1
|
Zhang X, Yao J, Xie M, Liang Y, Lin X, Song J, Bao X, Ma X, Wang Y, Zhang Y, Liu Y, Han W, Pan L, Xue X. Tertiary lymphoid structures as potential biomarkers for cancer prediction and prognosis. Int Immunopharmacol 2024; 140:112790. [PMID: 39088920 DOI: 10.1016/j.intimp.2024.112790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregates formed in non-lymphoid tissues, including cancers, and are loci for the generation of in situ anti-tumor immune responses, which play a crucial role in cancer control. The state of TLS presence in cancer and its composition can significantly impact the treatment response and prognosis of patients. TLSs have the potential to serve as predictive and prognostic biomarkers for cancer. However, the mechanisms underlying TLS formation in cancer and how the essential components of TLSs affect cancer are not fully understood. In this review, we summarized TLS formation in cancer, the value of the TLS in different states of existence, and its key constituents for cancer prediction and prognosis. Finally, we discussed the impact of cancer treatment on TLSs.
Collapse
Affiliation(s)
- Xin Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, 100835, China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jialin Song
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Xinyu Bao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shanxi, 710038, China
| | - Yinguang Zhang
- Department of Thoracic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yiming Liu
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, 100835, China
| | - Wenya Han
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Lei Pan
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| | - Xinying Xue
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China; Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
2
|
Li S, Chen K, Sun Z, Chen M, Pi W, Zhou S, Yang H. Radiation drives tertiary lymphoid structures to reshape TME for synergized antitumour immunity. Expert Rev Mol Med 2024; 26:e30. [PMID: 39438247 PMCID: PMC11505612 DOI: 10.1017/erm.2024.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 10/25/2024]
Abstract
Radiotherapy (RT) plays a key role in the tumour microenvironment (TME), impacting the immune response via cellular and humoral immunity. RT can induce local immunity to modify the TME. It can stimulate dendritic cell maturation and T-cell infiltration. Moreover, B cells, macrophages and other immune cells may also be affected. Tertiary lymphoid structure (TLS) is a unique structure within the TME and a class of aggregates containing T cells, B cells and other immune cells. The maturation of TLS is determined by the presence of mature dendritic cells, the density of TLS is determined by the number of immune cells. TLS maturation and density both affect the antitumour immune response in the TME. This review summarized the recent research on the impact and the role of RT on TLS, including the changes of TLS components and formation conditions and the mechanism of how RT affects TLS and transforms the TME. RT may promote TLS maturation and density to modify the TME regarding enhanced antitumour immunity.
Collapse
Affiliation(s)
- Shuling Li
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Kuifei Chen
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Zhenwei Sun
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Meng Chen
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Haihua Yang
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
3
|
Zhang K, Xie X, Zheng SL, Deng YR, Liao D, Yan HC, Kang X, Jiang HP, Guo SQ. Tertiary lymphoid structures in gynecological cancers: prognostic role, methods for evaluating, antitumor immunity, and induction for therapy. Front Oncol 2023; 13:1276907. [PMID: 38023214 PMCID: PMC10667730 DOI: 10.3389/fonc.2023.1276907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Tertiary lymphoid structures (TLSs), referred to as tertiary lymphoid organs and lymphoid tissue neogenesis, are aggregates of immune cells that occur in nonlymphoid tissues. In recent years, it has been found that TLSs within the tumor microenvironment have been associated with local adaptive immune immunity against cancer and favorable prognosis in several human solid tumors, including gynecological cancers. The issue of the prognosis of gynecological cancers, including endometrial, cervical, and ovarian cancer, is an enormous challenge that many clinical doctors and researchers are now facing. Concerning the predictive prognostic role of TLSs, effective evaluation, and quantification of TLSs in human tissues may be used to assist gynecologists in assessing the clinical outcome of gynecological cancer patients. This review summarizes the current knowledge of TLSs in gynecological cancers, mainly focusing on the potential mechanism of TLS neogenesis, methods for evaluating TLSs, their prognostic value, and their role in antitumor immune immunity. This review also discusses the new therapeutic methods currently being explored in gynecological cancers to induce the formation of TLSs.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Gynecology, Pingxiang People's Hospital, Pingxiang, Jiangxi, China
| | - Xiao Xie
- Department of Urology, Pingxiang People's Hospital, Pingxiang, Jiangxi, China
| | - Shuang-Lin Zheng
- Department of Gynecology, The Third Hospital of Mianyang, Mianyang, Sichuan, China
| | - Yuan-Run Deng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Dan Liao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Hai-Chen Yan
- Department of Urology, Pingxiang People's Hospital, Pingxiang, Jiangxi, China
| | - Xi Kang
- Department of Urology, Pingxiang People's Hospital, Pingxiang, Jiangxi, China
| | - Hui-Ping Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Sui-Qun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Ligon MM, Joshi CS, Fashemi BE, Salazar AM, Mysorekar IU. Effects of aging on urinary tract epithelial homeostasis and immunity. Dev Biol 2023; 493:29-39. [PMID: 36368522 PMCID: PMC11463731 DOI: 10.1016/j.ydbio.2022.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
A global increase in older individuals creates an increasing demand to understand numerous healthcare challenges related to aging. This population is subject to changes in tissue physiology and the immune response network. Older individuals are particularly susceptible to infectious diseases, with one of the most common being urinary tract infections (UTIs). Postmenopausal and older women have the highest risk of recurrent UTIs (rUTIs); however, why rUTIs become more frequent after menopause and during old age is incompletely understood. This increased susceptibility and severity among older individuals may involve functional changes to the immune system with age. Aging also has substantial effects on the epithelium and the immune system that led to impaired protection against pathogens, yet heightened and prolonged inflammation. How the immune system and its responses to infection changes within the bladder mucosa during aging has largely remained poorly understood. In this review, we highlight our understanding of bladder innate and adaptive immunity and the impact of aging and hormones and hormone therapy on bladder epithelial homeostasis and immunity. In particular, we elaborate on how the cellular and molecular immune landscape within the bladder can be altered during aging as aged mice develop bladder tertiary lymphoid tissues (bTLT), which are absent in young mice leading to profound age-associated change to the immune landscape in bladders that might drive the significant increase in UTI susceptibility. Knowledge of host factors that prevent or promote infection can lead to targeted treatment and prevention regimens. This review also identifies unique host factors to consider in the older, female host for improving rUTI treatment and prevention by dissecting the age-associated alteration of the bladder mucosal immune system.
Collapse
Affiliation(s)
- Marianne M Ligon
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chetanchandra S Joshi
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bisiayo E Fashemi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Arnold M Salazar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular Microbiology and Virology, Baylor College of Medicine, Houston, TX, 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Alsughayyir J, Pettigrew GJ, Motallebzadeh R. Spoiling for a Fight: B Lymphocytes As Initiator and Effector Populations within Tertiary Lymphoid Organs in Autoimmunity and Transplantation. Front Immunol 2017; 8:1639. [PMID: 29218052 PMCID: PMC5703719 DOI: 10.3389/fimmu.2017.01639] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) develop at ectopic sites within chronically inflamed tissues, such as in autoimmunity and rejecting organ allografts. TLOs differ structurally from canonical secondary lymphoid organs (SLOs), in that they lack a mantle zone and are not encapsulated, suggesting that they may provide unique immune function. A notable feature of TLOs is the frequent presence of structures typical of germinal centers (GCs). However, little is known about the role of such GCs, and in particular, it is not clear if the B cell response within is autonomous, or whether it synergizes with concurrent responses in SLOs. This review will discuss ectopic lymphoneogenesis and the role of the B cell in TLO formation and subsequent effector output in the context of autoimmunity and transplantation, with particular focus on the contribution of ectopic GCs to affinity maturation in humoral immune responses and to the potential breakdown of self-tolerance and development of humoral autoimmunity.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gavin J Pettigrew
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Reza Motallebzadeh
- Division of Surgery and Interventional Science, University College London, London, United Kingdom.,Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Nephrology, Urology and Transplantation, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
6
|
Irshad S, Flores-Borja F, Lawler K, Monypenny J, Evans R, Male V, Gordon P, Cheung A, Gazinska P, Noor F, Wong F, Grigoriadis A, Fruhwirth GO, Barber PR, Woodman N, Patel D, Rodriguez-Justo M, Owen J, Martin SG, Pinder SE, Gillett CE, Poland SP, Ameer-Beg S, McCaughan F, Carlin LM, Hasan U, Withers DR, Lane P, Vojnovic B, Quezada SA, Ellis P, Tutt ANJ, Ng T. RORγt + Innate Lymphoid Cells Promote Lymph Node Metastasis of Breast Cancers. Cancer Res 2017; 77:1083-1096. [PMID: 28082403 DOI: 10.1158/0008-5472.can-16-0598] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 11/16/2022]
Abstract
Cancer cells tend to metastasize first to tumor-draining lymph nodes, but the mechanisms mediating cancer cell invasion into the lymphatic vasculature remain little understood. Here, we show that in the human breast tumor microenvironment (TME), the presence of increased numbers of RORγt+ group 3 innate lymphoid cells (ILC3) correlates with an increased likelihood of lymph node metastasis. In a preclinical mouse model of breast cancer, CCL21-mediated recruitment of ILC3 to tumors stimulated the production of the CXCL13 by TME stromal cells, which in turn promoted ILC3-stromal interactions and production of the cancer cell motile factor RANKL. Depleting ILC3 or neutralizing CCL21, CXCL13, or RANKL was sufficient to decrease lymph node metastasis. Our findings establish a role for RORγt+ILC3 in promoting lymphatic metastasis by modulating the local chemokine milieu of cancer cells in the TME. Cancer Res; 77(5); 1083-96. ©2017 AACR.
Collapse
Affiliation(s)
- Sheeba Irshad
- Breast Cancer Now (BCN) Research Unit, King's College London, London, United Kingdom
| | - Fabian Flores-Borja
- Breast Cancer Now (BCN) Research Unit, King's College London, London, United Kingdom
- Richard Dimbleby, Randall Division & Division of Cancer Studies, King's College London, London, United Kingdom
| | - Katherine Lawler
- Richard Dimbleby, Randall Division & Division of Cancer Studies, King's College London, London, United Kingdom
- Institute for Mathematical and Molecular Biomedicine, King's College London, London, United Kingdom
| | - James Monypenny
- Richard Dimbleby, Randall Division & Division of Cancer Studies, King's College London, London, United Kingdom
| | - Rachel Evans
- Richard Dimbleby, Randall Division & Division of Cancer Studies, King's College London, London, United Kingdom
| | - Victoria Male
- Breast Cancer Now (BCN) Research Unit, King's College London, London, United Kingdom
| | - Peter Gordon
- Breast Cancer Now (BCN) Research Unit, King's College London, London, United Kingdom
- Richard Dimbleby, Randall Division & Division of Cancer Studies, King's College London, London, United Kingdom
| | - Anthony Cheung
- Richard Dimbleby, Randall Division & Division of Cancer Studies, King's College London, London, United Kingdom
| | - Patrycja Gazinska
- Breast Cancer Now (BCN) Research Unit, King's College London, London, United Kingdom
| | - Farzana Noor
- Breast Cancer Now (BCN) Research Unit, King's College London, London, United Kingdom
| | - Felix Wong
- Richard Dimbleby, Randall Division & Division of Cancer Studies, King's College London, London, United Kingdom
| | - Anita Grigoriadis
- Breast Cancer Now (BCN) Research Unit, King's College London, London, United Kingdom
| | - Gilbert O Fruhwirth
- Richard Dimbleby, Randall Division & Division of Cancer Studies, King's College London, London, United Kingdom
- Leukocyte Dynamics Group, Beatson Advanced Imaging Resource, CRUK Beatson Institute, Glasgow, United Kingdom
| | - Paul R Barber
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, United Kingdom
| | - Natalie Woodman
- King's Health Partners Cancer Biobank, King's College London, London, United Kingdom
| | - Dominic Patel
- International Center for Infectiology Research, University of Lyon, Lyon, France
| | | | - Julie Owen
- King's Health Partners Cancer Biobank, King's College London, London, United Kingdom
| | - Stewart G Martin
- Division of Cancer and Stem Cells, Department of Clinical Oncology, School of Medicine, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Sarah E Pinder
- King's Health Partners Cancer Biobank, King's College London, London, United Kingdom
- Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London, United Kingdom
| | - Cheryl E Gillett
- King's Health Partners Cancer Biobank, King's College London, London, United Kingdom
- Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London, United Kingdom
| | - Simon P Poland
- Richard Dimbleby, Randall Division & Division of Cancer Studies, King's College London, London, United Kingdom
| | - Simon Ameer-Beg
- Richard Dimbleby, Randall Division & Division of Cancer Studies, King's College London, London, United Kingdom
| | - Frank McCaughan
- Department of Asthma, Allergy, and Lung Biology, King's College London, London, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Leo M Carlin
- Leukocyte Dynamics Group, Beatson Advanced Imaging Resource, CRUK Beatson Institute, Glasgow, United Kingdom
| | - Uzma Hasan
- International Center for Infectiology Research, University of Lyon, Lyon, France
| | - David R Withers
- MRC Centre for Immune Regulation, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter Lane
- MRC Centre for Immune Regulation, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Borivoj Vojnovic
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford, United Kingdom
| | - Sergio A Quezada
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London, United Kingdom
| | - Paul Ellis
- Department of Medical Oncology, Guy's and St Thomas Foundation Trust, London, United Kingdom
| | - Andrew N J Tutt
- Breast Cancer Now (BCN) Research Unit, King's College London, London, United Kingdom
- ICR, BCN Research Unit, Toby Robins Research Centre, London, United Kingdom
| | - Tony Ng
- Breast Cancer Now (BCN) Research Unit, King's College London, London, United Kingdom.
- Richard Dimbleby, Randall Division & Division of Cancer Studies, King's College London, London, United Kingdom
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London, United Kingdom
| |
Collapse
|
7
|
Jing F, Choi EY. Potential of Cells and Cytokines/Chemokines to Regulate Tertiary Lymphoid Structures in Human Diseases. Immune Netw 2016; 16:271-280. [PMID: 27799872 PMCID: PMC5086451 DOI: 10.4110/in.2016.16.5.271] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 08/27/2016] [Indexed: 02/06/2023] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid tissues involved in chronic inflammation, autoimmune diseases, transplant rejection and cancer. They exhibit almost all the characteristics of secondary lymphoid organs (SLO), which are associated with adaptive immune responses; as such, they contain organized B-cell follicles with germinal centers, distinct areas containing T cells and dendritic cells, high endothelial venules, and lymphatics. In this review, we briefly describe the formation of SLO, and describe the cellular subsets and molecular cues involved in the formation and maintenance of TLS. Finally, we discuss the associations of TLS with human diseases, especially autoimmune diseases, and the potential for therapeutic targeting.
Collapse
Affiliation(s)
- Feifeng Jing
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
8
|
Werner M, Schmoldt D, Hilbrig F, Jérôme V, Raup A, Zambrano K, Hübner H, Buchholz R, Freitag R. High cell density cultivation of human leukemia T cells (Jurkat cells) in semipermeable polyelectrolyte microcapsules. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Melanie Werner
- Chair for Process BiotechnologyUniversität Bayreuth, Bayreuth Germany
| | - Daria Schmoldt
- Chair for Process BiotechnologyUniversität Bayreuth, Bayreuth Germany
| | - Frank Hilbrig
- Chair for Process BiotechnologyUniversität Bayreuth, Bayreuth Germany
| | - Valérie Jérôme
- Chair for Process BiotechnologyUniversität Bayreuth, Bayreuth Germany
| | - Alexander Raup
- Institute of Bioprocess EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg, Erlangen Germany
| | - Kenny Zambrano
- Institute of Bioprocess EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg, Erlangen Germany
| | - Holger Hübner
- Institute of Bioprocess EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg, Erlangen Germany
| | - Rainer Buchholz
- Institute of Bioprocess EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg, Erlangen Germany
| | - Ruth Freitag
- Chair for Process BiotechnologyUniversität Bayreuth, Bayreuth Germany
| |
Collapse
|
9
|
Stranford S, Ruddle NH. Follicular dendritic cells, conduits, lymphatic vessels, and high endothelial venules in tertiary lymphoid organs: Parallels with lymph node stroma. Front Immunol 2012; 3:350. [PMID: 23230435 PMCID: PMC3515885 DOI: 10.3389/fimmu.2012.00350] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/05/2012] [Indexed: 01/08/2023] Open
Abstract
In this communication, the contribution of stromal, or non-hematopoietic, cells to the structure and function of lymph nodes (LNs), as canonical secondary lymphoid organs (SLOs), is compared to that of tertiary lymphoid tissue or organs (TLOs), also known as ectopic lymphoid tissues. TLOs can arise in non-lymphoid organs during chronic inflammation, as a result of autoimmune responses, graft rejection, atherosclerosis, microbial infection, and cancer. The stromal components found in SLOs including follicular dendritic cells, fibroblast reticular cells, lymphatic vessels, and high endothelial venules and possibly conduits are present in TLOs; their molecular regulation mimics that of LNs. Advances in visualization techniques and the development of transgenic mice that permit in vivo real time imaging of these structures will facilitate elucidation of their precise functions in the context of chronic inflammation. A clearer understanding of the inflammatory signals that drive non-lymphoid stromal cells to reorganize into TLO should allow the design of therapeutic interventions to impede the progression of autoimmune activity, or alternatively, to enhance anti-tumor responses.
Collapse
Affiliation(s)
- Sharon Stranford
- Department of Biological Sciences, Mount Holyoke College South Hadley, MA, USA
| | | |
Collapse
|
10
|
Kobayashi Y, Watanabe T. Synthesis of artificial lymphoid tissue with immunological function. Trends Immunol 2010; 31:422-8. [PMID: 20951645 DOI: 10.1016/j.it.2010.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 08/11/2010] [Accepted: 09/06/2010] [Indexed: 12/22/2022]
Abstract
The ability to generate functional artificial lymphoid tissue to induce specific immunity at ectopic sites could offer a potential breakthrough for treatment of diseases such as cancer and severe infection using immunotherapy. Artificial lymphoid tissue could also offer an informative tool to study further lymphoid tissue development and function in vivo. Here, we review the process of secondary and tertiary lymphoid organization, of which an understanding is essential for artificial lymphoid tissue synthesis. Using this knowledge, we consider the combination of cell types, soluble factors and scaffold properties that will enable proper accumulation and organization of lymphocytes into tissue grafts. Recent success in in vivo induction of artificial lymphoid tissue are also considered.
Collapse
Affiliation(s)
- Yuka Kobayashi
- Graduate School of Medicine, Kyoto University, Yoshida-konoe machi, Sakyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|
11
|
Abstract
This article focuses on the functions of NF-kappaB that vitally impact lymphocytes and thus adaptive immunity. NF-kappaB has long been known to be essential for many of the responses of mature lymphocytes to invading pathogens. In addition, NF-kappaB has important functions in shaping the immune system so it is able to generate adaptive responses to pathogens. In both contexts, NF-kappaB executes critical cell-autonomous functions within lymphocytes as well as within supportive cells, such as antigen-presenting cells or epithelial cells. It is these aspects of NF-kappaB's physiologic impact that we address in this article.
Collapse
|
12
|
Short-term inhibition of p53 combined with keratinocyte growth factor improves thymic epithelial cell recovery and enhances T-cell reconstitution after murine bone marrow transplantation. Blood 2009; 115:1088-97. [PMID: 19965631 DOI: 10.1182/blood-2009-05-223198] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Myeloablative conditioning before bone marrow transplantation (BMT) results in thymic epithelial cell (TEC) injury, T-cell immune deficiency, and susceptibility to opportunistic infections. Conditioning regimen-induced TEC damage directly contributes to slow thymopoietic recovery after BMT. Keratinocyte growth factor (KGF) is a TEC mitogen that stimulates proliferation and, when given before conditioning, reduces TEC injury. Some TEC subsets are refractory to KGF and functional T-cell responses are not fully restored in KGF-treated BM transplant recipients. Therefore, we investigated whether the addition of a pharmacologic inhibitor, PFT-beta, to transiently inhibit p53 during radiotherapy could spare TECs from radiation-induced damage in congenic and allogeneic BMTs. Combined before BMT KGF + PFT-beta administration additively restored numbers of cortical and medullary TECs and improved thymic function after BMT, resulting in higher numbers of donor-derived, naive peripheral CD4(+) and CD8(+) T cells. Radiation conditioning caused a loss of T-cell zone fibroblastic reticular cells (FRCs) and CCL21 expression in lymphoid stroma. KGF + PFT-beta treatment restored both FRC and CCL21 expression, findings that correlated with improved T-cell reconstitution and an enhanced immune response against Listeria monocytogenes infection. Thus, transient p53 inhibition combined with KGF represents a novel and potentially translatable approach to promote rapid and durable thymic and peripheral T-cell recovery after BMT.
Collapse
|