1
|
Kozlov SA, Lazarev VN, Kostryukova ES, Selezneva OV, Ospanova EA, Alexeev DG, Govorun VM, Grishin EV. Comprehensive analysis of the venom gland transcriptome of the spider Dolomedes fimbriatus. Sci Data 2014; 1:140023. [PMID: 25977780 PMCID: PMC4322566 DOI: 10.1038/sdata.2014.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/09/2014] [Indexed: 01/03/2023] Open
Abstract
A comprehensive transcriptome analysis of an expressed sequence tag (EST) database of the spider Dolomedes fimbriatus venom glands using single-residue distribution analysis (SRDA) identified 7,169 unique sequences. Mature chains of 163 different toxin-like polypeptides were predicted on the basis of well-established methodology. The number of protein precursors of these polypeptides was appreciably numerous than the number of mature polypeptides. A total of 451 different polypeptide precursors, translated from 795 unique nucleotide sequences, were deduced. A homology search divided the 163 mature polypeptide sequences into 16 superfamilies and 19 singletons. The number of mature toxins in a superfamily ranged from 2 to 49, whereas the diversity of the original nucleotide sequences was greater (2-261 variants). We observed a predominance of inhibitor cysteine knot toxin-like polypeptides among the cysteine-containing structures in the analyzed transcriptome bank. Uncommon spatial folds were also found.
Collapse
Affiliation(s)
- Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Vassili N. Lazarev
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - Elena S. Kostryukova
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - Oksana V. Selezneva
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
| | - Elena A. Ospanova
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
| | - Dmitry G. Alexeev
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - Vadim M. Govorun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - Eugene V. Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| |
Collapse
|
2
|
Zhang R, Yang Z, Liu YF, Cui Y, Zhang JH. Purification, characterization and cDNA cloning of an analgesic peptide from the chinese scorpion Buthus martensii Karsch (BmK AGP-SYPU2). Mol Biol 2011. [DOI: 10.1134/s0026893311060203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Quintero-Hernández V, Ortiz E, Rendón-Anaya M, Schwartz EF, Becerril B, Corzo G, Possani LD. Scorpion and spider venom peptides: gene cloning and peptide expression. Toxicon 2011; 58:644-63. [PMID: 21978889 DOI: 10.1016/j.toxicon.2011.09.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/08/2011] [Accepted: 09/22/2011] [Indexed: 01/05/2023]
Abstract
This communication reviews most of the important findings related to venom components isolated from scorpions and spiders, mainly by means of gene cloning and expression. Rather than revising results obtained by classical biochemical studies that report structure and function of venom components, here the emphasis is placed on cloning and identification of genes present in the venomous glands of these arachnids. Aspects related to cDNA library construction, specific or random ESTs cloning, transcriptome analysis, high-throughput screening, heterologous expression and folding are briefly discussed, showing some numbers of species and components already identified, but also shortly mentioning limitations and perspectives of research for the future in this field.
Collapse
Affiliation(s)
- V Quintero-Hernández
- Instituto de Biotecnología - UNAM, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | |
Collapse
|
4
|
Alami M, Céard B, Legros C, Bougis PE, Martin-Eauclaire MF. Genomic characterisation of the toxin Amm VIII from the scorpion Androctonus mauretanicus mauretanicus. Toxicon 2006; 47:531-6. [PMID: 16533515 DOI: 10.1016/j.toxicon.2006.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 12/28/2005] [Accepted: 01/06/2006] [Indexed: 11/20/2022]
Abstract
The genomic DNA sequence encoding the scorpion toxin Amm VIII was amplified from genomic DNA of the scorpion Androctonus mauretanicus mauretanicus from Morocco, subcloned and sequenced. An intron, with a high A+T content (73.5%), split a Gly codon at the end of the precursor signal peptide and the consensus GT/AG splice junction was identified in the Amm VIII gene. This intron of only 166 bp is the smallest intron described so far for a long-chain scorpion toxin gene. In addition, this study led to the identification of three new toxin-related genes. From the deduced amino acid sequences of the encoded precursor proteins, we found that the mature putative toxins were highly similar to the scorpion toxins Leiurus quinquestriatus quinquestriatus IV and Odonthobuthus doriae 1.
Collapse
Affiliation(s)
- Meriem Alami
- Institut Pasteur du Maroc, 1 Rue Abou Kacem Ezzahroui, Casablanca, Morocco
| | | | | | | | | |
Collapse
|
5
|
Zhijian C, Feng L, Yingliang W, Xin M, Wenxin L. Genetic mechanisms of scorpion venom peptide diversification. Toxicon 2006; 47:348-55. [PMID: 16387337 DOI: 10.1016/j.toxicon.2005.11.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/16/2005] [Accepted: 11/21/2005] [Indexed: 11/15/2022]
Abstract
The diversity of scorpion venom peptides is well shown by the presence of about 400 such polypeptides with or without disulfide bonds. Scorpion toxins with disulfide bonds present a variety of sequence features and pharmacological functions by affecting different ion channels, while the venom peptides without disulfide bonds represent a new subfamily, having much lower sequence homology among each other and different functions (e.g. bradykinin-potentiating, antimicrobial, molecular cell signal initiating and immune modulating). Interestingly, all scorpion venom peptides with divergent functions may have evolved from a common ancestor gene. Over the lengthy evolutionary time, the diversification of scorpion venom peptides evolved through polymorphism, duplication, trans-splicing, or alternative splicing at the gene level. In order to completely clarify the diversity of scorpion toxins and toxin-like peptides, toxinomics (genomics and proteomics of scorpion toxins and toxin-like peptides) are expected to greatly advance in the near future.
Collapse
Affiliation(s)
- Cao Zhijian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan Uiniversity, Wuhan 430072, People's Republic of China.
| | | | | | | | | |
Collapse
|