1
|
Ononiwu CP, Joshua PE, Amah CC, Asomadu RO, Okorigwe EM, Nnemolisa CS, Ezeorba TPC, Nwanelo VO, Iyidiegwu FC, Duru JO, Okeke PN, Adiele OB. Cleistopholis patens root bark extract exerts cardioprotective effect against doxorubicin-induced myocardial toxicity in rats. Lab Anim Res 2024; 40:39. [PMID: 39551811 PMCID: PMC11572060 DOI: 10.1186/s42826-024-00225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/17/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Myocardial Infarction still persists as the most prevalent cardiovascular disease and is a top cause of morbidity and mortality in doxorubicin treated cancer patients. This study evaluated the prophylactic effect of the ethanol root bark extract of Cleistopholis patens (ERBECP) against doxorubicin-induced myocardial infarction in wistar rats. Extraction, preliminary phytochemical analysis, acute toxicity study and body weight (b.w.) of ERBECP were achieved using standard methods. Phyto-constituents in ERBECP were indentified using Gas Chromatography-Mass Spectrometry (GC-MS) technique. Thirty (30) male albino Wistar rats of average b.w. ranging between 100 and 130 g were divided into six groups of five rats each. Groups I, II and III served as normal, doxorubicin (DOX) and standard (Vasoprin 150 mg/kg b.w) controls respectively, while groups IV, V and VI were orally pre-treated with the extract (200, 400 and 600 mg/kgb.w) for two weeks prior to intraperitoneal induction of cardiotoxicity with DOX (20 mg/kg bw) on day 14. RESULTS Disturbances in serum cardiac function bio-markers such as; Cardiac Troponin-I (CTnI), Creatine Kinase (CK), Lactate Dehydrogenase (LDH), Aspartate aminotransferase (AST), Alanine aminotransferase (ALT). Lipid profile markers such as; Total cholesterol (TC), Triacylglycerol (TAG), Low Density Lipoprotein (LDL), High Density Lipoprotein (HDL). Oxidative stress markers such as; Malondialdehyde (MDA), Superoxide Dismutase (SOD), Catalase (CAT), Glutathione (GSH) confirmed the induction of myocardial infarction. Histological assessment of heart tissues was performed to validate biochemical results. The GC-MS analysis of ERBECP identified a total of 69 compounds. Safety profile of the aqueous extract was safe for the animals up to the highest dose of 5000 mg/kg b.w. Pre-treatment of DOX group with ERBECP could significantly increase the b.w. compared to the DOX-treated group during the experimental period of 2 weeks. There were significant (p < 0.05) alterations in the levels of CTnI, CK, LDH, AST, ALT and lipid profile indices in the DOX control rats. Also, significant (p < 0.05) increase was observed in MDA and decrease in SOD, CAT and GSH in the DOX control rats. However, administration of the extract significantly (p < 0.05) normalized these alterations and reversed the architectural changes in the heart. The 69 compounds were screened against the target protein (CBR1); we identified seven hits based on the docking score and interactions with the active site residues. All the C. patens constituents had MW (g/mol) less than 500, HBA < 10 and HBD not more than 5. Apart, 9-Octadecenoic acid (Z)-, 2,3-dihydroxy propyl ester and Estra-1,3,5(10)-trien-17. beta. -ol, all the constituents had LD50 lower than 2000 mg/kg. CONCLUSIONS The findings reveals ERBECP demonstrated promising potential and can be exploited in the development novel cardiac therapeutic agents.
Collapse
Affiliation(s)
- Chidinma Pamela Ononiwu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Parker Elijah Joshua
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Christian Chijioke Amah
- Department of Biochemistry, Faculty of Natural and Applied Sciences, State University of Medical and Applied Sciences Igbo-Eno, Nsukka, Enugu State, Nigeria.
| | - Rita Onyekachukwu Asomadu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ekezie Matthew Okorigwe
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | | | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Molecular Biotechnology, School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | | - Favour Chinagorom Iyidiegwu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Justin Onuawuchi Duru
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Peace Nkiruka Okeke
- Department of Biotechnology, School of Medicine, 3900 University Blvd., Tyler, TX, 75799, USA
| | - Onyinyechi Becky Adiele
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
2
|
Mukta MM, Hossain MJ, Akter M, Banik B, Mithun MDMZ, Sarwar S, Arefin MS, Islam MR, Islam SN. Cardioprotection of Water Spinach ( Ipomoea aquatica), Wood Apple ( Limonia acidissima) and Linseed ( Linum usitatissimum L.) on Doxorubicin-Induced Cardiotoxicity and Oxidative Stress in Rat Model. Nutr Metab Insights 2023; 16:11786388231212116. [PMID: 38024869 PMCID: PMC10666662 DOI: 10.1177/11786388231212116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives The aim of this study was to investigate the pharmacological efficacy of 3 functional foods (Water spinach, Wood apple, and Linseed) against doxorubicin-induced cardiotoxicity and oxidative stress in rat models. Methods Twenty-five Wistar Albino rats (male and female) were equally classified into 5 groups. Except for the normal control (NC) group, the animals received 2.5 mg/kg doxorubicin (DOX) intra-peritoneal injection at 48 hours intervals to create a dose of 15 mg/kg overall for 14 days. Simply a standard diet was given to the NC and DOX groups. In the 3 treatment groups such as water spinach (DOX + WS), wood apple (DOX + WA), and linseed (DOX + LS), rats were given 14 gm/day/rat fried water spinach, mashed wood apple, roasted linseed, respectively mixed with regular rat diet at 1:1 ratio. Blood and heart samples were collected by sacrificing all the rats on the last of the experiment day (the 15th day). LDH (lactate dehydrogenase), CK-MB (creatine kinase myocardial band), MDA (malondialdehyde), and SOD (superoxide dismutase) were analyzed. Additionally, histopathological analysis was conducted for final observation. Results The functional foods were indicated to lower the serum cardiac biomarkers (LDH and CK-MB) as well as stress marker (MDA) significantly (P < .05) and improved heart function and oxidative stress. However, the change in serum SOD level was noted as statistically insignificant (P > .05). The biochemical outcomes of the food intervention groups were supported by the histological findings found in those groups. Conclusion Consuming the investigated foods containing antioxidant phytochemicals may combat cardiac toxicity and oxidative stress. Nonetheless, thorough investigations and clinical monitoring are required to understand these functional foods' mechanism of action and dose-response effects in treating cardiotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Maisha Majid Mukta
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Mousumi Akter
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Badhan Banik
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | | | - Sneha Sarwar
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Md. Saidul Arefin
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Md. Rabiul Islam
- School of Pharmacy, BRAC University, Mohakhali, Dhaka, Bangladesh
| | - Sheikh Nazrul Islam
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
3
|
Ain QU, Iqbal MO, Khan IA, Bano N, Naeem M, Jamaludin MI, Devaraj S. Phytochemical, antioxidant, antipyretic and anti-inflammatory activities of aqueous-methanolic leaf extract of Mangifera indica. Am J Transl Res 2023; 15:4533-4543. [PMID: 37560231 PMCID: PMC10408527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/14/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVE Plant-based natural antioxidants have a wide variety of biological activities with significant therapeutic value. Mangifera indica has been used traditionally to treat a variety of ailments in animals and human, but little is defined about its biological or pharmacological effects. Therefore, the objective of the present study was to evaluate phytochemical, antioxidant, antipyretic and anti-inflammatory activities of aqueous-methanolic leaf extract of M. indica. METHODS To investigate the possible impact of aqueous-methanolic leaf extract of M. indica on oxidative stress, inflammation, and pyrexia, we used a combined in vitro and in vivo series of experiments on laboratory animals. RESULTS Results revealed significant antioxidant potential in 2,2-diphenylpicrylhydrazyl (DPPH) and nitric oxide (NO) scavenging assay, while significant but dose dependent antipyretic potential was documented in typhoid-paratyphoid A and B (TAB) vaccine and prostaglandin E (PGE) induced pyrexia models. Significant anti-inflammatory effects were observed in both acute and chronic inflammatory models of arachidonic acid and formalin. Phytochemical screening and high-performance liquid chromatography (HPLC) analysis of M. Indica confirmed the presence of mangiferin, quercetin, and isoquercetin. These phytoconstituents likely play a role in the observed biological activities. Our results show that M. indica has antioxidant, anti-inflammatory, and antipyretic effects, lending credence to its traditional use and advocating for its utilization as a viable contender in treating oxidative stress-associated ailments. CONCLUSION It is concluded that Magnifera indica has various properties in the treatment of various diseases.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Ali-Ul-Murtaza, Department of Rehabilitation Sciences, Muhammad Institute of Medical and Allied SciencesMultan 60000, Punjab, Pakistan
- Department of Pathobiology, MNS University of AgricultureMultan 60000, Punjab, Pakistan
| | - Muhammad Omer Iqbal
- Key Laboratory of Glycoscience and Glycotechnology of Shandong ProvinceQingdao 266003, Shandong, China
- Key Laboratory of Marine Drugs, The Ministry of Education, School of Medicine and Pharmacy, Ocean University of ChinaQingdao 266003, Shandong, China
| | - Imran Ahmad Khan
- Department of Pharmacology and Physiology, MNS University of AgricultureMultan 60000, Punjab, Pakistan
| | - Naheed Bano
- Faculty of Veterinary & Animal Sciences, MNS University of AgricultureMultan 60000, Punjab, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal UniversityShijiazhuang 050024, Hebei, China
| | - Mohamad Ikhwan Jamaludin
- BioInspired Device and Tissue Engineering Research Group (BioInspira), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi MalaysiaJohor Bahru 81310, Johor, Malaysia
| | - Sutha Devaraj
- Faculty of Medicine, AIMST UniversityBedong 08100, Kedah, Malaysia
| |
Collapse
|
4
|
Abdelghffar EA, Obaid WA, Elgamal AM, Daoud R, Sobeh M, El Raey MA. Pea (Pisum sativum) peel extract attenuates DOX-induced oxidative myocardial injury. Biomed Pharmacother 2021; 143:112120. [PMID: 34649330 DOI: 10.1016/j.biopha.2021.112120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023] Open
Abstract
The goal of this work aimed to evaluate the protective effects of pea (Pisum sativum) peels extract versus doxorubicin-induced oxidative myocardial injury in male mice. The mice were divided into seven groups (n = 7): (I) control group; (II) P. sativum 250 group; (III) P. sativum 500 group; (IV) DOX (3 times alternately of 2.5 mg/kg/week, i.p. for a continuous two-week period) group; (V) Vit. E 100 + DOX group; (VI) P. sativum 250 + DOX group, and (VII) P. sativum 500 + DOX group). Twenty polyphenolic compounds, mainly flavonoid glycosides such as quercetin, kaempferol apigenin, and phenolics compounds were characterized by LC-MS/MS analysis in the examined extract. DOX administration elevated the activities of serum biomarkers of myocardial dysfunction (ALT, AST, ALP, LDH, troponin, CPK, and CK-MB), lipid profile, and proinflammatory cytokines. Also, it decreased cardiac antioxidants (GSH, SOD, GPX, CAT) and increased myocardial markers of oxidative stress (NO and MDA) and inflammatory marker (MPO). As well as it downregulated and upregulated the Bcl-2 (anti-apoptotic gene) and the Bax (pro-apoptotic gene) expressions, respectively. Pre-treatment of DOX-exposed mice with P. sativum or vitamin E (as a reference protective antioxidant) alleviated the changes dose-dependently via DOX-induced cardiotoxicity. These data show that P. sativum has a cardio-protective impact against DOX-induced cardiomyocyte damage in mice via boosting endogenous antioxidants, decreasing inflammation, and regulating BcL-2 and Bax apoptosis pathway, which might be related to the presence of flavonoid glycosides. P. sativum peels are a by-product that could be suggested for further screening as a possible new candidate for therapeutic use.
Collapse
Affiliation(s)
- Eman A Abdelghffar
- Biology Department, College of Science, Taibah University, Saudi Arabia; Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Wael A Obaid
- Biology Department, College of Science, Taibah University, Saudi Arabia
| | - Abdelbaset M Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Rachid Daoud
- African Genome Center, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Mansour Sobeh
- AgroBioSciences Program, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Mohamed A El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
5
|
Abu-Khudir R, Ibrahim WM, Shams ME, Salama AF. Trehalose alleviates doxorubicin-induced cardiotoxicity in female Swiss albino mice by suppression of oxidative stress and autophagy. J Biochem Mol Toxicol 2021; 35:e22859. [PMID: 34328254 DOI: 10.1002/jbt.22859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/07/2021] [Accepted: 07/14/2021] [Indexed: 11/08/2022]
Abstract
Clinically, the use of doxorubicin (DOX) is limited due to DOX-induced cardiotoxicity (DIC). The current study aimed to evaluate the cardioprotective effect of trehalose (TRE) against DIC in a female Swiss albino mouse model. Mice were divided into five experimental groups: Gp. I: saline control group (200 μl/mouse saline three times per week for 3 weeks day after day), Gp. II: DOX-treated group (2 mg/kg body weight three times per week for 3 weeks day after day), Gp. III: TRE group (200 μg/mouse three times per week for 3 weeks day after day), Gp. IV: DOX + TRE cotreatment group (animals were coadministered with DOX and TRE as in Gp. II and III, respectively), and Gp. V: DOX + TRE posttreatment group (animals were treated with DOX as in Gp. II followed by treatment with TRE as in Gp. III). DOX-treated mice showed significant elevation in cardiac injury biomarkers (lactate dehydrogenase, creatine kinase isoenzyme-MB, and cardiac troponin I), cardiac oxidative stress (OS) markers (malondialdehyde and myeloperoxidase), and cardiac levels of autophagy-related protein 5. Moreover, DOX significantly reduced the levels of total antioxidant capacity and activities of catalase and glutathione S-transferase. In contrast, TRE treatment of DOX-administered mice significantly improved almost all of the above-mentioned assessed parameters. Furthermore, histopathological changes of cardiac tissues observed in mice treated with TRE in combination with DOX were significantly improved as compared to DOX-treated animals. Taken together, the present study provides evidence that TRE has cardioprotective effects against DIC, which is likely mediated via suppression of OS and autophagy.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.,Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta, Egypt
| | - Wafaa M Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohammed E Shams
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta, Egypt
| | - Afrah F Salama
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Bhatt L, Amrutia J, Chakraborty M, Kamath J. Evaluation of cardioprotection and bio-efficacy enhancement of stevioside and diltiazem in rats. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00054-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cardiovascular diseases and resultant complications of cardio-therapeutic regimens are one of the leading causes of mortalities in developing countries. Diltiazem is a calcium channel blocker primarily used in treatment of supraventricular arrhythmias, systemic hypertension, and hypertrophic cardiomyopathy. Stevioside, the chief component of Stevia plant, is a natural sweetener that has significant therapeutic properties. Stevioside is a known bioenhancer that acts by synergizing pharmacological activities of other drugs. Present study was designed to evaluate cardioprotective activity of stevioside and possible bioenhancement upon co-administration with diltiazem. Standard cardiotoxicity models—isoproterenol-induced myocardial infarction and ischemia-reperfusion injury (IRI) through modified Langendorff setup was used to test this hypothesis. Rats were randomly divided into control groups (normal—physiological saline and toxic—isoproterenol, 150 mg/kg, s.c., and IRI induced in normal control animals) and treatment groups (diltiazem—17.5 mg/kg, p.o., stevioside—100 and 200 mg/kg, p.o. and combination groups). At the end of the treatment period, animals were sacrificed and biochemical, electrocardiographic, and histopathological changes were measured.
Results
Pre-treatment with stevioside prevented leakage of biomarkers and normalized serum and perfusate levels of CK-MB, CK-NAC, LDH, AST, and ALT enzymes. It displayed lipid-lowering effect on TC and TG levels dose dependently. STV also showed protective action on levels of tissue antioxidant enzymes (SOD and Catalase), electrocardiographic parameters (HR, RR, QRS, QT, PR), and heart tissue histopathology when compared to concurrent toxic control groups. Combination of stevioside (200 mg/kg) and diltiazem (17.5 mg/kg) exerted a more significant pharmacodynamic response, significantly restored biomarkers, antioxidants levels, and myocardial histology, and normalized electrocardiographic parameters.
Conclusion
Stevioside and diltiazem both displayed cardioprotective effect when given alone. Co-administration displayed improved restorative action on antioxidant status, biomarkers, electrocardiographic parameters, and histology.
Collapse
|
7
|
Cardioprotective Potential of Murraya koenigii (L.) Spreng. Leaf Extract against Doxorubicin-Induced Cardiotoxicity in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6023737. [PMID: 32308710 PMCID: PMC7142394 DOI: 10.1155/2020/6023737] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/11/2020] [Indexed: 02/08/2023]
Abstract
Dose-dependent cardiotoxicity of doxorubicin may lead to irreversible congestive heart failure. Although multiple mechanisms are involved, generation of free radicals is the most commonly postulated mechanism. Therefore, free radical scavengers are considered as potential therapeutic agents. As Murraya koenigii leaves are a rich source of flavonoids and phenols, they have the ability to scavenge free radicals effectively. Therefore, the objective of this study was to investigate the cardioprotective potential of Murraya leaf extract against doxorubicin-induced cardiotoxicity in rats. Rats were randomly divided into five groups with 10 animals in each group. Doxorubicin was administered intraperitonially at 18 mg/kg while lyophilized plant extract was administered orally at 2 g/kg. Dexrazoxane, at 180 mg/kg, was used as the positive control. Cardiac damage of doxorubicin control was evident with a significant increase (p < 0.05) in cardiac troponin I, NT-pro BNP, AST, and LDH compared to the normal control. Plant-treated group showed cardioprotective effect by significantly reducing (p < 0.05) all of the above parameters compared to doxorubicin control (p < 0.05). Increased oxidative stress in doxorubicin control was evident with a significant reduction in reduced glutathione, glutathione reductase, glutathione peroxidase, total antioxidant capacity, superoxide dismutase, and catalase activity and a significant increase in lipid peroxidation compared to the control. Interestingly, treatment with Murraya leaf extract showed a significant increase in all of the above antioxidant parameters and a significant reduction in lipid peroxidation by showing an antioxidant effect. A significant increase in myeloperoxidase activity confirmed the increased inflammatory activity in doxorubicin control group whereas plant-treated group showed a significant reduction (p < 0.05) which expressed the anti-inflammatory effect of Murraya leaf extract. Doxorubicin-treated group showed histological evidence of extensive damage to the myocardium while plant-treated group showed a preserved myocardium with lesser degree of damage. Pretreatment with Murraya leaf extract may replenish cardiomyocytes with antioxidants and promote the defense against doxorubicin-induced cardiotoxicity.
Collapse
|
8
|
Mohammed HS, Hosny EN, Khadrawy YA, Magdy M, Attia YS, Sayed OA, AbdElaal M. Protective effect of curcumin nanoparticles against cardiotoxicity induced by doxorubicin in rat. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165665. [PMID: 31918005 DOI: 10.1016/j.bbadis.2020.165665] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/20/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022]
Abstract
The present study designed to investigate the protective effect of curcumin nanoparticles (CUR-NPs) on the cardiotoxicity induced by doxorubicin. Rats were divided into four groups; control, rats treated daily with CUR-NPs (50 mg/kg) for 14 days, rats treated with an acute dose of doxorubicin (20 mg/kg) and rats treated daily with CUR-NPs for 14 days injected with doxorubicin on the 10th day. After electrocardiogram (ECG) recording from rats at different groups, rat decapitation was carried out and the heart of each rat was excised out to measure the oxidative stress parameters; lipid peroxidation (MDA), nitric oxide (NO) and reduced glutathione (GSH) and the activities of Na,K,ATPase and acetylcholinesterase (AchE). In addition, the levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) were determined in the cardiac tissues. Lactate dehydrogenase (LDH) activity was measured in the serum. The ECG recordings indicated that daily pretreatment with CUR- NPs has prevented the tachycardia (i.e. increase in heart rate) and ameliorated the changes in ST wave and QRS complex induced by doxorubicin. In addition, CUR-NPs prevented doxorubicin induced significant increase in MDA, NO, DA, AchE and LDH and doxorubicin induced significant decrease in GSH, NE, 5-HT and Na,K,ATPase. According to the present findings, it could be concluded that CUR-NPs have a protective effect against cardiotoxicity induced by doxorubicin. This may shed more light on the importance of CUR-NPs pretreatment before the application of doxorubicin therapy.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Eman N Hosny
- Medical Physiology Department, National Research Centre, Giza, Egypt.
| | - Yasser A Khadrawy
- Medical Physiology Department, National Research Centre, Giza, Egypt
| | - Merna Magdy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Yasmen S Attia
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Omnia A Sayed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mahmoud AbdElaal
- Physics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Gül SS, Aygün H. Cardioprotective effect of vitamin D and melatonin on doxorubicin-induced cardiotoxicity in rat model: an electrocardiographic, scintigraphic and biochemical study. ACTA ACUST UNITED AC 2018. [DOI: 10.18621/eurj.410029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|