be considered or addressed in isolation. Treating articular cartilage lesions is challenging because left alone, the tissue is incapable of regeneration or highly functional and durable repair. Nonoperative treatments can alleviate symptoms associated with cartilage pathology but are not curative or lasting. Current surgical treatments range from stimulation of intrinsic repair to whole-surface and whole-joint restoration. Unfortunately, there is a relative paucity of prospective, randomized controlled, or well-designed cohort-based clinical trials with respect to cartilage repair and restoration surgeries, such that there is a gap in knowledge that must be addressed to determine optimal treatment strategies for this ubiquitous problem in orthopedic health care. This review article discusses the basic science rationale and principles that influence pathology, symptoms, treatment algorithms, and outcomes associated with articular cartilage defects in the knee.
Collapse
Affiliation(s)
- Anna J Schreiner
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri.,BG Center for Trauma and Reconstructive Surgery, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Aaron M Stoker
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Chantelle C Bozynski
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Keiichi Kuroki
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
| | - James P Stannard
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - James L Cook
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| |
Collapse
|
43
|
Overcoming Current Dilemma in Cartilage Regeneration: Will Direct Conversion Provide a Breakthrough? Tissue Eng Regen Med 2020; 17:829-834. [PMID: 33098546 DOI: 10.1007/s13770-020-00303-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Direct reprogramming/direct conversion/transdifferentiation is a process that induces conversion between completely different matured (differentiated) cells in higher organisms. Unlike the process of reprogramming of differentiated cells into induced pluripotent stem cells (iPSCs) and re-differentiation into the desired cell types, differentiated cells undergo the conversion into another type of differentiated cells without going through the iPSCs state. Osteoarthritis (OA) is the most common type of arthritis that causes a significant deterioration in patients' quality of life. The high prevalence of OA as well as the current lack of disease-modifying drugs has led to a rise in regenerative strategy for OA treatment. Regenerative therapy in OA started with the concept of engraftment of the administered cells within the cartilage lesion and differentiation to chondrocytes after the engraftment. However, recent studies show that cells, particularly when injected in suspension, rapidly undergo apoptosis after exerting a transient paracrine effect. In this perspective review, the general overview and current status of direct conversion are introduced along with the conceptual strategy and future directions for possible application of regenerative therapy using stem cells in OA. In vivo direct conversion may open a new stage of regenerative medicine for OA treatment. Recent advances in in vivo gene transfer and smart biomaterials can bring the concept into reality in near future. Direct conversion can be a new type of treatment technology that has the potential to overcome the limitations of current cell therapy.
Collapse
|
44
|
Angadi DS, Macdonald H, Atwal N. Autologous cell-free serum preparations in the management of knee osteoarthritis: what is the current clinical evidence? Knee Surg Relat Res 2020; 32:16. [PMID: 32660628 PMCID: PMC7219223 DOI: 10.1186/s43019-020-00036-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background There is paucity in the current literature regarding clinical outcomes of autologous cell-free serum preparations. The objective of this paper is to collate the clinical evidence and review the results of intraarticular injections of autologous cell-free serum preparations in the management of knee osteoarthritis (OA). Methods A comprehensive English literature search was undertaken using the healthcare database website (https://hdas.nice.org.uk/). The PubMed, Medline, CINAHL, Embase and the Cochrane library databases were searched to identify all studies of autologous protein solution/autologous conditioned serum (ACS/APS) in the management of knee OA. We evaluated the reported clinical outcomes with respect to pain, function, morbidity, adverse effects and complications. Results Fifteen relevant articles were identified in the current literature. Outcomes following injection of ACS/APS have been reported in patients with age range (34–87 years) and unilateral or bilateral knee OA. Seven studies reported improvement in visual analog scale (VAS) whereas the Western Ontario and McMaster Universities osteoarthritis instrument (WOMAC) score improved in nine studies. Considerable variation was noted in the injection technique and duration of post-procedure assessment with only one study reporting long-term follow-up beyond 24 months. Joint swelling and injection-site pain were reported to be the most common complications; only one study reported a case of septic arthritis. However, no evidence is available to clearly identify factors that may predict the outcomes following this procedure. Conclusion Current data from the clinical studies would suggest that the intraarticular administration of autologous cell-free serum preparations, such as ACS/APS, in patients with knee OA may improve pain and function, with limited morbidity. High-quality clinical trials with stratified patient cohorts, longer follow-up duration and robust reporting of outcome measures are essential to improve the understanding of the indications and clinical effectiveness of these novel products.
Collapse
Affiliation(s)
- Darshan S Angadi
- Department of Trauma and Orthopaedics, Cheltenham General Hospital, Sandford Rd, Cheltenham, UK.
| | - Hamish Macdonald
- Department of Trauma and Orthopaedics, Cheltenham General Hospital, Sandford Rd, Cheltenham, UK
| | - Navraj Atwal
- Department of Trauma and Orthopaedics, Cheltenham General Hospital, Sandford Rd, Cheltenham, UK
| |
Collapse
|
45
|
Fuchs S, Shariati K, Ma M. Specialty Tough Hydrogels and Their Biomedical Applications. Adv Healthc Mater 2020; 9:e1901396. [PMID: 31846228 PMCID: PMC7586320 DOI: 10.1002/adhm.201901396] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Hydrogels have long been explored as attractive materials for biomedical applications given their outstanding biocompatibility, high water content, and versatile fabrication platforms into materials with different physiochemical properties and geometries. Nonetheless, conventional hydrogels suffer from weak mechanical properties, restricting their use in persistent load-bearing applications often required of materials used in medical settings. Thus, the fabrication of mechanically robust hydrogels that can prolong the lifetime of clinically suitable materials under uncompromising in vivo conditions is of great interest. This review focuses on design considerations and strategies to construct such tough hydrogels. Several promising advances in the proposed use of specialty tough hydrogels for soft actuators, drug delivery vehicles, adhesives, coatings, and in tissue engineering settings are highlighted. While challenges remain before these specialty tough hydrogels will be deemed translationally acceptable for clinical applications, promising preliminary results undoubtedly spur great hope in the potential impact this embryonic research field can have on the biomedical community.
Collapse
Affiliation(s)
- Stephanie Fuchs
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| |
Collapse
|
46
|
Pérez-Silos V, Moncada-Saucedo NK, Peña-Martínez V, Lara-Arias J, Marino-Martínez IA, Camacho A, Romero-Díaz VJ, Lara Banda M, García-Ruiz A, Soto-Dominguez A, Rodriguez-Rocha H, López-Serna N, Tuan RS, Lin H, Fuentes-Mera L. A Cellularized Biphasic Implant Based on a Bioactive Silk Fibroin Promotes Integration and Tissue Organization during Osteochondral Defect Repair in a Porcine Model. Int J Mol Sci 2019; 20:E5145. [PMID: 31627374 PMCID: PMC6834127 DOI: 10.3390/ijms20205145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 01/16/2023] Open
Abstract
In cartilage tissue engineering, biphasic scaffolds (BSs) have been designed not only to influence the recapitulation of the osteochondral architecture but also to take advantage of the healing ability of bone, promoting the implant's integration with the surrounding tissue and then bone restoration and cartilage regeneration. This study reports the development and characterization of a BS based on the assembly of a cartilage phase constituted by fibroin biofunctionalyzed with a bovine cartilage matrix, cellularized with differentiated autologous pre-chondrocytes and well attached to a bone phase (decellularized bovine bone) to promote cartilage regeneration in a model of joint damage in pigs. BSs were assembled by fibroin crystallization with methanol, and the mechanical features and histological architectures were evaluated. The scaffolds were cellularized and matured for 12 days, then implanted into an osteochondral defect in a porcine model (n = 4). Three treatments were applied per knee: Group I, monophasic cellular scaffold (single chondral phase); group II (BS), cellularized only in the chondral phase; and in order to study the influence of the cellularization of the bone phase, Group III was cellularized in chondral phases and a bone phase, with autologous osteoblasts being included. After 8 weeks of surgery, the integration and regeneration tissues were analyzed via a histology and immunohistochemistry evaluation. The mechanical assessment showed that the acellular BSs reached a Young's modulus of 805.01 kPa, similar to native cartilage. In vitro biological studies revealed the chondroinductive ability of the BSs, evidenced by an increase in sulfated glycosaminoglycans and type II collagen, both secreted by the chondrocytes cultured on the scaffold during 28 days. No evidence of adverse or inflammatory reactions was observed in the in vivo trial; however, in Group I, the defects were not reconstructed. In Groups II and III, a good integration of the implant with the surrounding tissue was observed. Defects in group II were fulfilled via hyaline cartilage and normal bone. Group III defects showed fibrous repair tissue. In conclusion, our findings demonstrated the efficacy of a biphasic and bioactive scaffold based on silk fibroin and cellularized only in the chondral phase, which entwined chondroinductive features and a biomechanical capability with an appropriate integration with the surrounding tissue, representing a promising alternative for osteochondral tissue-engineering applications.
Collapse
Affiliation(s)
- Vanessa Pérez-Silos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León. Madero y Dr. Aguirre Pequeño S/N, Mitras Centro, Monterrey 64460, Mexico.
| | - Nidia K Moncada-Saucedo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León. Madero y Dr. Aguirre Pequeño S/N, Mitras Centro, Monterrey 64460, Mexico.
| | - Víctor Peña-Martínez
- Universidad Autónoma de Nuevo León (UANL), Servicio de Ortopedia y Traumatología, Hospital Universitario "Dr. José E. González", Monterrey 64460, Mexico.
| | - Jorge Lara-Arias
- Universidad Autónoma de Nuevo León (UANL), Servicio de Ortopedia y Traumatología, Hospital Universitario "Dr. José E. González", Monterrey 64460, Mexico.
| | - Iván A Marino-Martínez
- Universidad Autónoma de Nuevo León (UANL), Unidad de Terapias Experimentales, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey 64460, Mexico.
- Universidad Autónoma de Nuevo León (UANL), Departamento de Patología, Facultad de Medicina, Monterrey 64460, Mexico.
| | - Alberto Camacho
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León. Madero y Dr. Aguirre Pequeño S/N, Mitras Centro, Monterrey 64460, Mexico.
- Universidad Autónoma de Nuevo León (UANL), Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey 64460, Mexico.
| | - Víktor J Romero-Díaz
- Universidad Autónoma de Nuevo León (UANL), Departamento de Histología, Facultad de Medicina, UANL, Monterrey 64460, Mexico.
| | - María Lara Banda
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Monterrey 66451, Mexico.
| | - Alejandro García-Ruiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León. Madero y Dr. Aguirre Pequeño S/N, Mitras Centro, Monterrey 64460, Mexico.
| | - Adolfo Soto-Dominguez
- Universidad Autónoma de Nuevo León (UANL), Departamento de Histología, Facultad de Medicina, UANL, Monterrey 64460, Mexico.
| | - Humberto Rodriguez-Rocha
- Universidad Autónoma de Nuevo León (UANL), Departamento de Histología, Facultad de Medicina, UANL, Monterrey 64460, Mexico.
| | - Norberto López-Serna
- Universidad Autónoma de Nuevo León (UANL), Departamento de Embriología, Facultad de Medicina, Monterrey 64460, Mexico.
| | - Rocky S Tuan
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219-3143, USA.
| | - Hang Lin
- Department of Orthopaedic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15260, USA.
| | - Lizeth Fuentes-Mera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León. Madero y Dr. Aguirre Pequeño S/N, Mitras Centro, Monterrey 64460, Mexico.
| |
Collapse
|
47
|
|
48
|
Mobasheri A, Lambert C, Henrotin Y. Coll2-1 and Coll2-1NO2 as exemplars of collagen extracellular matrix turnover - biomarkers to facilitate the treatment of osteoarthritis? Expert Rev Mol Diagn 2019; 19:803-812. [PMID: 31327279 DOI: 10.1080/14737159.2019.1646641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Osteoarthritis (OA) is the most common form of arthritis. However, there are no structure or disease-modifying OA drugs (DMOADs). Introducing personalized healthcare to patients and health-care practitioners is a high priority for the management of arthritic and musculoskeletal diseases. However, there are no biomarker tools that can be used for patient stratification, disease management, and drug development. Biomarkers are capable of diagnosing and prognosing some arthritic and musculoskeletal diseases. Cartilage-based biomarkers have the potential to be used in this context to guide the precision treatment of OA. Areas covered: The aim of this review is to focus on the pre-clinical and clinical utility of the Coll2-1 and Coll2-1NO2 biomarkers as unique cartilage-based biomarkers that can guide the development of new treatments for OA. This expert report will begin with a background to collagens and their important biomechanical roles in the musculoskeletal system, but particularly cartilage, before exploring the data and scientific evidence to support the utility of Coll2-1 and Coll2-1NO2 as unique biomarkers. Expert opinion: This review summarises the authors' expert view on the pre-clinical and clinical utility of the Coll2-1 and Coll2-1NO2 biomarkers and their potential for use as drug development tools.
Collapse
Affiliation(s)
- Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine , Vilnius , Lithuania.,Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, Queen's Medical Centre , Nottingham , UK.,European Commission, The D-BOARD FP7 Consortium.,The APPROACH IMI Consortium.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu , Oulu , Finland
| | - Cecile Lambert
- Bone and Cartilage Research Unit, Arthropole Liège, Institute of Pathology, University of Liège , Liège , Belgium
| | - Yves Henrotin
- European Commission, The D-BOARD FP7 Consortium.,The APPROACH IMI Consortium.,Bone and Cartilage Research Unit, Arthropole Liège, Institute of Pathology, University of Liège , Liège , Belgium
| |
Collapse
|
49
|
Miyamura S, Sakai T, Oka K, Abe S, Shigi A, Tanaka H, Shimada S, Mae T, Sugamoto K, Yoshikawa H, Murase T. Regional Distribution of Articular Cartilage Thickness in the Elbow Joint: A 3-Dimensional Study in Elderly Humans. JB JS Open Access 2019; 4:JBJSOA-D-19-00011. [PMID: 31592501 PMCID: PMC6766381 DOI: 10.2106/jbjs.oa.19.00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During elbow procedures, reconstruction of the joint (including the articular cartilage) is important in order to restore elbow function; however, the regional distribution of elbow cartilage is not completely understood. The purpose of the present study was to investigate the 3-dimensional (3-D) distribution patterns of cartilage thickness of elbow bones (including the distal part of the humerus, proximal part of the ulna, and radial head) in order to elucidate the morphological relationship among them.
Collapse
Affiliation(s)
- Satoshi Miyamura
- Departments of Orthopaedic Surgery (S.M., K.O., H.T., T. Mae, H.Y., and T. Murase), Neuroscience and Cell Biology (S.S.), and Orthopaedic Biomaterial Science (K.S.), Osaka University Graduate School of Medicine, Suita, Japan
| | - Takashi Sakai
- Department of Orthopaedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kunihiro Oka
- Departments of Orthopaedic Surgery (S.M., K.O., H.T., T. Mae, H.Y., and T. Murase), Neuroscience and Cell Biology (S.S.), and Orthopaedic Biomaterial Science (K.S.), Osaka University Graduate School of Medicine, Suita, Japan
| | - Shingo Abe
- Department of Orthopaedic Surgery, Toyonaka Municipal Hospital, Toyonaka, Japan
| | - Atsuo Shigi
- Department of Orthopaedic Surgery, Yukioka Hospital, Osaka, Japan
| | - Hiroyuki Tanaka
- Departments of Orthopaedic Surgery (S.M., K.O., H.T., T. Mae, H.Y., and T. Murase), Neuroscience and Cell Biology (S.S.), and Orthopaedic Biomaterial Science (K.S.), Osaka University Graduate School of Medicine, Suita, Japan
| | - Shoichi Shimada
- Departments of Orthopaedic Surgery (S.M., K.O., H.T., T. Mae, H.Y., and T. Murase), Neuroscience and Cell Biology (S.S.), and Orthopaedic Biomaterial Science (K.S.), Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsuo Mae
- Departments of Orthopaedic Surgery (S.M., K.O., H.T., T. Mae, H.Y., and T. Murase), Neuroscience and Cell Biology (S.S.), and Orthopaedic Biomaterial Science (K.S.), Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuomi Sugamoto
- Departments of Orthopaedic Surgery (S.M., K.O., H.T., T. Mae, H.Y., and T. Murase), Neuroscience and Cell Biology (S.S.), and Orthopaedic Biomaterial Science (K.S.), Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideki Yoshikawa
- Departments of Orthopaedic Surgery (S.M., K.O., H.T., T. Mae, H.Y., and T. Murase), Neuroscience and Cell Biology (S.S.), and Orthopaedic Biomaterial Science (K.S.), Osaka University Graduate School of Medicine, Suita, Japan
| | - Tsuyoshi Murase
- Departments of Orthopaedic Surgery (S.M., K.O., H.T., T. Mae, H.Y., and T. Murase), Neuroscience and Cell Biology (S.S.), and Orthopaedic Biomaterial Science (K.S.), Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
50
|
Deng C, Xu C, Zhou Q, Cheng Y. Advances of nanotechnology in osteochondral regeneration. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1576. [PMID: 31329375 DOI: 10.1002/wnan.1576] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/28/2022]
Abstract
In the past few decades, nanotechnology has proven to be one of the most powerful engineering strategies. The nanotechnologies for osteochondral tissue engineering aim to restore the anatomical structures and physiological functions of cartilage, subchondral bone, and osteochondral interface. As subchondral bone and articular cartilage have different anatomical structures and the physiological functions, complete healing of osteochondral defects remains a great challenge. Considering the limitation of articular cartilage to self-healing and the complexity of osteochondral tissue, osteochondral defects are in urgently need for new therapeutic strategies. This review article will concentrate on the most recent advancements of nanotechnologies, which facilitates chondrogenic and osteogenic differentiation for osteochondral regeneration. Moreover, this review will also discuss the current strategies and physiological challenges for the regeneration of osteochondral tissue. Specifically, we will summarize the latest developments of nanobased scaffolds for simultaneously regenerating subchondral bone and articular cartilage tissues. Additionally, perspectives of nanotechnology in osteochondral tissue engineering will be highlighted. This review article provides a comprehensive summary of the latest trends in cartilage and subchondral bone regeneration, paving the way for nanotechnologies in osteochondral tissue engineering. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Cuijun Deng
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Chang Xu
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Quan Zhou
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Yu Cheng
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|