1
|
Augustin V, Kins S. Fe65: A Scaffolding Protein of Actin Regulators. Cells 2021; 10:cells10071599. [PMID: 34202290 PMCID: PMC8304848 DOI: 10.3390/cells10071599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
The scaffolding protein family Fe65, composed of Fe65, Fe65L1, and Fe65L2, was identified as an interaction partner of the amyloid precursor protein (APP), which plays a key function in Alzheimer’s disease. All three Fe65 family members possess three highly conserved interaction domains, forming complexes with diverse binding partners that can be assigned to different cellular functions, such as transactivation of genes in the nucleus, modulation of calcium homeostasis and lipid metabolism, and regulation of the actin cytoskeleton. In this article, we rule out putative new intracellular signaling mechanisms of the APP-interacting protein Fe65 in the regulation of actin cytoskeleton dynamics in the context of various neuronal functions, such as cell migration, neurite outgrowth, and synaptic plasticity.
Collapse
|
2
|
Phosphorylation of FE65 at threonine 579 by GSK3β stimulates amyloid precursor protein processing. Sci Rep 2017; 7:12456. [PMID: 28963516 PMCID: PMC5622059 DOI: 10.1038/s41598-017-12334-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/06/2017] [Indexed: 02/01/2023] Open
Abstract
Excessive generation of amyloid-β peptide (Aβ) by aberrant proteolysis of amyloid precursor protein (APP) is a key event in Alzheimer's disease (AD) pathogenesis. FE65 is a brain-enriched phospho-adaptor protein that interacts with APP and has been shown to modulate APP processing. However, the mechanism(s) that FE65 alters APP processing is still not fully understood. In the present study, we demonstrate that FE65 is phosphorylated at threonine 579 (T579) by glycogen synthase kinase 3β (GSK3β). Moreover, FE65 T579 phosphorylation potentiates γ- and β-secretases-mediated APP processing and Aβ liberation. Additionally, the phosphorylation suppresses FE65 PTB2 intermolecular dimerization but enhances FE65/APP complex formation. Hence, our findings reveal a novel mechanism that GSK3β stimulates amyloidogenic processing of APP by phosphorylation of FE65 at T579.
Collapse
|
3
|
Koistinen NA, Edlund AK, Menon PK, Ivanova EV, Bacanu S, Iverfeldt K. Nuclear localization of amyloid-β precursor protein-binding protein Fe65 is dependent on regulated intramembrane proteolysis. PLoS One 2017; 12:e0173888. [PMID: 28323844 PMCID: PMC5360310 DOI: 10.1371/journal.pone.0173888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/28/2017] [Indexed: 11/18/2022] Open
Abstract
Fe65 is an adaptor protein involved in both processing and signaling of the Alzheimer-associated amyloid-β precursor protein, APP. Here, the subcellular localization was further investigated using TAP-tagged Fe65 constructs expressed in human neuroblastoma cells. Our results indicate that PTB2 rather than the WW domain is important for the nuclear localization of Fe65. Electrophoretic mobility shift of Fe65 caused by phosphorylation was not detected in the nuclear fraction, suggesting that phosphorylation could restrict nuclear localization of Fe65. Furthermore, both ADAM10 and γ-secretase inhibitors decreased nuclear Fe65 in a similar way indicating an important role also of α-secretase in regulating nuclear translocation.
Collapse
Affiliation(s)
- Niina A Koistinen
- Stockholm University, Department of Neurochemistry, Stockholm, Sweden
| | - Anna K Edlund
- Stockholm University, Department of Neurochemistry, Stockholm, Sweden
| | - Preeti K Menon
- Stockholm University, Department of Neurochemistry, Stockholm, Sweden
| | - Elena V Ivanova
- Stockholm University, Department of Neurochemistry, Stockholm, Sweden
| | - Smaranda Bacanu
- Stockholm University, Department of Neurochemistry, Stockholm, Sweden
| | - Kerstin Iverfeldt
- Stockholm University, Department of Neurochemistry, Stockholm, Sweden
| |
Collapse
|
4
|
Extensive nuclear sphere generation in the human Alzheimer's brain. Neurobiol Aging 2016; 48:103-113. [PMID: 27644079 DOI: 10.1016/j.neurobiolaging.2016.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
Nuclear spheres are protein aggregates consisting of FE65, TIP60, BLM, and other yet unknown proteins. Generation of these structures in the cellular nucleus is putatively modulated by the amyloid precursor protein (APP), either by its cleavage or its phosphorylation. Nuclear spheres were preferentially studied in cell culture models and their existence in the human brain had not been known. Existence of nuclear spheres in the human brain was studied using immunohistochemistry. Cell culture experiments were used to study regulative mechanisms of nuclear sphere generation. The comparison of human frontal cortex brain samples from Alzheimer's disease (AD) patients to age-matched controls revealed a dramatically and highly significant enrichment of nuclear spheres in the AD brain. Costaining demonstrated that neurons are distinctly affected by nuclear spheres, but astrocytes never are. Nuclear spheres were predominantly found in neurons that were negative for threonine 668 residue in APP phosphorylation. Cell culture experiments revealed that JNK3-mediated APP phosphorylation reduces the amount of sphere-positive cells. The study suggests that nuclear spheres are a new APP-derived central hallmark of AD, which might be of crucial relevance for the molecular mechanisms in neurodegeneration.
Collapse
|
5
|
Phosphorylation of Fe65 amyloid precursor protein-binding protein in response to neuronal differentiation. Neurosci Lett 2015; 613:54-9. [PMID: 26742640 DOI: 10.1016/j.neulet.2015.12.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 01/12/2023]
Abstract
Fe65 is a brain enriched multi domain adaptor protein involved in diverse cellular functions. One of its binding partners is the amyloid-β (Aβ) precursor protein (APP), which after sequential proteolytic processing by secretases gives rise to the Alzheimer's Aβ peptide. Fe65 binds to the APP intracellular domain (AICD). Several studies have indicated that Fe65 binding promotes the amyloidogenic processing of APP. It has previously been shown that expression of APP increases concomitantly with a shift of its processing to the non-amyloidogenic pathway during neuronal differentiation. In this study we wanted to investigate the effects of neuronal differentiation on Fe65 expression. We observed that differentiation of SH-SY5Y human neuroblastoma cells induced by retinoic acid (RA), the phorbol ester PMA, or the γ-secretase inhibitor DAPT resulted in an electrophoretic mobility shift of Fe65. Similar effects were observed in rat PC6.3 cells treated with nerve growth factor. The electrophoretic mobility shift was shown to be due to phosphorylation. Previous studies have shown that Fe65 phosphorylation can prevent the APP-Fe65 interaction. We propose that phosphorylation is a way to modify the functions of Fe65 and to promote the non-amyloidogenic processing of APP during neuronal differentiation.
Collapse
|
6
|
Phosphorylation of FE65 Ser610 by serum- and glucocorticoid-induced kinase 1 modulates Alzheimer's disease amyloid precursor protein processing. Biochem J 2015; 470:303-17. [PMID: 26188042 PMCID: PMC4613528 DOI: 10.1042/bj20141485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/17/2015] [Indexed: 01/15/2023]
Abstract
Phosphorylation of FE65 Ser610 by serum- and glucocorticoid-induced kinase 1 (SGK1) attenuates amyloid precursor protein (APP) processing via regulation of FE65–APP interaction. Alzheimer's disease (AD) is a fatal neurodegenerative disease affecting 36 million people worldwide. Genetic and biochemical research indicate that the excessive generation of amyloid-β peptide (Aβ) from amyloid precursor protein (APP), is a major part of AD pathogenesis. FE65 is a brain-enriched adaptor protein that binds to APP. However, the role of FE65 in APP processing and the mechanisms that regulate binding of FE65 to APP are not fully understood. In the present study, we show that serum- and glucocorticoid-induced kinase 1 (SGK1) phosphorylates FE65 on Ser610 and that this phosphorylation attenuates FE65 binding to APP. We also show that FE65 promotes amyloidogenic processing of APP and that FE65 Ser610 phosphorylation inhibits this effect. Furthermore, we found that the effect of FE65 Ser610 phosphorylation on APP processing is linked to a role of FE65 in metabolic turnover of APP via the proteasome. Thus FE65 influences APP degradation via the proteasome and phosphorylation of FE65 Ser610 by SGK1 regulates binding of FE65 to APP, APP turnover and processing.
Collapse
|
7
|
Sun Y, Kasiappan R, Tang J, Webb PL, Quarni W, Zhang X, Bai W. A novel function of the Fe65 neuronal adaptor in estrogen receptor action in breast cancer cells. J Biol Chem 2014; 289:12217-31. [PMID: 24619425 DOI: 10.1074/jbc.m113.526194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Fe65 is a multidomain adaptor with established functions in neuronal cells and neurodegeneration diseases. It binds to the C terminus of the Aβ amyloid precursor protein and is involved in regulating gene transcription. The present studies show that Fe65 is expressed in breast cancer (BCa) cells and acts as an ERα transcriptional coregulator that is recruited by 17β-estradiol to the promoters of estrogen target genes. Deletion analyses mapped the ERα binding domain to the phosphotyrosine binding domain 2 (PTB2). Ectopic Fe65 increased the transcriptional activity of the ERα in a PTB2-dependent manner in reporter assays. Fe65 knockdown decreased, whereas its stable expression increased the transcriptional activity of endogenous ERα in BCa cells and the ability of estrogens to stimulate target gene expression, ERα, and coactivator recruitment to target gene promoters and cell growth. Furthermore, Fe65 expression decreased the antagonistic activity of tamoxifen (TAM), suggesting a role for Fe65 in TAM resistance. Overall, the studies define a novel role for the neuronal adaptor in estrogen actions in BCa cells.
Collapse
Affiliation(s)
- Yuefeng Sun
- From the Departments of Pathology and Cell Biology and
| | | | | | | | | | | | | |
Collapse
|
8
|
Engulfment adaptor phosphotyrosine-binding-domain-containing 1 (GULP1) is a nucleocytoplasmic shuttling protein and is transactivationally active together with low-density lipoprotein receptor-related protein 1 (LRP1). Biochem J 2013; 450:333-43. [PMID: 23167255 DOI: 10.1042/bj20121100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
APP (amyloid precursor protein) and LRP1 (low-density lipoprotein receptor-related protein 1) have been implicated in the pathogenesis of AD (Alzheimer's disease). They are functionally linked by Fe65, a PTB (phosphotyrosine-binding)-domain-containing adaptor protein that binds to intracellular NPxY-motifs of APP and LRP1, thereby influencing expression levels, cellular trafficking and processing. Additionally, Fe65 has been reported to mediate nuclear signalling in combination with intracellular domains of APP and LRP1. We have previously identified another adaptor protein, GULP1 (engulfment adaptor PTB-domain-containing 1). In the present study we characterize and compare nuclear trafficking and transactivation of GULP1 and Fe65 together with APP and LRP1 and report differential nuclear trafficking of adaptors when APP or LRP1 are co-expressed. The observed effects were additionally supported by a reporter-plasmid-based transactivation assay. The results from the present study indicate that Fe65 might have signalling properties together with APP and LRP1, whereas GULP1 only mediates LRP1 transactivation.
Collapse
|
9
|
Lee EJ, Shin SH, Hyun S, Chun J, Kang SS. Endoplasmic Reticulum (ER) Stress Enhances Tip60 (A Histone Acetyltransferase) Binding to the Concanavalin A. Open Biochem J 2012; 6:1-10. [PMID: 22448206 PMCID: PMC3309968 DOI: 10.2174/1874091x01206010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 02/06/2012] [Accepted: 02/14/2011] [Indexed: 12/22/2022] Open
Abstract
Herein, we report that the concanavalin A binding of Tip60 (a target of the human immunodeficiency virus type 1-encoded transactivator Tat interacting protein 60 KD; a histone acetyltransferase; HAT) is enhanced as the result of endoplasmic reticulum (ER) stress. The cell expression of Tip60 combined with site-directed mutagenesis analysis was used to identify the glutamine 324 residue as the lecithin binding (Concanavalin A; Con A) site. The Tip60 N324A mutant strain, which seems to be the Con A binding-deficient, was attenuated the protein-protein interactions with FE65 and its protein stability, but its ability of G0-G1 cell cycle arrest was not interrupted. Interestingly, both HAT activity and the nuclear localization of Tip60 N324A mutant were enhanced than those of Tip60 WT. Thus, our results indicate that the Con A binding deficient of Tip60 seems to be one of the most pivotal posttranslational modifications (such as N-glycosylation) for its functional regulation signal, which is generated in response to ER stress.
Collapse
Affiliation(s)
- Eun Jeoung Lee
- Department of Pre-medicine, Eulji University School of Medicine, Daejeon 301-832, Republic of Korea
| | | | | | | | | |
Collapse
|
10
|
Mo JS, Ann EJ, Yoon JH, Jung J, Choi YH, Kim HY, Ahn JS, Kim SM, Kim MY, Hong JA, Seo MS, Lang F, Choi EJ, Park HS. Serum- and glucocorticoid-inducible kinase 1 (SGK1) controls Notch1 signaling by downregulation of protein stability through Fbw7 ubiquitin ligase. J Cell Sci 2010; 124:100-12. [PMID: 21147854 DOI: 10.1242/jcs.073924] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Notch is a transmembrane protein that acts as a transcriptional factor in the Notch signaling pathway for cell survival, cell death and cell differentiation. Notch1 and Fbw7 mutations both lead the activation of the Notch1 pathway and are found in the majority of patients with the leukemia T-ALL. However, little is known about the mechanisms and regulators that are responsible for attenuating the Notch signaling pathway through Fbw7. Here, we report that the serum- and glucocorticoid-inducible protein kinase SGK1 remarkably reduced the protein stability of the active form of Notch1 through Fbw7. The protein level and transcriptional activity of the Notch1 intracellular domain (Notch1-IC) were higher in SGK1-deficient cells than in SGK1 wild-type cells. Notch1-IC was able to form a trimeric complex with Fbw7 and SGK1, thereby SGK1 enhanced the protein degradation of Notch1-IC via a Fbw7-dependent proteasomal pathway. Furthermore, activated SGK1 phosphorylated Fbw7 at serine 227, an effect inducing Notch1-IC protein degradation and ubiquitylation. Moreover, accumulated dexamethasone-induced SGK1 facilitated the degradation of Notch1-IC through phosphorylation of Fbw7. Together our results suggest that SGK1 inhibits the Notch1 signaling pathway via phosphorylation of Fbw7.
Collapse
Affiliation(s)
- Jung-Soon Mo
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lee EJ, Shin SH, Chun J, Hyun S, Kim Y, Kang SS. The modulation of TRPV4 channel activity through its Ser 824 residue phosphorylation by SGK1. Anim Cells Syst (Seoul) 2010. [DOI: 10.1080/19768354.2010.486939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
12
|
Berry A, Matthews L, Jangani M, Plumb J, Farrow S, Buchan N, Wilson PA, Singh D, Ray DW, Donn RP. Interferon-inducible factor 16 is a novel modulator of glucocorticoid action. FASEB J 2010; 24:1700-13. [PMID: 20086048 PMCID: PMC3000051 DOI: 10.1096/fj.09-139998] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Previously, we used cDNA expression profiling to identify genes associated with glucocorticoid (Gc) sensitivity. We now identify which of these directly influence Gc action. Interferon-inducible protein 16 (IFI16), bone morphogenetic protein receptor type II (BMPRII), and regulator of G-protein signaling 14 (RGS14) increased Gc transactivation, whereas sialyltransferase 4B (SIAT4B) had a negative effect. Amyloid β (A4) precursor-protein binding, family B, member 1 (APBB1/Fe65) and neural cell expressed developmentally down-regulated 9 (NEDD9) were without effect. Only IFI16 potentiated Gc repression of NF-κB. In addition, IFI16 affected basal expression, and Gc induction of endogenous target genes. IFI16 did not affect glucocorticoid receptor (GR) expression, ligand-dependent repression of GR expression, or the ligand-dependent induction of GR phosphorylation on Ser-211 or Ser-203. Coimmunoprecipitation revealed an interaction, suggesting that IFI16 modulation of GR function is mediated by protein crosstalk. Transfection analysis with GR mutants showed that the ligand-binding domain of GR binds IFI16 and is the target domain for IFI16 regulation. Analysis of human lung sections identified colocalization of GR and IFI16, suggesting a physiologically relevant interaction. We demonstrate that IFI16 is a novel modulator of GR function and show the importance of analyzing variation in Gc sensitivity in humans, using appropriate technology, to drive discovery.—Berry, A., Matthews, L. Jangani, M., Plumb, J., Farrow, S., Buchan, N., Wilson, P. A., Singh, D., Ray, D., W., Donn, R. P. Interferon-inducible factor 16 is a novel modulator of glucocorticoid action.
Collapse
Affiliation(s)
- A Berry
- Arthritis Research Campaign Epidemiology Unit, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|