1
|
Quattrone A, Zappia M, Quattrone A. Simple biomarkers to distinguish Parkinson's disease from its mimics in clinical practice: a comprehensive review and future directions. Front Neurol 2024; 15:1460576. [PMID: 39364423 PMCID: PMC11446779 DOI: 10.3389/fneur.2024.1460576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
In the last few years, a plethora of biomarkers have been proposed for the differentiation of Parkinson's disease (PD) from its mimics. Most of them consist of complex measures, often based on expensive technology, not easily employed outside research centers. MRI measures have been widely used to differentiate between PD and other parkinsonism. However, these measurements were often performed manually on small brain areas in small patient cohorts with intra- and inter-rater variability. The aim of the current review is to provide a comprehensive and updated overview of the literature on biomarkers commonly used to differentiate PD from its mimics (including parkinsonism and tremor syndromes), focusing on parameters derived by simple qualitative or quantitative measurements that can be used in routine practice. Several electrophysiological, sonographic and MRI biomarkers have shown promising results, including the blink-reflex recovery cycle, tremor analysis, sonographic or MRI assessment of substantia nigra, and several qualitative MRI signs or simple linear measures to be directly performed on MR images. The most significant issue is that most studies have been conducted on small patient cohorts from a single center, with limited reproducibility of the findings. Future studies should be carried out on larger international cohorts of patients to ensure generalizability. Moreover, research on simple biomarkers should seek measurements to differentiate patients with different diseases but similar clinical phenotypes, distinguish subtypes of the same disease, assess disease progression, and correlate biomarkers with pathological data. An even more important goal would be to predict the disease in the preclinical phase.
Collapse
Affiliation(s)
- Andrea Quattrone
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mario Zappia
- Department of Medical, Surgical Sciences and Advanced Technologies, GF Ingrassia, University of Catania, Catania, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
2
|
Prasuhn J, Strautz R, Lemmer F, Dreischmeier S, Kasten M, Hanssen H, Heldmann M, Brüggemann N. Neuroimaging Correlates of Substantia Nigra Hyperechogenicity in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1191-1200. [PMID: 35180131 DOI: 10.3233/jpd-213000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Degeneration of dopaminergic neurons within the brainstem substantia nigra (SN) is both a pathological hallmark of Parkinson's disease (PD) and a major contributor to symptom expression. Therefore, non-invasive evaluation of the SN is critical for diagnosis and evaluation of disease progression. Hyperechogenicity (HE+) on midbrain transcranial sonography (TCS) supports the clinically established diagnosis of PD. Further, postmortem studies suggest involvement of neuromelanin (NM) loss and iron deposition in nigral neurodegeneration and HE+ emergence. However, the associations between HE+ and signs of nigral NM loss and iron deposition revealed by magnetic resonance imaging (MRI) have not been examined. OBJECTIVE To elucidate the magnetic resonance- (MR-) morphological representation of the HE+ by NM-weighted (NMI) and susceptibility-weighted MRI (SWI). METHODS Thirty-four PD patients and 29 healthy controls (HCs) received TCS followed by NMI and SWI. From MR images, two independent raters manually identified the SN, placed seeds in non-SN midbrain areas, and performed semi-automated SN segmentation with different thresholds based on seed mean values and standard deviations. Masks of the SN were then used to extract mean area, mean signal intensity, maximal signal area, maximum signal (for NMI), and minimum signal (for SWI). RESULTS There were no significant differences in NMI- and SWI-based parameters between patients and HCs, and no significant associations between HE+ extent and NMI- or SWI-based parameters. CONCLUSION HE+ on TCS appears unrelated to PD pathology revealed by NMI and SWI. Thus, TCS and MRI parameters should be considered complementary, and the pathophysiological correlates of the HE+ require further study.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Robert Strautz
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Felicitas Lemmer
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Shalida Dreischmeier
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- Department of Psychiatry, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Henrike Hanssen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Transcranial sonography in differential diagnosis of Parkinson disease and other movement disorders. Chin Med J (Engl) 2021; 134:1726-1731. [PMID: 34238849 PMCID: PMC8318650 DOI: 10.1097/cm9.0000000000001503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Reports evaluating the efficacy of transcranial sonography (TCS) for the differential diagnosis of Parkinson disease (PD) and other movement disorders in China are scarce. Therefore, this study aimed to assess the application of TCS for the differential diagnosis of PD, multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and essential tremor (ET) in Chinese individuals. Methods: From 2017 to 2019, 500 inpatients treated at the Department of Dyskinesia, Beijing Tiantan Hospital, Capital Medical University underwent routine transcranial ultrasound examination. The cross-sections at the midbrain and thalamus levels were scanned, and the incidence rates of substantia nigra (SN) positivity and the incidence rates of lenticular hyperechoic area were recorded. The echo of the SN was manually measured. Results: Of the 500 patients, 125 were excluded due to poor signal in temporal window sound transmission. Among the 375 individuals with good temporal window sound transmission, 200 were diagnosed with PD, 90 with ET, 50 with MSA, and 35 with PSP. The incidence rates of SN positivity differed significantly among the four patient groups (χ2 = 121.061, P < 0.001). Between-group comparisons were performed, and the PD group showed a higher SN positivity rate than the ET (χ2 = 94.898, P < 0.017), MSA (χ2 = 57.619, P < 0.017), and PSP (χ2 = 37.687, P < 0.017) groups. SN positivity showed a good diagnostic value for differentiating PD from the other three movement diseases, collectively or individually. The incidences of lenticular hyperechoic area significantly differed among the four patient groups (χ2 = 38.904, P < 0.001). Next, between-group comparisons were performed. The lenticular hyperechoic area was higher in the PD group than in the ET (χ2 = 6.714, P < 0.017) and MSA (χ2 = 18.680, P < 0.017) groups but lower than that in the PSP group (χ2 = 0.679, P > 0.017). Conclusion: SN positivity could effectively differentiate PD from ET, PSP, and MSA in a Chinese population.
Collapse
|
4
|
Transcranial Sonography of the Substantia Nigra for the Differential Diagnosis of Parkinson's Disease and Other Movement Disorders: A Meta-Analysis. PARKINSON'S DISEASE 2021; 2021:8891874. [PMID: 34007439 PMCID: PMC8110416 DOI: 10.1155/2021/8891874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/17/2020] [Accepted: 04/24/2021] [Indexed: 12/12/2022]
Abstract
This meta-analysis aimed to evaluate the accuracy of hyperechogenicity of the substantia nigra (SN) for the differential diagnosis of Parkinson's disease (PD) and other movement disorders. We systematically searched the PubMed, EMBASE, Cochrane Library, and China National Knowledge Infrastructure databases for relevant studies published between January 2015 and May 2020. Eligible articles comparing the echogenicity of the SN between patients with PD and those with other movement disorders were screened, and two independent reviewers extracted data according to the inclusion and exclusion criteria. Statistical analyses were conducted using STATA (version 15.0) (Stata Corporation, College Station, TX, USA), Review Manager 5.3 (Cochrane Collaboration), and Meta-DiSc1.4 to assess the pooled diagnostic value of transcranial sonography (TCS) for PD. Nine studies with a total of 1046 participants, including 669 patients with PD, were included in the final meta-analysis. Our meta-analysis demonstrated that hyperechogenicity of the SN had a pooled sensitivity and specificity of 0.85 (0.82, 0.87) and 0.71 (0.66, 0.75), respectively, for distinguishing idiopathic Parkinson's disease from other movement disorders. Furthermore, the area under the curve of the summary receiver operating characteristic was 0.94. Transcranial sonography of the SN is a valuable tool for the differential diagnosis of PD and other movement disorders.
Collapse
|
5
|
Alster P, Madetko N, Koziorowski D, Friedman A. Progressive Supranuclear Palsy-Parkinsonism Predominant (PSP-P)-A Clinical Challenge at the Boundaries of PSP and Parkinson's Disease (PD). Front Neurol 2020; 11:180. [PMID: 32218768 PMCID: PMC7078665 DOI: 10.3389/fneur.2020.00180] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Progressive Supranuclear Palsy (PSP) and Parkinson's Disease (PD), especially in their early stages, show overlapping clinical manifestations. The criteria for the diagnosis of PSP, released in 2017, indicate four basic features of the disease—postural instability (P), akinesia (A), oculomotor dysfunction (O) and cognitive and lingual disorders (C), which clarify the interpretation of the disease. There is growing interest in the second most common variant of PSP—parkinsonism predominant PSP-P. It is observed in up to 35% of cases. The diagnosis of PSP-P requires the presence of akinetic-rigid predominantly axial and levodopa resistant parkinsonism (A2) or parkinsonism with tremor and/or asymmetric and/or levodopa responsive (A3). The development of supplementary methods of examination added new insights to observations related to PSP-P. Among the methods recently analyzed are freezing of swallowing and speech breathing assessment, transcranial sonography, and various methods using magnetic resonance imaging, such as pons/midbrain area ratio and magnetic resonance parkinsonism index (MRPI), fractional anisotropy or mean diffusivity. The proper examination of overlapping parkinsonian syndromes, regardless of the development of the method of examination, remains an incompletely explored issue. The aim of this review is to elucidate which factors may be interpreted as influential in the differential diagnosis of PSP-P, PSP-RS and postural instability and gait difficulty (PIGD) subtype of Parkinson's disease (PD).
Collapse
Affiliation(s)
- Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Madetko
- Department of Neurology, Wrocław Medical University, Wrocław, Poland
| | | | - Andrzej Friedman
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Richter D, Katsanos AH, Schroeder C, Tsivgoulis G, Paraskevas GP, Müller T, Alexandrov AV, Gold R, Tönges L, Krogias C. Lentiform Nucleus Hyperechogenicity in Parkinsonian Syndromes: A Systematic Review and Meta-Analysis with Consideration of Molecular Pathology. Cells 2019; 9:cells9010002. [PMID: 31861253 PMCID: PMC7016776 DOI: 10.3390/cells9010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/03/2019] [Accepted: 12/14/2019] [Indexed: 12/19/2022] Open
Abstract
The hyperechogenicity of the substania nigra (SN) has been established as a valid finding in patients with Parkinson’s disease (PD), probably caused by an increased tissue iron concentration in the SN. The application of transcranial sonography (TCS) has been investigated for further echogenic basal ganglia alterations in patients with extrapyramidal movement disorders. Compared to PD, a hyperechogenic nucleus lentiformis (LN) has been reported to appear more frequently in atypical parkinsonian syndromes (aPS) such as the parkinsonian phenotype of multiple system atrophy (MSA-P) or the progressive supranuclear palsy (PSP). As the evidence providing study sizes are small, we conduct the first meta-analysis of the prevalence of LN hyperechogenicity in PD and aPS. We search for available studies providing prevalence of LN hyperechogenicity in patients with PD and aPS (MSA-P and PSP) detected by TCS in MEDLINE and SCOPUS databases. We calculate the prevalence rates of LN hyperechogenicity detection in patients with clinical diagnosis of PD vs. aPS under the random-effects model. We include a total of 1330 patients, 1091 PD and 239 aPS (MSA-P and PSP). We find a significantly higher prevalence of LN hyperechogenicity in aPS (76%, 95% CI: 0.62-0.88) compared to PD (16%, 95% CI: 0.10-0.23). After proving a higher prevalence of LN hyperechogenicity in aPS compared to PD, its histopathological cause needs to be investigated. Furthermore, its full diagnostic accuracy and the qualification to serve as a risk factor for MSA-P and PSP should also be questioned in future studies.
Collapse
Affiliation(s)
- Daniel Richter
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (D.R.); (A.H.K.); (C.S.); (R.G.); (L.T.)
| | - Aristeidis H. Katsanos
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (D.R.); (A.H.K.); (C.S.); (R.G.); (L.T.)
- 2nd Department of Neurology, National and Kapodistrian University of Athens, 15344 Athens, Greece;
| | - Christoph Schroeder
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (D.R.); (A.H.K.); (C.S.); (R.G.); (L.T.)
| | - Georgios Tsivgoulis
- 2nd Department of Neurology, National and Kapodistrian University of Athens, 15344 Athens, Greece;
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - George P. Paraskevas
- 1st Department of Neurology, Cognitive and Movement Disorders Clinic and Unit of Neurochemistry and Biological Markers, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece;
| | - Thomas Müller
- Department of Neurology, Alexianer St. Joseph Berlin-Weißensee, 13088 Berlin, Germany;
| | - Andrei V. Alexandrov
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (D.R.); (A.H.K.); (C.S.); (R.G.); (L.T.)
- Neurodegeneration Research, Protein Research Unit Ruhr (PURE), Ruhr University Bochum, 44791 Bochum, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (D.R.); (A.H.K.); (C.S.); (R.G.); (L.T.)
- Neurodegeneration Research, Protein Research Unit Ruhr (PURE), Ruhr University Bochum, 44791 Bochum, Germany
| | - Christos Krogias
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (D.R.); (A.H.K.); (C.S.); (R.G.); (L.T.)
- Correspondence: ; Tel.: +49-234-509-6410; Fax: +49-234-509-2414
| |
Collapse
|
7
|
Tao A, Chen G, Deng Y, Xu R. Accuracy of Transcranial Sonography of the Substantia Nigra for Detection of Parkinson's Disease: A Systematic Review and Meta-analysis. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:628-641. [PMID: 30612821 DOI: 10.1016/j.ultrasmedbio.2018.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/31/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
A systematic review and meta-analysis were conducted to evaluate the diagnostic accuracy of substantia nigra hyper-echogenicity by transcranial sonography (TCS) for the diagnosis of Parkinson's disease (PD). PubMed, Embase and the Cochrane Library were electronically searched from inception to June 2018 for all relevant studies. The methodological quality of each study was evaluated by two independent reviewers, who used the Quality Assessment of Diagnostic Accuracy Studies 2 tool. Articles reporting information sufficient to calculate the sensitivity and specificity of TCS to diagnose PD were included. Statistical analysis included data pooling, heterogeneity testing, sensitivity analyses and forest meta-regression. Thirty-nine studies (3123 participants with PD) were analyzed. The pooled sensitivity and specificity of TCS were 0.84 (95% confidence interval: 0.81-0.87) and 0.85 (0.80-0.88), respectively, for differentiating PD from normal controls or participants with other parkinsonian syndromes. In the secondary outcome, PD participants exhibited a significant increase in substantia nigra areas than either normal controls (0.14 [0.12-0.16], p < 0.0001) or participants with other parkinsonian syndromes (0.11 [0.08-0.13], p < 0.0001). This meta-analysis revealed the high diagnostic performance of TCS in differentiating patients with PD from both normal controls and participants with other parkinsonian syndromes.
Collapse
Affiliation(s)
- Anyu Tao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangzhi Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youbin Deng
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renfan Xu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|