1
|
Grimaldi-Olivas JC, Morales-Merida BE, Cruz-Mendívil A, Villicaña C, Heredia JB, López-Meyer M, León-Chan R, Lightbourn-Rojas LA, León-Félix J. Transcriptomic analysis of bell pepper (Capsicum annuum L.) revealing key mechanisms in response to low temperature stress. Mol Biol Rep 2023; 50:8431-8444. [PMID: 37624559 DOI: 10.1007/s11033-023-08744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Bell pepper (Capsicum annuum L.) is one of the most economically and nutritionally important vegetables worldwide. However, its production can be affected by various abiotic stresses, such as low temperature. This causes various biochemical, morphological and molecular changes affecting membrane lipid composition, photosynthetic pigments, accumulation of free sugars and proline, secondary metabolism, as well as a change in gene expression. However, the mechanism of molecular response to this type of stress has not yet been elucidated. METHODS AND RESULTS To further investigate the response mechanism to this abiotic stress, we performed an RNA-Seq transcriptomic analysis to obtain the transcriptomic profile of Capsicum annuum exposed to low temperature stress, where libraries were constructed from reads of control and low temperature stress samples, varying on average per treatment from 22,952,190.5-27,305,327 paired reads ranging in size from 30 to 150 bp. The number of differentially expressed genes (DEGs) for each treatment was 388, 417 and 664 at T-17 h, T-22 h and T-41 h, respectively, identifying 58 up-regulated genes and 169 down-regulated genes shared among the three exposure times. Likewise, 23 DEGs encoding TFs were identified at T-17 h, 30 DEGs at T-22 h and 47 DEGs at T-42 h, respectively. GO analysis revealed that DEGs were involved in catalytic activity, response to temperature stimulus, oxidoreductase activity, stress response, phosphate ion transport and response to abscisic acid. KEGG pathway analysis identified that DEGs were related to flavonoid biosynthesis, alkaloid biosynthesis and plant circadian rhythm pathways in the case of up-regulated genes, while in the case of down-regulated genes, they pertained to MAPK signaling and plant hormone signal transduction pathways, present at all the three time points of low temperature exposure. Validation of the transcriptomic method was performed by evaluation of five DEGs by quantitative polymerase chain reaction (q-PCR). CONCLUSIONS The data obtained in the present study provide new insights into the transcriptome profiles of Capsicum annuum stem in response to low temperature stress. The data generated may be useful for the identification of key candidate genes and molecular mechanisms involved in response to this type of stress.
Collapse
Affiliation(s)
- Jesús Christian Grimaldi-Olivas
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo (CIAD) A.C., Carretera Culiacán-Eldorado Km 5.5 Col. Campo el Diez, C.P. 80110, Culiacán, Sinaloa, Mexico
| | - Brandon Estefano Morales-Merida
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo (CIAD) A.C., Carretera Culiacán-Eldorado Km 5.5 Col. Campo el Diez, C.P. 80110, Culiacán, Sinaloa, Mexico
| | - Abraham Cruz-Mendívil
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), CONAHCYT-Instituto Politécnico Nacional (IPN), Unidad Sinaloa. Blvd. Juan de Dios Bátiz Paredes #250 Col. San Joachin, C.P. 81049, Guasave, Sinaloa, Mexico
| | - Claudia Villicaña
- Laboratorio de Biología Molecular y Genómica Funcional, CONAHCYT-Centro de Investigación en Alimentación y Desarrollo (CIAD) A.C., Carretera Culiacán-Eldorado Km 5.5, Campo el Diez, C.P. 80110, Culiacán, Sinaloa, Mexico
| | - J Basilio Heredia
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo (CIAD) A.C., Carretera Culiacán-Eldorado Km 5.5 Col. Campo el Diez, C.P. 80110, Culiacán, Sinaloa, Mexico
| | - Melina López-Meyer
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Instituto Politécnico Nacional (IPN), Unidad Sinaloa. Blvd. Juan de Dios Bátiz Paredes #250 Col. San Joachin, C.P. 81049, Guasave, Sinaloa, Mexico
| | - Rubén León-Chan
- Laboratorio de Genética, Instituto de Investigación Lightbourn, A. C., C.P. 33981, Ciudad Jiménez, Chihuahua, Mexico
| | - Luis Alberto Lightbourn-Rojas
- Laboratorio de Genética, Instituto de Investigación Lightbourn, A. C., C.P. 33981, Ciudad Jiménez, Chihuahua, Mexico
| | - Josefina León-Félix
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo (CIAD) A.C., Carretera Culiacán-Eldorado Km 5.5 Col. Campo el Diez, C.P. 80110, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
2
|
Niu X, Tang W, Huang W, Ren G, Wang Q, Luo D, Xiao Y, Yang S, Wang F, Lu BR, Gao F, Lu T, Liu Y. RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2008; 8:100. [PMID: 18840300 PMCID: PMC2588449 DOI: 10.1186/1471-2229-8-100] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Accepted: 10/08/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND Aromatic rice is popular worldwide because of its characteristic fragrance. Genetic studies and physical fine mapping reveal that a candidate gene (fgr/OsBADH2) homologous to betaine aldehyde dehydrogenase is responsible for aroma metabolism in fragrant rice varieties, but the direct evidence demonstrating the functions of OsBADH2 is lacking. To elucidate the physiological roles of OsBADH2, sequencing approach and RNA interference (RNAi) technique were employed to analyze allelic variation and functions of OsBADH2 gene in aroma production. Semi-quantitative, real-time reverse transcription-polymerase chain reaction (RT-PCR), as well as gas chromatography-mass spectrometry (GC-MS) were conducted to determine the expression levels of OsBADH2 and the fragrant compound in wild type and transgenic OsBADH2-RNAi repression lines, respectively. RESULTS The results showed that multiple mutations identical to fgr allele occur in the 13 fragrant rice accessions across China; OsBADH2 is expressed constitutively, with less expression abundance in mature roots; the disrupted OsBADH2 by RNA interference leads to significantly increased 2-acetyl-1-pyrroline production. CONCLUSION We have found that the altered expression levels of OsBADH2 gene influence aroma accumulation, and the prevalent aromatic allele probably has a single evolutionary origin.
Collapse
Affiliation(s)
- Xiangli Niu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, Sichuan University, Chengdu 610064, PR China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, PR China
| | - Wei Tang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, Sichuan University, Chengdu 610064, PR China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, PR China
| | - Weizao Huang
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Guangjun Ren
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Qilin Wang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, Sichuan University, Chengdu 610064, PR China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, PR China
| | - Di Luo
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, Sichuan University, Chengdu 610064, PR China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yingyong Xiao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, Sichuan University, Chengdu 610064, PR China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, PR China
| | - Shimei Yang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, Sichuan University, Chengdu 610064, PR China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, PR China
| | - Feng Wang
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, PR China
| | - Bao-Rong Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433, PR China
| | - Fangyuan Gao
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, Sichuan University, Chengdu 610064, PR China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
3
|
Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. PLANTA 2008; 227:957-67. [PMID: 18064488 DOI: 10.1007/s00425-007-0670-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 11/12/2007] [Indexed: 05/18/2023]
Abstract
Plant growth and crop yields are limited by high-temperature stresses. In this study, we attempted to isolate the rice genes responsible for high-temperature stress tolerance using a transformed Arabidopsis population expressing a full-length cDNA library of rice. From approximately 20,000 lines of transgenic Arabidopsis, we isolated a thermotolerant line, R04333, that could survive transient heat stress at the cotyledon stage. The rice cDNA inserted in R04333 encodes OsHsfA2e, a member of the heat stress transcription factors. The thermotolerant phenotype was observed in newly constructed transgenic Arabidopsis plants expressing OsHsfA2e. Among 5 A2-type HSF genes encoded in the rice genome, four genes, including OsHsfA2e, are induced by high temperatures in rice seedlings. The OsHsfA2e protein was localized to the nuclear region and exhibited transcription activation activity in the C-terminal region. Microarray analysis demonstrated that under unstressed conditions transgenic Arabidopsis overexpressing OsHsfA2e highly expressed certain stress-associated genes, including several classes of heat-shock proteins. The thermotolerant phenotype was observed not only in the cotyledons but also in rosette leaves, inflorescence stems and seeds. In addition, transgenic Arabidopsis exhibited tolerance to high-salinity stress. These observations suggest that the OsHsfA2e may be useful in molecular breeding designed to improve the environmental stress tolerance of crops.
Collapse
Affiliation(s)
- Naoki Yokotani
- Research Institute for Biological Sciences (RIBS), Okayama, Kaga-Gun, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
4
|
Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics 2008; 35:105-18. [DOI: 10.1016/s1673-8527(08)60016-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/29/2007] [Accepted: 09/29/2007] [Indexed: 10/22/2022]
|