1
|
Labrecque MP, Brown LG, Coleman IM, Nguyen HM, Dalrymple S, Brennen WN, Isaacs JT, Li D, Lakely B, DeLucia DC, Lee JK, Schweizer MT, Lin DW, Corey E, Nelson PS, Morrissey C. Targeting the fibroblast growth factor pathway in molecular subtypes of castration-resistant prostate cancer. Prostate 2024; 84:100-110. [PMID: 37796107 PMCID: PMC10851871 DOI: 10.1002/pros.24630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Androgen receptor (AR) pathway inhibition remains the cornerstone for prostate cancer therapies. However, castration-resistant prostate cancer (CRPC) tumors can resist AR signaling inhibitors through AR amplification and AR splice variants in AR-positive CRPC (ARPC), and conversion to AR-null phenotypes, such as double-negative prostate cancer (DNPC) and small cell or neuroendocrine prostate cancer (SCNPC). We have shown previously that DNPC can bypass AR-dependence through fibroblast growth factor receptor (FGFR) signaling. However, the role of the FGFR pathway in other CRPC phenotypes has not been elucidated. METHODS RNA-Seq analysis was conducted on patient metastases, LuCaP patient-derived xenograft (PDX) models, and CRPC cell lines. Cell lines (C4-2B, VCaP, and 22Rv1) and ex vivo LuCaP PDX tumor cells were treated with enzalutamide (ENZA) and FGFR inhibitors (FGFRi) alone or in combination and sensitivity was determined using cell viability assays. In vivo efficacy of FGFRi in ARPC, DNPC, and SCNPC were evaluated using PDX models. RESULTS RNA-Seq analysis of FGFR signaling in metastatic specimens, LuCaP PDX models, and CRPC cell lines revealed significant FGF pathway activation in AR-low PC (ARLPC), DNPC, and SCNPC tumors. In vitro/ex vivo analysis of erdafitinib and CH5183284 demonstrated robust and moderate growth suppression of ARPC, respectively. In vivo studies using four ARPC PDX models showed that combination ENZA and CH5183284 significantly suppressed tumor growth. Additional in vivo studies using four ARPC PDX models revealed that erdafitinib monotherapy was as effective as ENZA in suppressing tumor growth, and there was limited combination benefit. Furthermore, two of three DNPC models and two of four SCNPC models responded to CH5183284 monotherapy, suggesting FGFRi responses were model dependent. RNA-Seq and gene set enrichment analysis of end-of-study ARPC tumors treated with FGFRi displayed decreased expression of E2F and MYC target genes and suppressed G2M checkpoint genes, whereas end-of-study SCNPC tumors had heterogeneous transcriptional responses. CONCLUSIONS Although FGFRi treatments suppressed tumor growth across CRPC phenotypes, our analyses did not identify a single pathway or biomarker that would identify tumor response to FGFRi. This is very likely due to the array of FGFR1-4 expression and tumor phenotypes present in CRPC. Nevertheless, our data nominate the FGFR pathway as a clinically actionable target that promotes tumor growth in diverse phenotypes of treatment-refractory metastatic CRPC.
Collapse
Affiliation(s)
- Mark P. Labrecque
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Lisha G. Brown
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ilsa M. Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Holly M. Nguyen
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Susan Dalrymple
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - W. Nathaniel Brennen
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - John T. Isaacs
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Dapei Li
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Bryce Lakely
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Diana C. DeLucia
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - John K. Lee
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michael T. Schweizer
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Daniel W. Lin
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Eva Corey
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Colm Morrissey
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Venkatesh K, Mishra C, Pradhan SK. First report on molecular characterization and in silico analysis of caprine TCIM gene. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Lan C, Huan DW, Nie XC, Niu JM, Sun JH, Huang WJ, Li ZH, Xu HT. Association of C8orf4 expression with its methylation status, aberrant β-catenin expression, and the development of cervical squamous cell carcinoma. Medicine (Baltimore) 2019; 98:e16715. [PMID: 31374065 PMCID: PMC6708959 DOI: 10.1097/md.0000000000016715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chromosome 8 open reading frame 4 (C8orf4) is an activator of Wnt signaling pathway, and participates in the tumorigenesis and progression of many tumors. The expression levels of C8orf4 and β-catenin were assessed via immunohistochemical staining in 100 cervical squamous cell carcinoma (CSCC) tissues, 50 high-grade squamous intraepithelial lesions (HSILs), 50 low-grade squamous intraepithelial lesions (LSILs), and 50 normal cervical tissues. Bisulfite sequencing polymerase chain reaction analysis was used to examine the methylation status of the C8orf4 locus in CSCC and normal cervical tissues. The expression rates of C8orf4 and β-catenin were significantly higher in CSCCs or HSILs than in LSILs or normal cervical tissues (P < .05). C8orf4 expression was positively correlated with the poor differentiation of CSCCs (P = .009), and with aberrant expression of β-catenin in CSCCs (P = .002) and squamous intraepithelial lesions (P < .001). The methylation rate of C8orf4 in CSCCs was significantly lower than that in normal cervical tissues (P = .001). The Cancer Genome Atlas genomics data also confirmed that the mRNA expression of C8orf4 was positively associated with the copy number alteration of C8orf4 (correlation coefficient = 0.213, P < .001), and negatively correlated with the methylation level of C8orf4 (correlation coefficient = -0.408, P < .001). In conclusion, the expressions of C8orf4 and β-catenin were synergistically increased in CSCCs and HSILs and higher than those in LSILs and normal cervical tissues. The methylation level of C8orf4 is decreased in CSCCs and is responsible for the increased expression of C8orf4.
Collapse
Affiliation(s)
| | - Da-Wei Huan
- Department of Pathology, Shenyang Women and Children's Hospital
| | | | | | | | - Wen-Jing Huang
- Department of Pathology, the First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Zhi-Han Li
- Department of Pathology, the First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Hong-Tao Xu
- Department of Pathology, the First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Zheng YW, Zhang L, Wang Y, Chen SY, Lei L, Tang N, Yang DL, Bai LL, Zhang XP, Jiang GY, Yang LH, Xu HT, Li QC, Qiu XS, Wang EH. Thyroid cancer 1 (C8orf4) shows high expression, no mutation and reduced methylation level in lung cancers, and its expression correlates with β-catenin and DNMT1 expression and poor prognosis. Oncotarget 2017; 8:62880-62890. [PMID: 28968956 PMCID: PMC5609888 DOI: 10.18632/oncotarget.16877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/21/2017] [Indexed: 02/01/2023] Open
Abstract
Thyroid cancer 1 (TC1, C8orf4) plays important roles in tumors. The aim of this study was to examine the protein expression levels, methylation status, and mutational status of TC1 (C8orf4) in lung cancers, and investigate the correlation between TC1, other members of the Wnt signaling pathway, and lung cancer. TC1 expression levels were assessed via immunohistochemical staining in 179 cases of lung cancer. β-catenin, TCF4, Axin, Disabled-2, Chibby, and DNA methyltransferase-1 (DNMT1) expressions were also examined. Bisulfite sequencing PCR analysis was used to examine the methylation status of the C8orf4 locus, while PCR analysis and direct sequencing were used to determine its mutational status. We found high TC1 expression correlated with poor differentiation, advanced TNM stage, lymphatic metastasis, and poor prognosis in lung cancer patients. TC1 expression also correlated with β-catenin and DNMT1 expressions. No mutations in C8orf4 were detected. However, methylation levels of C8orf4 in lung cancers were lower than in corresponding normal lung tissues. In conclusion, high TC1 expression is implicated in lung cancer progression and correlates with poor prognosis in lung cancer. Reduced methylation levels might be responsible for the elevated TC1 expression levels. TC1, β-catenin, and DNMT1 can synergistically activate Wnt/β-catenin signaling in lung cancers.
Collapse
Affiliation(s)
- Yi-Wen Zheng
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Li Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Yuan Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Song-Yan Chen
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Lei Lei
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Na Tang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Da-Lei Yang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Lin-Lin Bai
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Xiu-Peng Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Gui-Yang Jiang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Lian-He Yang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Hong-Tao Xu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Qing-Chang Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Xue-Shan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - En-Hua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| |
Collapse
|
5
|
Wu D, Li L, Yan W. Knockdown of TC-1 enhances radiosensitivity of non-small cell lung cancer via the Wnt/β-catenin pathway. Biol Open 2016; 5:492-8. [PMID: 27029901 PMCID: PMC4890676 DOI: 10.1242/bio.017608] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Thyroid cancer 1 (TC-1, C8ofr4) is widely expressed in vertebrates and associated with many kinds of tumors. Previous studies indicated that TC-1 functions as a positive regulator in the Wnt/β-catenin signaling pathway in non-small cell lung cancer (NSCLC). However, its exact role and regulation mechanism in radiosensitivity of NSCLC are still unclear. The expression level of TC-1 was measured by qRT-PCR and western blot in NSCLC cell lines. Proliferation and apoptosis of NSCLC cells in response to TC-1 knockdown or/and radiation were determined by MTT assay and flow cytometry, respectively. The activation of the Wnt/β-catenin signaling pathway was further examined by western blot in vitro and in vivo. Compared to TC-1 siRNA or radiotherapy alone, TC-1 silencing combined with radiation inhibited cell proliferation and induced apoptosis in NSCLC cell lines by inactivating of the Wnt/β-catenin signaling pathway. Furthermore, inhibition of the Wnt/β-catenin signaling pathway by XAV939, a Wnt/β-catenin signaling inhibitor, contributed to proliferation inhibition and apoptosis induction in NSCLC A549 cells. Combinative treatment of A549 xenografts with TC-1 siRNA and radiation caused significant tumor regression and inactivation of the Wnt/β-catenin signaling pathway relative to TC-1 siRNA or radiotherapy alone. The results from in vitro and in vivo studies indicated that TC-1 silencing sensitized NSCLC cell lines to radiotherapy through the Wnt/β-catenin signaling pathway. Summary: TC-1 silencing inhibited cell proliferation and induced apoptosis in non-small cell lung cancer (NSCLC) both in vitro and in vivo through the Wnt/β-catenin signaling pathway, thereby increasing the susceptibility of NSCLC to radiotherapy.
Collapse
Affiliation(s)
- Dapeng Wu
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Lei Li
- Department of Respiratory, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Wei Yan
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, China
| |
Collapse
|
6
|
Choi D, Ramu S, Park E, Jung E, Yang S, Jung W, Choi I, Lee S, Kim KE, Seong YJ, Hong M, Daghlian G, Kim D, Shin E, Seo JI, Khatchadourian V, Zou M, Li W, De Filippo R, Kokorowski P, Chang A, Kim S, Bertoni A, Furlanetto TW, Shin S, Li M, Chen Y, Wong A, Koh C, Geliebter J, Hong YK. Aberrant Activation of Notch Signaling Inhibits PROX1 Activity to Enhance the Malignant Behavior of Thyroid Cancer Cells. Cancer Res 2015; 76:582-93. [PMID: 26609053 DOI: 10.1158/0008-5472.can-15-1199] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/01/2015] [Indexed: 12/30/2022]
Abstract
Papillary thyroid cancer (PTC) is one of the most common endocrine malignancies associated with significant morbidity and mortality. Although multiple studies have contributed to a better understanding of the genetic alterations underlying this frequently arising disease, the downstream molecular effectors that impact PTC pathogenesis remain to be further defined. Here, we report that the regulator of cell fate specification, PROX1, becomes inactivated in PTC through mRNA downregulation and cytoplasmic mislocalization. Expression studies in clinical specimens revealed that aberrantly activated NOTCH signaling promoted PROX1 downregulation and that cytoplasmic mislocalization significantly altered PROX1 protein stability. Importantly, restoration of PROX1 activity in thyroid carcinoma cells revealed that PROX1 not only enhanced Wnt/β-catenin signaling but also regulated several genes known to be associated with PTC, including thyroid cancer protein (TC)-1, SERPINA1, and FABP4. Furthermore, PROX1 reexpression suppressed the malignant phenotypes of thyroid carcinoma cells, such as proliferation, motility, adhesion, invasion, anchorage-independent growth, and polyploidy. Moreover, animal xenograft studies demonstrated that restoration of PROX1 severely impeded tumor formation and suppressed the invasiveness and the nuclear/cytoplasmic ratio of PTC cells. Taken together, our findings demonstrate that NOTCH-induced PROX1 inactivation significantly promotes the malignant behavior of thyroid carcinoma and suggest that PROX1 reactivation may represent a potential therapeutic strategy to attenuate disease progression.
Collapse
Affiliation(s)
- Dongwon Choi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Swapnika Ramu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eunkyung Park
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eunson Jung
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sara Yang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Wonhyeuk Jung
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Inho Choi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California. Department of Pharmaceutical Engineering, College of Life and Health Sciences, Hoseo University, Asan, Chungnam, Republic of Korea
| | - Sunju Lee
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kyu Eui Kim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Young Jin Seong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mingu Hong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - George Daghlian
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Daniel Kim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eugene Shin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jung In Seo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Vicken Khatchadourian
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mengchen Zou
- Department of Dermatology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Wei Li
- Department of Dermatology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Roger De Filippo
- Division of Urology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Paul Kokorowski
- Division of Urology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Andy Chang
- Division of Urology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Steve Kim
- Division of Urology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ana Bertoni
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Rio Grande do Sul, Brazil
| | - Tania Weber Furlanetto
- Postgraduate Program in Medicine: Medical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Sung Shin
- Department of Pathology, Kaiser Permanente Medical Center, Fontana, California
| | - Meng Li
- Bioinformatics Service Program, Norris Medical Library, University of Southern California, Los Angeles, California
| | - Yibu Chen
- Bioinformatics Service Program, Norris Medical Library, University of Southern California, Los Angeles, California
| | - Alex Wong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chester Koh
- Division of Pediatric Urology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Jan Geliebter
- Department of Microbiology & Immunology, Department of Otolaryngology, New York Medical College, Valhalla, New York
| | - Young-Kwon Hong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
7
|
Gene expression and pathway analysis of human hepatocellular carcinoma cells treated with cadmium. Toxicol Appl Pharmacol 2015; 288:399-408. [PMID: 26314618 DOI: 10.1016/j.taap.2015.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a toxic and carcinogenic metal naturally occurring in the Earth's crust. A common route of human exposure is via diet and cadmium accumulates in the liver. The effects of Cd exposure on gene expression in human hepatocellular carcinoma (HepG2) cells were examined in this study. HepG2 cells were acutely-treated with 0.1, 0.5, or 1.0 μM Cd for 24h; or chronically-treated with 0.01, 0.05, or 0.1 μM Cd for three weeks and gene expression analysis was performed using Affymetrix GeneChip® Human Gene 1.0 ST Arrays. Acute and chronic exposures significantly altered the expression of 333 and 181 genes, respectively. The genes most upregulated by acute exposure included several metallothioneins. Downregulated genes included the monooxygenase CYP3A7, involved in drug and lipid metabolism. In contrast, CYP3A7 was upregulated by chronic Cd exposure, as was DNAJB9, an anti-apoptotic J protein. Genes downregulated following chronic exposure included the transcriptional regulator early growth response protein 1. Ingenuity Pathway Analysis revealed that the top networks altered by acute exposure were lipid metabolism, small molecule biosynthesis, cell morphology, organization, and development; while top networks altered by chronic exposure were organ morphology, cell cycle, cell signaling, and renal and urological diseases/cancer. Many of the dysregulated genes play important roles in cellular growth, proliferation, and apoptosis, and may be involved in carcinogenesis. In addition to gene expression changes, HepG2 cells treated with cadmium for 24h indicated a reduction in global levels of histone methylation and acetylation that persisted 72 h post-treatment.
Collapse
|
8
|
miR-101 inhibits the G1-to-S phase transition of cervical cancer cells by targeting Fos. Int J Gynecol Cancer 2015; 24:1165-72. [PMID: 24987920 DOI: 10.1097/igc.0000000000000187] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES The chief objective of this study was to identify the miRNAs targeting Fos, a well-recognized proto-oncogene that is commonly overexpressed in cervical cancer, and its biological significance on the cellular behaviors of HeLa, a cervical cancer cell. MATERIALS AND METHODS We initially analyzed the 3'untranslated region (3'UTR) of Fos and screened the potential miRNAs targeting Fos using 3 bioinformatical Web sites. Luciferase reporter assay, real-time polymerase chain reaction, and Western blotting were used to validate the binding of chosen miRNA (miR-101) on the 3'UTR of Fos and the downstream regulation on its mRNA and protein levels. Furthermore, flow cytometry along with the Fos rescue strategy was applied to analyze the modulation of cell cycle of HeLa cells by miR-101. RESULTS Among these predicted candidate miRNAs, miR-101 was the miRNAs preferred by all the 3 used Web sites. The results of luciferase reporter assay, real-time polymerase chain reaction, and Western blotting demonstrated that miR-101 directly targeted on the 3'UTR of Fos and down-regulated the expression of Fos at mRNA and protein levels. Furthermore, cell cycle analysis showed that miR-101 arrests G1-to-S phase transition of HeLa cells, at least partially by targeting Fos. CONCLUSIONS We concluded that by targeting the proto-oncogene Fos, miR-101 is involved in G1-to-S phase transition in cervical cancer cells in vitro and might provide a new approach for the pharmacological interference node in cervical cancer treatment.
Collapse
|
9
|
The high expression of TC1 (C8orf4) was correlated with the expression of β-catenin and cyclin D1 and the progression of squamous cell carcinomas of the tongue. Tumour Biol 2015; 36:7061-7. [DOI: 10.1007/s13277-015-3423-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 04/06/2015] [Indexed: 12/18/2022] Open
|
10
|
Lei J, Li W, Yang Y, Lu Q, Zhang N, Bai G, Zhong D, Su K, Liu B, Li X, Wang Y, Wang X. TC-1 overexpression promotes cell proliferation in human non-small cell lung cancer that can be inhibited by PD173074. PLoS One 2014; 9:e100075. [PMID: 24941347 PMCID: PMC4062440 DOI: 10.1371/journal.pone.0100075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/21/2014] [Indexed: 12/01/2022] Open
Abstract
Thyroid cancer-1 (TC-1), a natively disordered protein, is widely expressed in vertebrates and overexpressed in many kinds of tumors. However, its exact role and regulation mechanism in human non-small cell lung cancer (NSCLC) are still unclear. In the present study, we found that TC-1 is highly expressed in NSCLC and that its aberrant expression is strongly associated with NSCLC cell proliferation. Exogenous TC-1 overexpression promotes cell proliferation, accelerates the cell G1-to-S-phase transition, and reduces apoptosis in NSCLC. The knockdown of TC-1, however, inhibits NSCLC cell proliferation, cycle transition, and apoptosis resistance. Furthermore, we also demonstrated that PD173074, which functions as an inhibitor of the TC-1 in NSCLC, decreases the expression of TC-1 and inhibits TC-1 overexpression mediated cell proliferation in vitro and in vivo. Nevertheless, the inhibition function of PD173074 on NSCLC cell proliferation was eliminated in cells with TC-1 knockdown. These results suggest that PD173074 plays a significant role in TC-1 overexpression mediated NSCLC cell proliferation and may be a potential intervention target for the prevention of cell proliferation in NSCLC.
Collapse
Affiliation(s)
- Jie Lei
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wenhai Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ye Yang
- Department of thoracic surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Na Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Guangzhen Bai
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Daixing Zhong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kai Su
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Boya Liu
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yunjie Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (YW); (XW)
| | - Xiaoping Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (YW); (XW)
| |
Collapse
|
11
|
Su K, Huang L, Li W, Yan X, Li X, Zhang Z, Jin F, Lei J, Ba G, Liu B, Wang X, Wang Y. TC-1 (c8orf4) enhances aggressive biologic behavior in lung cancer through the Wnt/β-catenin pathway. J Surg Res 2013; 185:255-63. [PMID: 23880650 DOI: 10.1016/j.jss.2013.05.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/06/2013] [Accepted: 05/16/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND The thyroid cancer-1 (TC-1) or c8orf4 gene encodes a 106-residue naturally disordered protein that has been found to be associated with thyroid, gastric, and breast cancer. A recent study has indicated that the protein functions as a positive regulator in the Wnt/β-catenin signaling pathway in human breast cancer. However, no research has been done in the area of lung cancer. Therefore, the goal of the present study was to confirm the relationship among TC-1, lung cancer, and the Wnt/β-catenin signaling pathway. MATERIALS AND METHODS The expression of TC-1 was immunohistochemically examined in 147 patients with non-small-cell lung cancer. TC-1-overexpressed and silenced A549 cells were infected using lentivirus and MTT cell proliferation analysis, and Matrigel invasion assays and scratch-wound assays were performed to confirm the biologic behavioral changes in different A549 cell subsets. The Wnt/β-catenin signaling pathway, key gene β-catenin, target genes of vascular endothelial growth factor, cyclin D1, matrix metalloproteinase-7, c-myc, and survivin were tested at the mRNA and protein level. RESULTS TC-1 was detected in 97 of the 147 non-small-cell lung cancer primary tumor specimens, and its expression correlated with the TNM stage and regional lymph node metastasis (P < 0.01). In vitro experiments demonstrated that TC-1 expression affected both proliferation and invasion in the A549 cell line. Furthermore, expression of TC-1 protein affected the Wnt/β-catenin signaling pathway's downstream genes, such as vascular endothelial growth factor and matrix metalloproteinase-7, at the mRNA and protein level. CONCLUSIONS TC-1 expression is associated with aggressive biologic behavior in lung cancer and might coordinate with the Wnt/β-catenin pathway as a positive upstream regulator that induces these behaviors.
Collapse
Affiliation(s)
- Kai Su
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Xu HT, Liu Y, Liu SL, Miao Y, Li QC, Wang EH. TC-1 (C8orf4) expression is correlated with differentiation in ovarian carcinomas and might distinguish metastatic ovarian from metastatic colorectal carcinomas. Virchows Arch 2013; 462:281-7. [PMID: 23377761 DOI: 10.1007/s00428-013-1375-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/04/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Thyroid cancer 1 (TC-1, C8orf4) is involved in the development of many cancers. In this study, we investigated the correlation between the expression of TC-1 and the clinicopathological characteristics of ovarian and colorectal adenocarcinomas. We also explored the possible use of TC-1 as a marker to distinguish between metastatic tumors of the ovary and colorectum. We used immunohistochemistry to examine the expression level of TC-1 in 100 ovarian and 100 colorectal adenocarcinomas and 25 metastatic carcinomas with the ovary or colorectum as primary site. TC-1 was expressed in all ovarian carcinoma samples. The high expression rate of TC-1 was 84 % in ovarian carcinomas, which was much higher than that observed in colorectal adenocarcinomas (35 %, P < 0.001). High expression of TC-1 significantly correlated with poor differentiation of ovarian carcinomas (P = 0.013). To explore the value of TC-1 in distinguishing metastatic ovarian cancers from colorectal cancers, we found the area under the receiver operator characteristic curve of TC-1 to be 0.819 (95 % confidence interval, 0.760-0.878; P < 0.001). Furthermore, TC-1 was highly expressed in 100 % of nine metastatic ovarian cancers, but only in 31 % of 16 metastatic colorectal cancers. The higher expression of TC-1 in ovarian compared to colorectal adenocarcinomas suggests its potential use as a marker, to distinguish between metastatic ovarian and colorectal adenocarcinomas.
Collapse
Affiliation(s)
- Hong-Tao Xu
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China.
| | | | | | | | | | | |
Collapse
|
13
|
Prokudin I, Stasyk T, Rainer J, Bonn GK, Kofler R, Huber LA. Comprehensive proteomic and transcriptomic characterization of hepatic expression signatures affected in p14 liver conditional knockout mice. Proteomics 2011; 11:469-80. [PMID: 21268275 DOI: 10.1002/pmic.201000400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 01/20/2023]
Abstract
Scaffold proteins regulate intracellular MAP kinase signaling by providing critical spatial and temporal specificities. We have shown previously that the scaffold protein MEK1 partner (MP1) is localized to late endosomes by the adaptor protein p14. Using conditional gene disruption of p14 in livers of mice (p14(Δhep) ) we analyzed protein and transcript signatures in tissue samples. Further biological network analysis predicted that the differentially expressed transcripts and proteins are involved in cell cycle progression and regulation of cellular proliferation. Although some of the here identified signatures were previously linked to phospho-ERK activity, most of them were novel targets of the late endosomal p14/MP1/MEK/ERK signaling module. Finally, the proliferation defect was confirmed in a chemically induced liver regeneration model in p14(Δhep) knockout mice.
Collapse
Affiliation(s)
- Ivan Prokudin
- Division of Cell Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
14
|
Investigation of copy-number variations of C8orf4 in hematological malignancies. Med Oncol 2010; 28 Suppl 1:S647-52. [PMID: 20878554 DOI: 10.1007/s12032-010-9698-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 09/17/2010] [Indexed: 10/19/2022]
Abstract
C8orf4, thyroid cancer-1 (TC1), was first identified in papillary thyroid carcinoma and encodes a nucleus-localized protein. A recent array-based study implicated the presence of copy-number variations (CNVs) of C8orf4 in the genomes of acute myelogenous leukemia. However, the functional impact of such regions needs to be extensively investigated in large amount of clinical samples. The purpose of this study is to confirm the relationship between C8orf4 CNVs and hematological malignancies. In our study, we collected bone marrow samples from 515 hematological malignancies and 102 healthy controls. And the CNVs of C8orf4 were detected by real-time PCR. We found significant association between the copy-number deletions of C8orf4 and the risk of these hematological malignancies including acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), multiple myeloma (MM), and myelodysplastic syndrome (MDS). We also found that the expression of C8orf4 mRNA was relatively lower in the samples with 1 copy of DNA than those with 2 copies of DNA. The CNVs of C8orf4 were associated with the risk of hematological malignancies.
Collapse
|
15
|
Ai J, Duan J, Lv X, Chen M, Yang Q, Sun H, Li Q, Xiao Y, Wang Y, Zhang Z, Tan R, Liu Y, Zhao D, Chen T, Yang Y, Wei Y, Zhou Q. Overexpression of FoxO1 causes proliferation of cultured pancreatic beta cells exposed to low nutrition. Biochemistry 2010; 49:218-25. [PMID: 19938874 DOI: 10.1021/bi901414g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Multiple lines of evidence have shown that the functional defect of pancreatic beta cells is the root cause of type 2 diabetes. FoxO1, a key transcription factor of fundamental cellular physiology and functions, has been implicated in this process. However, the underlying molecular mechanism is still largely unknown. Here, we show that the overexpression of FoxO1 promotes the proliferation of cultured pancreatic beta cells exposed to low nutrition, while no change in apoptosis was observed compared with the control group. Moreover, by using two specific inhibitors for PI3K and MAPK signaling, we found that FoxO1 might be the downstream transcription factor of these two pathways. Furthermore, a luciferase assay demonstrated that FoxO1 could regulate the expression of Ccnd1 at the transcription level. Collectively, our findings indicated that FoxO1 modulated by both MAPK and PI3K signaling pathways was prone to cause the proliferation, but not the apoptosis, of pancreatic beta cells exposed to low nutrition, at least partially, by regulating the expression of Ccnd1 at the transcription level.
Collapse
Affiliation(s)
- Jianzhong Ai
- Core Facility of Genetically Engineered Mice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sun H, Li QW, Lv XY, Ai JZ, Yang QT, Duan JJ, Bian GH, Xiao Y, Wang YD, Zhang Z, Liu YH, Tan RZ, Yang Y, Wei YQ, Zhou Q. MicroRNA-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation. Mol Biol Rep 2009; 37:2951-8. [DOI: 10.1007/s11033-009-9861-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 09/28/2009] [Indexed: 12/26/2022]
|
17
|
Bian GH, Cao G, Lv XY, Li QW, Sun H, Xiao Y, Ai JZ, Yang QT, Duan JJ, Wang YD, Zhang Z, Tan RZ, Liu YH, Yang Y, Wei YQ, Zhou Q. Down-regulation of Pkd2 by siRNAs suppresses cell-cell adhesion in the mouse melanoma cells. Mol Biol Rep 2009; 37:2387-95. [PMID: 19688268 DOI: 10.1007/s11033-009-9746-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 08/05/2009] [Indexed: 02/05/2023]
Abstract
The Pkd2 gene encodes an integral protein (~130 kDa), named polycystin-2 (PC-2). PC-2 is mainly involved in autosomal dominant polycystic kidney disease. Recently, polycystin-1/polycystin-2 complex has been shown to act as an adhesion complex mediating or regulating cell-cell or cell-matrix adhesion, suggesting that PC-2 may play a role in cell-cell/cell-matrix interactions. Here, we knocked down the expression of Pkd2 gene with small interfering RNAs (siRNAs) in the mouse melanoma cells (B16 cells), indicating that the cells transfected with the targeted siRNAs significantly suppressed cell-cell adhesion, but not cell-matrix adhesion, compared to the cells transfected with non-targeted control (NC) siRNA. This study provides the first directly functional evidence that PC-2 mediates cell-cell adhesion. Furthermore, we demonstrated that PC-2 modulated cell-cell adhesion may be, at least partially, associated with E-cadherin. Collectively, these findings for the first time showed that PC-2 may mediate cell-cell adhesion, at least partially, through E-cadherin.
Collapse
Affiliation(s)
- Guo-Hui Bian
- Core Facility of Gene Engineered Mice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Keyuan the Fourth Road, The District of Hi&Tech, 610041 Chengdu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|