1
|
Tsuji T, Tsuboi K, Yokota S, Tagawa S, Kondo T. Characterization of an Amphiphilic Janus-Type Surface in the Cellulose Nanofibril Prepared by Aqueous Counter Collision. Biomacromolecules 2021; 22:620-628. [PMID: 33415976 DOI: 10.1021/acs.biomac.0c01464] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellulose nanofibrils, which attract extensive attention as a bio-based, sustainable, high-performance nanofibril, are believed to be predominantly hydrophilic. This study aimed to prove the presence of an amphiphilic "Janus-type fiber surface" in water with hydrophobic and hydrophilic faces in a cellulose nanofibril (ACC-CNF) that was prepared by the aqueous counter collision method. We clarified the surface characteristics of the ACC-CNF by confocal laser scanning microscopy with a carbohydrate-binding module and congo red probes for the hydrophobic planes on the cellulose fiber surfaces and calcofluor white as hydrophilic plane probes. The results indicated the presence of both characteristic planes on a single ACC-CNF surface, which verifies an amphiphilic Janus-type structure. Both hydrophobic probes adsorbed onto ACC-CNFs for the quantitative evaluation of the degree of ACC-CNF surface hydrophobicity by Langmuir's adsorption theory based on the optimal maximum adsorption amounts for various starting raw material types.
Collapse
Affiliation(s)
- Tsubasa Tsuji
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Chuetsu Pulp & Paper Co., Ltd., 282, Yonejima, Takaoka, Toyama 933-8533, Japan
| | - Kunio Tsuboi
- Chuetsu Pulp & Paper Co., Ltd., 282, Yonejima, Takaoka, Toyama 933-8533, Japan
| | - Shingo Yokota
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Satomi Tagawa
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tetsuo Kondo
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Ichikawa S, Yoshida M, Karita S, Kondo M, Goto M. Carbohydrate-binding modules influence substrate specificity of an endoglucanase from Clostridium thermocellum. Biosci Biotechnol Biochem 2016. [DOI: 10.1080/09168451.2015.1069696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Most cellulases contain carbohydrate-binding modules (CBMs) that largely contribute to their activity for insoluble substrates. Clostridium thermocellum Cel5E is an endoglucanase having xylanolytic activity. The Cel5E originally has a family 11 CBM preferentially binding to β-1,4- and β-1,3-1,4-mixed linkage glucans. In this study, we replaced the CBM with a different type of CBM, either a family 3 microcrystalline cellulose-directed CBM from Clostridium josui scaffoldin, or a family 6 xylan-directed CBM from Clostridium stercorarium xylanase 11A. Chimeric endoglucanases showed enhanced activity that was affected by CBM binding specificity. These chimeric enzymes could efficiently degrade milled lignocellulosic materials, such as corn hulls, because of heterologous components in the plant cell wall, indicating that diverse CBMs play roles in degradation of lignocellulosic materials.
Collapse
Affiliation(s)
- Shunsuke Ichikawa
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - Mitsuki Yoshida
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - Shuichi Karita
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Makoto Kondo
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Masakazu Goto
- Graduate School of Bioresources, Mie University, Tsu, Japan
| |
Collapse
|
3
|
Nishijima H, Nozaki K, Mizuno M, Arai T, Amano Y. Extra tyrosine in the carbohydrate-binding module of Irpex lacteus Xyn10B enhances its cellulose-binding ability. Biosci Biotechnol Biochem 2015; 79:738-46. [PMID: 25560084 DOI: 10.1080/09168451.2014.996203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The xylanase (Xyn10B) that strongly adsorbs on microcrystalline cellulose was isolated from Driselase. The Xyn10B contains a Carbohydrate-binding module family 1 (CBM1) (IrpCBMXyn10B) at N-terminus. The canonical essential aromatic residues required for cellulose binding were conserved in IrpCBMXyn10B; however, its adsorption ability was markedly higher than that typically observed for the CBM1 of an endoglucanase from Trametes hirsuta (ThCBMEG1). An analysis of the CBM-GFP fusion proteins revealed that the binding capacity to cellulose (7.8 μmol/g) and distribution coefficient (2.0 L/μmol) of IrpCBMXyn10B-GFP were twofold higher than those of ThCBMEG1-GFP (3.4 μmol/g and 1.2 L/μmol, respectively), used as a reference structure. Besides the canonical aromatic residues (W24-Y50-Y51) of typical CBM1-containing proteins, IrpCBMXyn10B had an additional aromatic residue (Y52). The mutation of Y52 to Ser (IrpCBMY52S-GFP) reduced these adsorption parameters to 4.4 μmol/g and 1.5 L/μmol, which were similar to those of ThCBMEG1-GFP. These results indicate that Y52 plays a crucial role in strong cellulose binding.
Collapse
Affiliation(s)
- Hiroto Nishijima
- a Department of Bioscience & Textile Technology, Interdisciplinary Graduate School of Science and Technology , Shinshu University , Nagano , Japan
| | | | | | | | | |
Collapse
|
4
|
Mizuno M, Kachi S, Togawa E, Hayashi N, Nozaki K, Itoh T, Amano Y. Structure of Regenerated Celluloses Treated with Ionic Liquids and Comparison of their Enzymatic Digestibility by Purified Cellulase Components. Aust J Chem 2012. [DOI: 10.1071/ch12342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, regenerated celluloses were prepared from microcrystalline cellulose (MCC) by treatment with three ionic liquids (ILs) having 1-ethyl-3-methylimidazolium (Emim) as the cation, and the IL N-(2-methoxyethyl)-N,N-diethyl-N-methylammonium alanine ([N221ME][Ala]), where the amino acid moiety is the anion. The crystal form of cellulose was transformed from cellulose I to cellulose II by dissolution with an IL and regeneration with anti-solvent. However, the crystallinity of the regenerated cellulose was different; the disordered chain region was increased in the order of [N221ME][Ala] < [Emim][OAc] < [Emim][DEP] < [Emim][Cl]. The monocomponent cellulase, especially endoglucanase, showed high hydrolyzing activity for regenerated cellulose compared with untreated cellulose. Furthermore, the degree of increase of hydrolyzing activity was almost coincident with the order of crystallinity. For the effective hydrolysis of cellulose treated with an IL, it is necessary to prepare the cellulase mixture containing an adequate ratio of each cellulase component according to crystal allomorph and the crystallinity of regenerated cellulose.
Collapse
|