1
|
Qiao Y, Xiong M, Zhang YJ, Tsappidi S, Kan P, Weiss CR, Hui F, Chen SR. Current and future directions in interventional neuro-oncology-are we there yet? J Neurointerv Surg 2024:jnis-2024-021540. [PMID: 38637150 DOI: 10.1136/jnis-2024-021540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Advancements in technology and technical expertise increasingly enable neurointerventionalists to deliver safer and more effective endovascular treatments to cancers of the brain, spine, head, and neck. In addition to established neuro-oncological interventions such as pre-surgical tumor embolization and percutaneous ablation, newer modalities focused on direct arterial infusion of chemotherapy, radioisotopes, and radiosensitizers continue to gain traction as complementary treatment options, while stem cell-mediated delivery of theranostic nanoparticles and oncolytic virus are being explored for even greater specificity in targeting cancers across the blood-brain barrier. This article aims to provide an overview of the current state of the art and future directions for the field of interventional neuro-oncology, as well as opportunities and challenges presented by this emerging treatment modality.
Collapse
Affiliation(s)
- Yang Qiao
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Maggie Xiong
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yi Jonathan Zhang
- Department of Neurointerventional Surgery, The Queen's Health Systems, Honolulu, Hawaii, USA
| | - Samuel Tsappidi
- Department of Neurointerventional Surgery, The Queen's Health Systems, Honolulu, Hawaii, USA
| | - Peter Kan
- Neurosurgery, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Clifford R Weiss
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Ferdinand Hui
- Department of Neurointerventional Surgery, The Queen's Health Systems, Honolulu, Hawaii, USA
| | - Stephen R Chen
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Kan P, Srinivasan VM, Gumin J, Garcia R, Chen SR, Johnson JN, Collins DE, Chen MM, Ledbetter D, Huse J, Evan Luna ZA, Robledo A, Vasandani V, Rao A, Singh SK, Shpall EJ, Fueyo J, Gomez-Manzano C, Lang FF. Development of a rabbit human glioblastoma model for testing of endovascular selective intra-arterial infusion (ESIA) of novel stem cell-based therapeutics. Neuro Oncol 2024; 26:127-136. [PMID: 37603323 PMCID: PMC10768973 DOI: 10.1093/neuonc/noad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Endovascular selective intra-arterial (ESIA) infusion of cellular oncotherapeutics is a rapidly evolving strategy for treating glioblastoma. Evaluation of ESIA infusion requires a unique animal model. Our goal was to create a rabbit human GBM model to test IA infusions of cellular therapies and to test its usefulness by employing clinical-grade microcatheters and infusion methods to deliver mesenchymal stem cells loaded with an oncolytic adenovirus, Delta-24-RGD (MSC-D24). METHODS Rabbits were immunosuppressed with mycophenolate mofetil, dexamethasone, and tacrolimus. They underwent stereotactic xenoimplantation of human GBM cell lines (U87, MDA-GSC-17, and MDA-GSC-8-11) into the right frontal lobe. Tumor formation was confirmed on magnetic resonance imaging, histologic, and immunohistochemistry analysis. Selective microcatheter infusion of MSC-D24 was performed via the ipsilateral internal carotid artery to assess model utility and the efficacy and safety of this approach. RESULTS Twenty-five rabbits were implanted (18 with U87, 2 MDA-GSC-17, and 5 MDA-GSC-8-11). Tumors formed in 68% of rabbits (77.8% for U87, 50.0% for MDA-GSC-17, and 40.0% for MDA-GSC-8-11). On MRI, the tumors were hyperintense on T2-weighted image with variable enhancement (evidence of blood brain barrier breakdown). Histologically, tumors showed phenotypic traits of human GBM including varying levels of vascularity. ESIA infusion into the distal internal carotid artery of 2 ml of MSCs-D24 (107 cells) was safe in the model. Examination of post infusion specimens documented that MSCs-D24 homed to the implanted tumor at 24 hours. CONCLUSIONS The intracranial immunosuppressed rabbit human GBM model allows testing of ESIA infusion of novel therapeutics (eg, MSC-D24) in a clinically relevant fashion.
Collapse
Affiliation(s)
- Peter Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | - Joy Gumin
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Roberto Garcia
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Stephen R Chen
- Department of Interventional Radiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Jeremiah N Johnson
- Department of Neurosurgery, The University of California Los Angeles, Los Angeles, California, USA
| | - Dalis E Collins
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Melissa M Chen
- Department of Diagnostic Radiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Daniel Ledbetter
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Jason Huse
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Zean Aaron Evan Luna
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Viren Vasandani
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Abhijit Rao
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sanjay K Singh
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Anagnostakou V, King RM, Gutierrez L, Black JD, Lee J, Virmani R, Puri AS, Siddiqui AH, Gounis MJ. Preclinical model of anterior circulation intracranial stenting. J Neurointerv Surg 2023; 15:1148-1154. [PMID: 36609543 DOI: 10.1136/jnis-2022-019692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Preclinical testing of intracranial stents is currently performed in the peripheral circulation, and rarely in the basilar artery of the dog. OBJECTIVE To test the feasibility of intracranial stenting in the middle cerebral artery (MCA) of the dog and explore the use of MRI to detect thromboembolic complications. METHODS Six purpose-bred cross-hound dogs were used for proof-of-concept stenting of both MCAs in each animal. Immediately following the procedure, the animals were imaged with MRI. MRI was repeated weekly for 1 month. After the final angiography at 30 days, the animals were euthanized for pathological assessment of the stents and the brain. RESULTS We successfully deployed 12 stents in the MCAs of all animals. We deployed three techniques for microcatheterization of the MCA-namely, directly through the internal carotid artery (ICA), using anastomotic arteries from the external carotid artery, or via the contralateral ICA through the anterior communicating artery. Two iatrogenic perforations of the ICA with formation of an arteriovenous fistula occurred, without clinical sequelae, which spontaneously resolved on follow-up. All animals tolerated the procedure and completed the follow-up surveillance. MRI revealed procedural thromboembolic induced areas of restricted diffusion, and only one instance of a delayed thromboembolic lesion during surveillance. At follow-up angiography, the devices were all patent. CONCLUSION We describe a new preclinical model of intracranial stenting in the MCA. Such a model may prove useful for evaluating new surface modifications.
Collapse
Affiliation(s)
- Vania Anagnostakou
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Robert M King
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Liza Gutierrez
- Canon Stroke and Vascular Research Center, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Johanna D Black
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - Renu Virmani
- Department of Cardiology, CVPath, Gaithersburg, Maryland, USA
| | - Ajit S Puri
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Adnan H Siddiqui
- Department of Neurosurgery and Radiology and Canon Stroke and Vascular Research Center, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
- Department of Neurosurgery, Gates Vascular Institute, Buffalo, New York, USA
| | - Matthew J Gounis
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
4
|
A clinically relevant model of focal embolic cerebral ischemia by thrombus and thrombolysis in rhesus monkeys. Nat Protoc 2022; 17:2054-2084. [PMID: 35760857 DOI: 10.1038/s41596-022-00707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/29/2022] [Indexed: 11/08/2022]
Abstract
Over decades of research into the treatment of stroke, nearly all attempts to translate experimental treatments from discovery in cells and rodents to use in humans have failed. The prevailing belief is that it might be necessary to pretest pharmacological neuroprotection in higher-order brains, especially those of nonhuman primates (NHPs). Over the past few years, chemical thrombolysis and mechanical thrombectomy have been established as the standard of care for ischemic stroke in patients. The spotlight is now shifting towards emphasizing both focal ischemia and subsequent reperfusion in developing a clinically relevant stroke model in NHPs. This protocol describes an embolic model of middle cerebral artery occlusion in adult rhesus monkeys. An autologous clot is combined with a microcatheter or microwire through endovascular procedures, and reperfusion is achieved through local intra-artery thrombolysis with tissue plasminogen activator. These NHP models formed relatively stable infarct sizes, delivered predictable reperfusion and survival outcomes, and recapitulated key characteristics of patients with ischemic stroke as observed on MRI images and behavioral assays. Importantly, treated animals could survive 30 d after the surgery for post-stroke neurologic deficit analyses. Thus far, this model has been used in several translational studies. Here we describe in detail the teamwork necessary for developing stroke models of NHPs, including the preoperation preparations, endovascular surgery, postoperation management and histopathological analysis. The model can be established by the following procedures over a 45-d period, including preparation steps (14 d), endovascular operation (1 d) and evaluation steps (30 d).
Collapse
|
5
|
Chen SR, Lang FF, Kan P. Preclinical animal brain tumor models for interventional neuro-oncology. J Neurointerv Surg 2022; 14:neurintsurg-2022-018968. [PMID: 35414632 DOI: 10.1136/neurintsurg-2022-018968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Stephen R Chen
- Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F Lang
- Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Kan
- Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Muskat JC, Rayz VL, Goergen CJ, Babbs CF. Hemodynamic modeling of the circle of Willis reveals unanticipated functions during cardiovascular stress. J Appl Physiol (1985) 2021; 131:1020-1034. [PMID: 34264126 DOI: 10.1152/japplphysiol.00198.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The circle of Willis (CW) allows blood to be redistributed throughout the brain during local ischemia; however, it is unlikely that the anatomic persistence of the CW across mammalian species is driven by natural selection of individuals with resistance to cerebrovascular disease typically occurring in elderly humans. To determine the effects of communicating arteries (CoAs) in the CW on cerebral pulse wave propagation and blood flow velocity, we simulated young, active adult humans undergoing different states of cardiovascular stress (i.e., fear and aerobic exercise) using discrete transmission line segments with stress-adjusted cardiac output, peripheral resistance, and arterial compliance. Phase delays between vertebrobasilar and carotid pulses allowed bidirectional shunting through CoAs: both posteroanterior shunting before the peak of the pulse waveform and anteroposterior shunting after internal carotid pressure exceeded posterior cerebral pressure. Relative to an absent CW without intact CoAs, the complete CW blunted anterior pulse waveforms, although limited to 3% and 6% reductions in peak pressure and pulse pressure, respectively. Systolic rate of change in pressure (i.e., ∂P/∂t) was reduced 15%-24% in the anterior vasculature and increased 23%-41% in the posterior vasculature. Bidirectional shunting through posterior CoAs was amplified during cardiovascular stress and increased peak velocity by 25%, diastolic-to-systolic velocity range by 44%, and blood velocity acceleration by 134% in the vertebrobasilar arteries. This effect may facilitate stress-related increases in blood flow to the cerebellum (improving motor coordination) and reticular-activating system (enhancing attention and focus) via a nitric oxide-dependent mechanism, thereby improving survival in fight-or-flight situations.NEW & NOTEWORTHY Hemodynamic modeling reveals potential evolutionary benefits of the intact circle of Willis (CW) during fear and aerobic exercise. The CW equalizes pulse waveforms due to bidirectional shunting of blood flow through communicating arteries, which boosts vertebrobasilar blood flow velocity and acceleration. These phenomena may enhance perfusion of the brainstem and cerebellum via nitric oxide-mediated vasodilation, improving performance of the reticular-activating system and motor coordination in survival situations.
Collapse
Affiliation(s)
- J C Muskat
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - V L Rayz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - C J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - C F Babbs
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
7
|
Intra-arterial transplantation of stem cells in large animals as a minimally-invasive strategy for the treatment of disseminated neurodegeneration. Sci Rep 2021; 11:6581. [PMID: 33753789 PMCID: PMC7985204 DOI: 10.1038/s41598-021-85820-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Stem cell transplantation proved promising in animal models of neurological diseases; however, in conditions with disseminated pathology such as ALS, delivery of cells and their broad distribution is challenging. To address this problem, we explored intra-arterial (IA) delivery route, of stem cells. The goal of this study was to investigate the feasibility and safety of MRI-guided transplantation of glial restricted precursors (GRPs) and mesenchymal stem cells (MSCs) in dogs suffering from ALS-like disease, degenerative myelopathy (DM). Canine GRP transplantation in dogs resulted in rather poor retention in the brain, so MSCs were used in subsequent experiments. To evaluate the safety of MSC intraarterial transplantation, naïve pigs (n = 3) were used as a pre-treatment control before transplantation in dogs. Cells were labeled with iron oxide nanoparticles. For IA transplantation a 1.2-French microcatheter was advanced into the middle cerebral artery under roadmap guidance. Then, the cells were transplanted under real-time MRI with the acquisition of dynamic T2*-weighted images. The procedure in pigs has proven to be safe and histopathology has demonstrated the successful and predictable placement of transplanted porcine MSCs. Transplantation of canine MSCs in DM dogs resulted in their accumulation in the brain. Interventional and follow-up MRI proved the procedure was feasible and safe. Analysis of gene expression after transplantation revealed a reduction of inflammatory factors, which may indicate a promising therapeutic strategy in the treatment of neurodegenerative diseases.
Collapse
|