1
|
Perkins R, Goulson D. To flea or not to flea: survey of UK companion animal ectoparasiticide usage and activities affecting pathways to the environment. PeerJ 2023; 11:e15561. [PMID: 37554336 PMCID: PMC10405796 DOI: 10.7717/peerj.15561] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 08/10/2023] Open
Abstract
Due to the convenience and efficacy of modern ectoparasiticides, routine prophylactic use has become commonplace for dogs and cats. However, the environmental consequences of this large-scale use are not well-understood, and multiple potential pathways for ectoparasiticides to the environment exist. Of particular concern is the potential for topically applied ectoparasiticides to pass to waterways, both down-the-drain via wastewater treatment plants and directly through swimming. In this online cross-sectional survey of 1,009 UK cat and dog owners, we investigated ectoparasiticide usage and the frequency of activities that are likely to result in transfer of the active substance to the environment, with a focus on pathways to waterways. A total of 603 dog owners and 406 cat owners completed the survey. Amongst dog and cat owners, 86.1% and 91.1% had administered an ectoparasiticide treatment to their pet in the preceding 12 months. Imidacloprid was the most frequently administered ectoparasiticide in both cats and dogs, followed by fluralaner in dogs and fipronil in cats. Eighty-four percent of owners who applied topical ectoparasiticides to their dog said they were aware of product warnings regarding swimming and bathing after application. Spot-on treated dogs were reported to swim significantly less frequently than non spot-on treated dogs (p = 0.007); however, 36.2% were reported to swim at least monthly. Similarly, significant differences were found in bathing frequency between spot-on treated and non spot-on treated dogs, with treated dogs less likely to be bathed at frequent (weekly) intervals, however 54.6% were reported to be bathed at least monthly. Washing of bedding was unaffected by ectoparasiticide treatment, and 87.8% of dog owners and 69.1% of cat-owners reported washing their pet's bedding at least every 3 months, suggesting that residue washoff from bedding may be occurring for most topically treated animals. Results suggest that transfer of ectoparasiticides to the environment is likely to occur for many of the millions of animals treated annually in the UK, with imidacloprid spot-on treated dogs estimated to swim, be bathed and have their bedding washed over 3.3 million, 5 million and 6.3 million times per year, respectively.
Collapse
Affiliation(s)
- Rosemary Perkins
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
2
|
Marriott AE, Dagley JL, Hegde S, Steven A, Fricks C, DiCosty U, Mansour A, Campbell EJ, Wilson CM, Gusovsky F, Ward SA, Hong WD, O'Neill P, Moorhead A, McCall S, McCall JW, Taylor MJ, Turner JD. Dirofilariasis mouse models for heartworm preclinical research. Front Microbiol 2023; 14:1208301. [PMID: 37426014 PMCID: PMC10324412 DOI: 10.3389/fmicb.2023.1208301] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Dirofilariasis, including heartworm disease, is a major emergent veterinary parasitic infection and a human zoonosis. Currently, experimental infections of cats and dogs are used in veterinary heartworm preclinical drug research. Methods As a refined alternative in vivo heartworm preventative drug screen, we assessed lymphopenic mouse strains with ablation of the interleukin-2/7 common gamma chain (γc) as susceptible to the larval development phase of Dirofilaria immitis. Results Non-obese diabetic (NOD) severe combined immunodeficiency (SCID)γc-/- (NSG and NXG) and recombination-activating gene (RAG)2-/-γc-/- mouse strains yielded viable D. immitis larvae at 2-4 weeks post-infection, including the use of different batches of D. immitis infectious larvae, different D. immitis isolates, and at different laboratories. Mice did not display any clinical signs associated with infection for up to 4 weeks. Developing larvae were found in subcutaneous and muscle fascia tissues, which is the natural site of this stage of heartworm in dogs. Compared with in vitro-propagated larvae at day 14, in vivo-derived larvae had completed the L4 molt, were significantly larger, and contained expanded Wolbachia endobacteria titres. We established an ex vivo L4 paralytic screening system whereby assays with moxidectin or levamisole highlighted discrepancies in relative drug sensitivities in comparison with in vitro-reared L4 D. immitis. We demonstrated effective depletion of Wolbachia by 70%-90% in D. immitis L4 following 2- to 7-day oral in vivo exposures of NSG- or NXG-infected mice with doxycycline or the rapid-acting investigational drug, AWZ1066S. We validated NSG and NXG D. immitis mouse models as a filaricide screen by in vivo treatments with single injections of moxidectin, which mediated a 60%-88% reduction in L4 larvae at 14-28 days. Discussion Future adoption of these mouse models will benefit end-user laboratories conducting research and development of novel heartworm preventatives via increased access, rapid turnaround, and reduced costs and may simultaneously decrease the need for experimental cat or dog use.
Collapse
Affiliation(s)
- A. E. Marriott
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - J. L. Dagley
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - S. Hegde
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - A. Steven
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - C. Fricks
- TRS Laboratories Inc, Athens, GA, United States
| | - U. DiCosty
- TRS Laboratories Inc, Athens, GA, United States
| | - A. Mansour
- TRS Laboratories Inc, Athens, GA, United States
| | - E. J. Campbell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - C. M. Wilson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - F. Gusovsky
- Eisai Global Health, Cambridge, MA, United States
| | - S. A. Ward
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - W. D. Hong
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - P. O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - A. Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - S. McCall
- TRS Laboratories Inc, Athens, GA, United States
| | - J. W. McCall
- TRS Laboratories Inc, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - M. J. Taylor
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - J. D. Turner
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
3
|
Guerrini A, Morandi B, Roncada P, Brambilla G, Dini FM, Galuppi R. Evaluation of the Acaricidal Effectiveness of Fipronil and Phoxim in Field Populations of Dermanyssus gallinae (De Geer, 1778) from Ornamental Poultry Farms in Italy. Vet Sci 2022; 9:vetsci9090486. [PMID: 36136703 PMCID: PMC9504075 DOI: 10.3390/vetsci9090486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
The poultry red mite Dermanyssus gallinae is the most important blood-sucking ectoparasite in egg-laying hen facilities. The aim of this study was to evaluate the in vitro acaricidal activity of different concentration of authorized (phoxim, ByeMite®, 500 mg/mL) and unauthorized (fipronil, Frontline® 250 mg/100 mL spray) molecules on 14 field isolates of D. gallinae collected from different ornamental poultry farms from different Italian regions. The sensitivity test was performed by contact exposure to four concentrations of each insecticide diluted at 1:5 (10,000-2000-400-80 ppm for phoxim, 500-100-20-4 ppm for fipronil) on a filter paper. The effectiveness of the treatment was significantly (p < 0.0001) associated with the dose of the pesticide used. Considering the mean lethality, phoxim has greater efficacy compared to fipronil (p < 0.001). A great variability of lethality rate was observed with the increase in fipronil dilution; conversely, for phoxim, some outliers were observed, particularly in one farm, suggesting the hypothesis that a certain degree of resistance in the mite population could occur possibly as a consequence of the continual contact with the molecule. This underlines the importance of the use of licensed products administered at correct dosages and the need for alternative molecules to avoid the onset of drug resistance phenomena.
Collapse
Affiliation(s)
- Alessandro Guerrini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy
- Correspondence:
| | - Benedetto Morandi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Paola Roncada
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy
| | - Gianfranco Brambilla
- Istituto Superiore di Sanità, Dipartimento Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Reparto Malattie Trasmissibili con gli Alimenti, Viale Regina Elena, 299, 00161 Roma, Italy
| | - Filippo Maria Dini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy
| | - Roberta Galuppi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy
| |
Collapse
|
4
|
dos Santos GCM, Rosado LHG, Alves MCC, de Paula Lima I, Ferreira TP, Borges DA, de Oliveira PC, de Sousa Magalhães V, Scott FB, Cid YP. Fipronil Tablets: Development and Pharmacokinetic Profile in Beagle Dogs. AAPS PharmSciTech 2019; 21:9. [PMID: 31797083 DOI: 10.1208/s12249-019-1571-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022] Open
Abstract
Increased human-pet interactions have led to concerns related to the prevention and treatment of ectoparasite infestations. Fipronil (FIP) is a widely used ectoparasiticide in veterinary medicine available for topical administration; however, its use may cause damage to the owners and the environment. The aim of the study was to develop immediate-release tablets of FIP, as well as to determine its pharmacokinetic properties after oral administration in beagle dogs. The prepared FIP tablets were evaluated for pre-compression (angle of repose, speed flow, and Carr's index) and post-compression (weight variation, friability, thickness, hardness, disintegration time, and dissolution rate) parameters. Orally administered FIP at a dose of 2 mg/kg was rapidly absorbed with Cmáx of 3.13 ± 1.39 μg/mL at 1.83 ± 0.40 h post treatment (P.T.) and metabolized with 1.27 ± 1.04 μg/mL at 2.33 ± 0.82 h P.T. for fipronil sulfone (SULF) (the primary metabolite). The elimination of FIP and SULF occurred slowly and had maintained quantifiable plasma levels in the blood for up to 28 days P.T. The goal of the study is aligned with the concept of One Health, which aims to collaboratively achieve the best health for people, animals, and the environment. Therefore, the use of FIP tablets for the control of ectoparasites in dogs may be a safer alternative for owners and the environment.
Collapse
|