1
|
Qiao R, Xiao R, Chen Z, Jiang J, Yuan C, Ning S, Wang J, Zhou Z. Cloning, Expression and Inhibitory Effects on Lewis Lung Carcinoma Cells of rAj-Tspin from Sea Cucumber ( Apostichopus japonicus). MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010229. [PMID: 35011462 PMCID: PMC8746392 DOI: 10.3390/molecules27010229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
In recent years, sea cucumber has become a favorite healthcare food due to its characteristic prevention of cardiovascular diseases, suppression of tumors, as well as enhancement of immunity. In order to screen the anti-tumoral proteins or peptides from sea cucumber (Apostichopus japonicus), its cDNA library was analyzed, and a disintegrin-like and metalloproteinase with thrombospondin type 1 motif, member 13 (ADAMTS13)-like was found. ADAMTS13-like contains 10 thrombospondin 1 (TSP1) domains. Based on analysis of bioinformatics, the third TSP1 domain of this protein, which is further named Aj-Tspin, contains an arginine-glycine-aspartate (RGD) motif. Since our previous studies showed that the recombinant RGD-containing peptide from lampreys showed anti-tumoral activity, the third TSP1 domain of ADAMTS13-like was chosen to evaluate it's effect on tumor proliferation and metastasis, despite the fact it shares almost no homologue with disintegrins from other species. After artificial synthesis, its cDNA sequence, Aj-Tspin, which is composed of 56 amino acids, was subcloned into a pET23b vector and expressed as a recombinant Aj-Tspin (rAj-Tspin) in a soluble form with a molecular weight of 6.976 kDa. Through affinity chromatography, rAj-Tspin was purified as a single protein. Both anti-proliferation and immunofluorescence assays showed that rAj-Tspin suppressed the proliferation of Lewis lung carcinoma (LLC) cells through apoptosis. Adhesion assay also displayed that rAj-Tspin inhibited the adhesion of LLC cells to ECM proteins, including fibronectin, laminin, vitronectin and collagen. Lastly, rAj-Tspin also suppressed the migration and invasion of LLC cells across the filter in transwells. Thus, the above indicates that rAj-Tspin might act as a potential anti-tumoral drug in the future and could also provide information on the nutritional value of sea cucumber.
Collapse
Affiliation(s)
- Rong Qiao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (R.Q.); (Z.C.); (J.J.)
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (R.X.); (C.Y.); (S.N.)
| | - Rong Xiao
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (R.X.); (C.Y.); (S.N.)
| | - Zhong Chen
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (R.Q.); (Z.C.); (J.J.)
| | - Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (R.Q.); (Z.C.); (J.J.)
| | - Chenghua Yuan
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (R.X.); (C.Y.); (S.N.)
| | - Shuxiang Ning
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (R.X.); (C.Y.); (S.N.)
| | - Jihong Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (R.X.); (C.Y.); (S.N.)
- Correspondence: (J.W.); (Z.Z.); Tel.: +86-133-8411-3698 (Z.Z.)
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (R.Q.); (Z.C.); (J.J.)
- Correspondence: (J.W.); (Z.Z.); Tel.: +86-133-8411-3698 (Z.Z.)
| |
Collapse
|
2
|
Akhtar B, Muhammad F, Sharif A, Anwar MI. Mechanistic insights of snake venom disintegrins in cancer treatment. Eur J Pharmacol 2021; 899:174022. [PMID: 33727054 DOI: 10.1016/j.ejphar.2021.174022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 01/27/2023]
Abstract
Snake venoms are a potential source of various enzymatic and non-enzymatic compounds with a defensive role for the host. Various peptides with significant medicinal properties have been isolated and characterized from these venoms. Few of these are FDA approved. They inhibit tumor cells adhesion, migration, angiogenesis and metastasis by inhibiting integrins on transmembrane cellular surfaces. This plays important role in delaying tumor growth, neovascularization and development. Tumor targeting and smaller size make them ideal candidates as novel therapeutic agents for cancer treatment. This review is based on sources of these disintegrins, their targeting modality, classification and underlying anti-cancer potential.
Collapse
Affiliation(s)
- Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Faqir Muhammad
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Irfan Anwar
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
3
|
Mercogliano MF, Bruni S, Mauro F, Elizalde PV, Schillaci R. Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13030564. [PMID: 33540543 PMCID: PMC7985780 DOI: 10.3390/cancers13030564] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine known to have contradictory roles in oncoimmunology. Indeed, TNFα has a central role in the onset of the immune response, inducing both activation and the effector function of macrophages, dendritic cells, natural killer (NK) cells, and B and T lymphocytes. Within the tumor microenvironment, however, TNFα is one of the main mediators of cancer-related inflammation. It is involved in the recruitment and differentiation of immune suppressor cells, leading to evasion of tumor immune surveillance. These characteristics turn TNFα into an attractive target to overcome therapy resistance and tackle cancer. This review focuses on the diverse molecular mechanisms that place TNFα as a source of resistance to immunotherapy such as monoclonal antibodies against cancer cells or immune checkpoints and adoptive cell therapy. We also expose the benefits of TNFα blocking strategies in combination with immunotherapy to improve the antitumor effect and prevent or treat adverse immune-related effects.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires 1428, Argentina;
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Florencia Mauro
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Patricia Virginia Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
- Correspondence: ; Tel.: +54-11-4783-2869; Fax: +54-11-4786-2564
| |
Collapse
|
4
|
Moga MA, Dimienescu OG, Arvătescu CA, Ifteni P, Pleş L. Anticancer Activity of Toxins from Bee and Snake Venom-An Overview on Ovarian Cancer. Molecules 2018; 23:E692. [PMID: 29562696 PMCID: PMC6017821 DOI: 10.3390/molecules23030692] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022] Open
Abstract
Cancer represents the disease of the millennium, a major problem in public health. The proliferation of tumor cells, angiogenesis, and the relationship between the cancer cells and the components of the extracellular matrix are important in the events of carcinogenesis, and these pathways are being used as targets for new anticancer treatments. Various venoms and their toxins have shown possible anticancer effects on human cancer cell lines, providing new perspectives in drug development. In this review, we observed the effects of natural toxins from bee and snake venom and the mechanisms through which they can inhibit the growth and proliferation of cancer cells. We also researched how several types of natural molecules from venom can sensitize ovarian cancer cells to conventional chemotherapy, with many toxins being helpful for developing new anticancer drugs. This approach could improve the efficiency of standard therapies and could allow the administration of decreased doses of chemotherapy. Natural toxins from bee and snake venom could become potential candidates for the future treatment of different types of cancer. It is important to continue these studies concerning therapeutic drugs from natural resource and, more importantly, to investigate their mechanism of action on cancer cells.
Collapse
Affiliation(s)
- Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Oana Gabriela Dimienescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Cristian Andrei Arvătescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Petru Ifteni
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Liana Pleş
- Clinical Department of Obstetrics and Gynecology, The Carol Davila University of Medicine and Pharmacy, Bucharest 020021, Romania.
| |
Collapse
|
5
|
Arruda Macêdo JK, Fox JW, de Souza Castro M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr Protein Pept Sci 2015; 16:532-48. [PMID: 26031306 PMCID: PMC4997955 DOI: 10.2174/1389203716666150515125002] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/17/2015] [Accepted: 05/13/2015] [Indexed: 01/01/2023]
Abstract
Integrins regulate diverse functions in cancer pathology and in tumor cell development and contribute to important processes such as cell shape, survival, proliferation, transcription, angiogenesis, migration, and invasion. A number of snake venom proteins have the ability to interact with integrins. Among these are the disintegrins, a family of small, non-enzymatic, and cysteine-rich proteins found in the venom of numerous snake families. The venom proteins may have a potential role in terms of novel therapeutic leads for cancer treatment. Disintegrin can target specific integrins and as such it is conceivable that they could interfere in important processes involved in carcinogenesis, tumor growth, invasion and migration. Herein we present a survey of studies involving the use of snake venom disintegrins for cancer detection and treatment. The aim of this review is to highlight the relationship of integrins with cancer and to present examples as to how certain disintegrins can detect and affect biological processes related to cancer. This in turn will illustrate the great potential of these molecules for cancer research. Furthermore, we also outline several new approaches being created to address problems commonly associated with the clinical application of peptide-based drugs such as instability, immunogenicity, and availability.
Collapse
Affiliation(s)
| | - Jay W Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, USA.
| | | |
Collapse
|
6
|
Georgieva D, Arni RK, Betzel C. Proteome analysis of snake venom toxins: pharmacological insights. Expert Rev Proteomics 2014; 5:787-97. [DOI: 10.1586/14789450.5.6.787] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Zhu L, Yuan C, Chen Z, Wang W, Huang M. Expression, purification and characterization of recombinant Jerdonitin, a P-II class snake venom metalloproteinase comprising metalloproteinase and disintegrin domains. Toxicon 2009; 55:375-80. [PMID: 19732785 DOI: 10.1016/j.toxicon.2009.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 08/21/2009] [Accepted: 08/25/2009] [Indexed: 11/19/2022]
Abstract
Jerdonitin is a P-II class snake venom metalloproteinase comprising metalloproteinase and disintegrin domains. In this study, we established a high-level expression system in Pichia pastoris and developed a purification strategy for the recombinant Jerdonitin. This recombinant Jerdonitin degraded fibrinogen at a level of activity comparable with its wild type. The effects of recombinant Jerdonitin on inhibiting ADP-induced human platelet aggregation were in a dose-dependent manner with an IC(50) of 248nM. In addition, we reported here that Jerdonitin can significantly inhibit the growth of several cell lines, including human liver cancer cells (Bel7402), human leukemia cells (K562) and human gastric carcinoma cells (BGC823). This study offers recombinant Jerdonitin that will be valuable for further functional and structural studies of Jerdonitin.
Collapse
Affiliation(s)
- Lili Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yang Qiao Xi Lu, Fuzhou, Fujian 350002, China.
| | | | | | | | | |
Collapse
|
8
|
Sohn YD, Hong SY, Cho KS, Choi WS, Song SW, Bae JS, Kim DS, Chung KH. Acute and repeated dose toxicity studies of recombinant saxatilin, a disintegrin from the Korean snake (Gloydius saxatilis). Toxicon 2008; 51:406-17. [DOI: 10.1016/j.toxicon.2007.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 10/27/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
|