1
|
Yang Y, Liu L, Hu N, Huo H, Yang X, Wang F. Analysis of risk factors for depression and anxiety in women with polycystic ovary syndrome. Front Glob Womens Health 2025; 6:1520641. [PMID: 40098730 PMCID: PMC11911363 DOI: 10.3389/fgwh.2025.1520641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is one of the most common reproductive endocrine disorders among women of reproductive age, often accompanied by a series of symptoms such as hirsutism, hair loss, menstrual disorders and obesity, resulting in an increasing risk of depression and anxiety in such patients. Methods A total of 413 patients in the Reproductive Medicine Center of the Second Hospital of Lanzhou University from June 2021 to June 2023 were enrolled. We collected sociodemographic information and lifestyle-related factors using a structured questionnaire. Patient Health Questionnaire (PHQ-9) and Generalized Anxiety Disorder Scale (GAD-7) were used to evaluate the psychological status of the subjects. Sleep-related variables were assessed using the Pittsburgh Sleep Quality Index (PSQI), and metabolic measures were collected from patients' medical records. Results Compared with the control group, PCOS patients were younger, the average age was (27.39 ± 3.48) years old, and the BMI value was higher, the difference was statistically significant (p < 0.05). The proportions of depression and anxiety in PCOS patients were 47.7% and 39.9%, respectively. In PCOS patients with depressive anxiety symptoms, the proportions of mild, moderate, moderately severe and severe depression were 31.6%, 12.4%, 1.6% and 2.1%, respectively. The proportions of mild, moderate, moderately severe and severe anxiety were 30.6%, 6.2%, 1.0% and 2.1%, respectively. Depression was significantly associated with serum free triiodothyronine (FT3) OR (95% CI) = 3.33 (1.30-8.55), sleep duration 4.99 (1.45-17.23) and daytime dysfunction 8.24 (3.53-19.22). Anxiety was significantly associated with daytime dysfunction OR (95% CI) = 3.45 (1.78-6.70). No association was found between mental health and other metabolic characteristics in PCOS patients (p > 0.05). Conclusion According to the results of the current study, a high proportion of women with PCOS have mental health disorders, and there is a significant correlation between mental health disorders and sleep conditions.
Collapse
Affiliation(s)
- Yanting Yang
- Department of Obstetrics and Gynecology, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Lin Liu
- Department of Obstetrics and Gynecology, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ning Hu
- Department of Obstetrics and Gynecology, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Huyan Huo
- Department of Obstetrics and Gynecology, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xin Yang
- Department of Reproductive Medicine, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Fang Wang
- Department of Reproductive Medicine, Second Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Saad MA, Rastanawi AA, El-Sahar AE, A Z El-Bahy A. Ascorbic acid Mitigates behavioural disturbances associated with letrozole-induced PCOS via switching-off JAK2/STAT5 and JAK2/ERK1/2 pathways in rat hippocampus. Steroids 2025; 213:109528. [PMID: 39528020 DOI: 10.1016/j.steroids.2024.109528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is an endocrine disorder with the highest prevalence among other disorders in sexually-active women. It is associated with broad-spectrum hormonal and metabolic disturbances with behavioural difficulties. Experimentally, letrozole administration causes similar findings. Ascorbic acid is powerful anti-oxidant; and its cellular levels decrease with "hyperglycemic and poor anti-oxidative" status, which is, a main hallmark of PCOS. Thus, ascorbic acid administration may prevent the induction of PCOS and its consequences. BASIC PROCEDURES Forty female rats were divided into four groups (n = 10 in each): normal control (CTRL), ascorbic acid (ASC), letrozole (LTZ), and ascorbic acid + letrozole (ASC + LTZ) group. Behavioural tests (Y-maze spontaneous alteration, tail suspension test, forced swimming test) were performed. In serum, hormones (testosterone, estradiol, progesterone), glycemia (blood glucose, insulin and HOMA-IR) and oxidative stress (SOD activity, GSH) markers were measured. In hippocampus, inflammation and apoptosis indicators (p-JAK2, p-STAT5, p-ERK1/2, NF-κB, BAX, Bcl2, BAX/Bcl2 ratio) and neurotransmitters (DA, 5-HT, NE, BDNF) were determined. Lastly, ovary histopathological investigation was conducted to confirm PCOS induction. PRINCIPAL RESULTS Letrozole induced PCOS with subsequent disturbances. Testosterone levels were augmented while estradiol and progesterone were declined. Fasting blood glucose, insulin, HOMA-IR and oxidative stress markers were elevated. The expression of p-JAK2, p-STAT5, p-ERK1/2, BAX and the levels of NF-κB were increased, but Bcl2 expression, monoamines and BDNF levels were lowered. Importantly, ASC restored the last mentioned parameters markedly. MAJOR CONCLUSIONS Ascorbic acid mitigated the behavioural difficulties of PCOS possibly by switching-off JAK2/STAT5 and JAK2/ERK1/2 pathways in hippocampus along with its neurotransmission-improving, hormonal-normalizing, anti-hyperglycemic and anti-oxidative effects.
Collapse
Affiliation(s)
- Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates.
| | - Alyasaa A Rastanawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Wataniya Private University, Hama, Syria.
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Toxicology, School of Pharmacy, New Giza University, Egypt.
| | - Alshaymaa A Z El-Bahy
- Department of Pharmacology and Toxicology, School of Pharmaceutical Science, University of Hertfordshire (LMS)-Hosted by Global Academic Foundation (UH-GAF), Cairo, Egypt.
| |
Collapse
|
3
|
Korkmaz F, Sims S, Sen F, Sultana F, Laurencin V, Cullen L, Pallapati A, Liu A, Chen R, Rojekar S, Pevnev G, Cheliadinova U, Vasilyeva D, Burganova G, Macdonald A, Saxena M, Goosens K, Rosen CJ, Barak O, Lizneva D, Gumerova A, Ye K, Ryu V, Yuen T, Frolinger T, Zaidi M. Gene-dose-dependent reduction of Fshr expression improves spatial memory deficits in Alzheimer's mice. Mol Psychiatry 2024:10.1038/s41380-024-02824-x. [PMID: 39548323 DOI: 10.1038/s41380-024-02824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
High post-menopausal levels of the pituitary gonadotropin follicle-stimulating hormone (FSH) are strongly associated with the onset of Alzheimer's disease (AD). We have shown recently that FSH directly activates the hippocampal FSH receptors (FSHRs) to drive AD-like pathology and memory loss in mice. To unequivocally establish a role for FSH in memory loss, we depleted the Fshr on a 3xTg background and utilized Morris Water Maze to study deficits in spatial memory. 3xTg;Fshr+/+ mice displayed impaired spatial memory at 5 months of age. The loss of memory acquisition and retrieval were both rescued in 3xTg;Fshr-/- mice and, to a lesser extent, in 3xTg;Fshr+/- mice-documenting clear gene-dose-dependent prevention of spatial memory loss. Furthermore, at 5 and 8 months, sham-operated 3xTg;Fshr-/- mice showed better memory performance during the learning and/or retrieval phases, further suggesting that Fshr deletion prevents age-related progression of memory deficits. This prevention was not seen when mice were ovariectomized, except in the 8-month-old 3xTg;Fshr-/- mice. There was also a gene-dose-dependent reduction mainly in the amyloid β40 isoform in whole brain extracts. Finally, serum FSH levels <8 ng/mL in 16-month-old APP/PS1 mice were associated with better retrieval of spatial memory. Collectively, the data provide compelling genetic evidence for a protective effect of inhibiting FSH signaling on the progression of spatial memory deficits in mice and lay a firm foundation for the use of an FSH-blocking agent for the early prevention of memory loss in post-menopausal women.
Collapse
Affiliation(s)
- Funda Korkmaz
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven Sims
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fazilet Sen
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farhath Sultana
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victoria Laurencin
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liam Cullen
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anusha Pallapati
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Avi Liu
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald Chen
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satish Rojekar
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgii Pevnev
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Uliana Cheliadinova
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darya Vasilyeva
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guzel Burganova
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne Macdonald
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mansi Saxena
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ki Goosens
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Orly Barak
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daria Lizneva
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anisa Gumerova
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, University of Chinese Academy of Science, Shenzhen, Guangdong, China
| | - Vitaly Ryu
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tony Yuen
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Tal Frolinger
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Mone Zaidi
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Chelegahi AM, Ebrahimi SO, Reiisi S, Nezamnia M. A glance into the roles of microRNAs (exosomal and non-exosomal) in polycystic ovary syndrome. Obstet Gynecol Sci 2024; 67:30-48. [PMID: 38050353 DOI: 10.5468/ogs.23193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/02/2023] [Indexed: 12/06/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a common endocrine disorder in women of reproductive age. The clinical symptoms include hyperandrogenism, chronic anovulation, and multiple ovarian cysts. PCOS is strongly associated with obesity and insulin resistance. MicroRNAs (miRNAs) are a group of short non-coding RNAs that play a role in the post-transcriptional regulation of gene expression and translational inhibition. They play a vital role in the regulation of multiple metabolic and hormonal processes as well as in oocyte maturation and folliculogenesis in the female reproductive system. miRNAs can be used as diagnostic biomarkers or therapeutic targets because of their stability. The encapsulation of miRNAs in extracellular vesicles or exosomes contributes to their stability. Exosomes are constantly secreted by many cells and size of about 30 to 150 nm. Enveloping miRNAs exosomes can release them for cellular communication. The induced transfer of miRNAs by exosomes is a novel process of genetic exchange between cells. Many studies have shown that along with non-exosomal miRNAs, different types of exosomal miRNAs derived from the serum and follicular fluid can play an essential role in PCOS pathogenesis. These miRNAs are involved in follicular development and various functions in granulosa cells, apoptosis, cell proliferation, and follicular atresia. The present study aimed to comprehensively review the evidence on miRNAs and their affected pathways under both non-exosomal and exosomal circumstances, primarily focusing on the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Afsane Masoudi Chelegahi
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|