1
|
Song Q, Liao W, He Z, Li D, Dong C, Song C, Yang S. Oxalate induces the ossification of RTECs by activating the JAK2/STAT3 signaling pathway and participates in the formation of kidney stones. Arch Biochem Biophys 2022; 727:109325. [PMID: 35749806 DOI: 10.1016/j.abb.2022.109325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND The ossification of renal tubular epithelial cells (RTECs) plays an important initial role in the formation of kidney stones, but its specific mechanism is still unclear. The JAK2/STAT3 signaling pathway is important for bone cell differentiation. Accordingly, we explored the role and mechanism of the JAK2/STAT3 signaling pathway in the ossification of RTECs. METHODS We used oxalate or ethylene glycol to construct kidney stone models in vitro and in vivo, and investigated the expression of osteogenic-specific genes, osteogenesis ability, and JAK2/STAT3 signaling in the kidney stone models by western blotting, qRT-PCR, immunofluorescence, and immunohistochemistry. Then, genetic engineering or drugs were used to inhibit the expression or activation of JAK2, and the expression of osteogenic-specific genes and the osteogenic ability of the RTECs were determined again. RESULTS In the in vitro and in vivo kidney stone models, the expression of osteogenic specific genes in the RTECs was significantly upregulated, the osteogenic capacity was significantly increased, and the expression of p-JAK2 (phospho-JAK2) and p-STAT3 (phospho-STAT3) was significantly increased. When the expression or activation of JAK2 was inhibited, the ossification of RTECs and the formation of kidney stones was reversed. CONCLUSIONS During the formation of kidney stones, RTECs undergo obvious ossification, and the JAK2/STAT3 signaling pathway plays a key positive regulatory role in this process.
Collapse
Affiliation(s)
- Qianlin Song
- Department of Urology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei Province, People's Republic of China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei Province, People's Republic of China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei Province, People's Republic of China
| | - De Li
- Department of Urology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei Province, People's Republic of China
| | - Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei Province, People's Republic of China
| | - Chao Song
- Department of Urology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei Province, People's Republic of China.
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
2
|
Abstract
Osteoporosis is a systemic disorder of bone metabolism. This study aimed to investigate the impacts and possible mechanisms of Arctiin, a lignin isolated from Arctium lappa on MC3T3-E1 osteoblast differentiation. In this study, after treatment with different concentrations of Arctiin, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to estimate the expression of osteogenesis markers. Then, the activity of alkaline phosphatase (ALP) was detected by an ALP assay kit and calcium nodules staining was evaluated by alizarin red staining (ARS). Additionally, the regulatory effects of Arctiin on cyclin D1 (Ccnd1) was assessed by measurement of protein expression. Subsequently, the functions of Ccnd1 silencing on the osteogenic differentiation was examined in Arctiin-treated MC3T3-E1 cells. Results indicated that Arctiin dose-dependently upregulated the expression of runt-related transcription factor 2 (RUNX2), collagen type 1 (COL1A1), osteocalcin (OCN) and osteopontin (OPN). Elevated ALP activity and calcification degree was prominently observed in the Arctiin-treated groups. Moreover, Ccnd1 expression was notably enhanced after Arctiin intervention. Importantly, Ccnd1-knockdown abrogated the impacts of Arctiin on osteogenic differentiation of MC3T3-E1. To conclude, findings in this study suggested that Arctiin could regulate MC3T3-E1 osteoblast differentiation via up-regulating Ccnd1, supporting that Arctiin might be a therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Ziye Liu
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yongsheng Wu
- Second Department of Orthopaedics, Zhuhai Hospital of Guangdong Provincial Hospital of Traditional Chinese Medicine, Zhuhai City, Guangdong Province, China
| |
Collapse
|
3
|
Huang T, Wu Q, Huang H, Zhang C, Wang L, Wang L, Liu Y, Li W, Zhang J, Liu Y. Expression of GALNT8 and O-glycosylation of BMP receptor 1A suppress breast cancer cell proliferation by upregulating ERα levels. Biochim Biophys Acta Gen Subj 2022; 1866:130046. [PMID: 34743989 DOI: 10.1016/j.bbagen.2021.130046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mucin-type O-glycosylation is one of the most abundant types of O-glycosylation and plays important roles in various human carcinomas, including breast cancer. A large family of polypeptide N-acetyl-α-galactosaminyltransferases (GALNTs) initiate and define sites of mucin-type O-glycosylation. However, the specific mechanisms underlying GALNT8 expression and its roles in tumorigenesis remain poorly characterized. METHODS GALNT8 expression was assessed in 140 breast cancer patients. Immunofluorescence, immunoprecipitation, lectin blot and quantitative real-time PCR were used to investigate the expression of GALNT8 and its role in regulating estrogen receptor α (ERα) via bone morphogenetic protein (BMP) signaling. RESULTS The expression of GALNT8 was associated with breast cancer patient survival. GALNT8 downregulation was associated with a reduction in ERα levels, while GALNT8 overexpression elevated the transcription and protein levels of ERα and suppressed colony formation, suggesting an important role of GALNT8 in cancer cell proliferation. Conversely, GALNT8 knockdown led to the inhibition of BMP/SMAD/RUNX2 axis, which decreased ERα transcription. Further analysis suggested that BMP receptor 1A (BMPR1A) was O-GalNAcylated. Sites mutation of BMPR1A indicated that Thr137 and Ser37/Ser39/Ser44/Thr49 of BMPR1A were the main O-glycosylation sites. Although we cannot exclude the indirect effect of GALNT8, our results demonstrated that the expression of GALNT8 and O-glycosylation of BMPR1A play key roles in regulating the activity of BMP/SMAD/RUNX2 signaling and ERα expression. CONCLUSION These findings suggest that GALNT8 expression and abnormal O-GalNAcylation of BMPR1A increase ERα expression and suppress breast cancer cell proliferation by modulating the BMP signaling pathway. GENERAL SIGNIFICANCE Our results identify the involvement of GALNT8 in regulating ERα expression.
Collapse
Affiliation(s)
- Tianmiao Huang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Qiong Wu
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Huang Huang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Cheng Zhang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Liping Wang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Lingyan Wang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Yangzhi Liu
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Wenli Li
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Jianing Zhang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China..
| | - Yubo Liu
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China..
| |
Collapse
|
4
|
Liu B, Gan W, Jin Z, Wang M, Cui G, Zhang H, Wang H. The Role of miR-34c-5p in Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. Int J Stem Cells 2021; 14:286-297. [PMID: 33906980 PMCID: PMC8429940 DOI: 10.15283/ijsc20188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/29/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives Osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) plays a critical role in the success of lumbar spinal fusion with autogenous bone graft. This study aims to explore the role and specific mechanism of miR-34c-5p in osteogenic differentiation of BMSCs. Methods and Results Rabbit model of lumbar fusion was established by surgery. The osteogenic differentiation dataset of mesenchymal stem cells was obtained from the Gene Expression Omnibus (GEO) database, and differentially expressed miRNAs were analyzed using R language (limma package). The expressions of miR-34c-5p, miR-199a-5p, miR-324-5p, miR-361-5p, RUNX2, OCN and Bcl-2 were determined by qRT-PCR and Western blot. ELISA, Alizarin red staining and CCK-8 were used to detect the ALP content, calcium deposition and proliferation of BMSCs. The targeted binding sites between miR-34c-5p and Bcl-2 were predicted by the Target database and verified using dual-luciferase reporter assay. MiR-34c-5p expression was higher in rabbit lumbar fusion model and differentiated BMSCs than normal rabbit or BMSCs. The content of ALP and the deposition of calcium increased with the osteogenic differentiation of BMSCs. Upregulation of miR-34c-5p reduced cell proliferation and promoted ALP content, calcium deposition, RUNX2 and OCN expression compared with the control group. The effects of miR-34c-5p inhibitor were the opposite. In addition, miR-34c-5p negatively correlated with Bcl-2. Upregulation of Bcl-2 reversed the effects of miR-34c-5p on ALP content, calcium deposition, and the expressions of RUNX2 and OCN. Conclusions miR-34c-5p could promote osteogenic differentiation and suppress proliferation of BMSCs by inhibiting Bcl-2.
Collapse
Affiliation(s)
- Bin Liu
- Department of Spine Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, China
| | - Wei Gan
- Department of Spine Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, China
| | - Zhang Jin
- Department of Spine Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, China
| | - Meng Wang
- Department of Spine Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, China
| | - Guopeng Cui
- Department of Spine Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, China
| | - Hongyu Zhang
- Pharmacy College, Wenzhou Medical University, Wenzhou, China
| | - Huafu Wang
- Department of Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, China
| |
Collapse
|
5
|
Lonsdale S, Yong R, Khominsky A, Mihailidis S, Townsend G, Ranjitkar S, Anderson PJ. Craniofacial abnormalities in a murine model of Saethre-Chotzen Syndrome. Ann Anat 2019; 225:33-41. [DOI: 10.1016/j.aanat.2019.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 01/23/2023]
|
6
|
Hou Z, Wang Z, Tao Y, Bai J, Yu B, Shen J, Sun H, Xiao L, Xu Y, Zhou J, Wang Z, Geng D. KLF2 regulates osteoblast differentiation by targeting of Runx2. J Transl Med 2019; 99:271-280. [PMID: 30429507 DOI: 10.1038/s41374-018-0149-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/26/2018] [Accepted: 09/14/2018] [Indexed: 01/15/2023] Open
Abstract
Osteoblast differentiation plays a critical role in bone formation and maintaining balance in bone remodeling. Runt-related transcription factor 2 (Runx2) is a central transcription factor regulating osteoblast differentiation and promoting bone mineralization. Until now, the molecular regulatory basis and especially the gene regulatory network of osteogenic differentiation have been unclear. Krüppel-like factor 2 (KLF2) is a zinc finger structure and DNA-binding transcription factor. The current study aimed to investigate the physiological function of KLF2 in osteoblast differentiation. Our results indicate that KLF2 is expressed in pre-osteoblast MC3T3-E1 cells and primary osteoblasts. Interestingly, KLF2 expression is increased in osteoblasts during the osteoblastic differentiation process. Overexpression of KLF2 in MC3T3-E1 cells promoted the expression of the osteoblastic differentiation marker genes Alp, Osx, and Ocn, and stimulated mineralization by increasing Runx2 expression at both the mRNA and protein levels. In contrast, knockdown of KLF2 produced the opposite effects. Importantly, we found that KLF2 could physically interact with Runx2. KLF2 promoted osteoblast differentiation by regulating Runx2 and physically interacting with Runx2. Taken together, the findings of this study identify KLF2 as a novel regulator of osteoblast differentiation. Our findings suggest that KLF2 might be a new therapeutic target for bone disease.
Collapse
Affiliation(s)
- Zhenyang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.,Department of Orthopaedics, Tengzhou Central People's Hospital, Tengzhou, Shandong, 277500, China
| | - Zhen Wang
- Department of Orthopaedics, Suzhou Kowloon Hospital Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu, 215006, China
| | - Yunxia Tao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Binqing Yu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jining Shen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Houyi Sun
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Long Xiao
- Department of Orthopaedics, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, 215600, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jun Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zhirong Wang
- Department of Orthopaedics, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, 215600, China.
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
7
|
Wysokinski D, Blasiak J, Pawlowska E. Role of RUNX2 in Breast Carcinogenesis. Int J Mol Sci 2015; 16:20969-93. [PMID: 26404249 PMCID: PMC4613236 DOI: 10.3390/ijms160920969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022] Open
Abstract
RUNX2 is a transcription factor playing the major role in osteogenesis, but it can be involved in DNA damage response, which is crucial for cancer transformation. RUNX2 can interact with cell cycle regulators: cyclin-dependent kinases, pRB and p21Cip1 proteins, as well as the master regulator of the cell cycle, the p53 tumor suppressor. RUNX2 is involved in many signaling pathways, including those important for estrogen signaling, which, in turn, are significant for breast carcinogenesis. RUNX2 can promote breast cancer development through Wnt and Tgfβ signaling pathways, especially in estrogen receptor (ER)-negative cases. ERα interacts directly with RUNX2 and regulates its activity. Moreover, the ERα gene has a RUNX2 binding site within its promoter. RUNX2 stimulates the expression of aromatase, an estrogen producing enzyme, increasing the level of estrogens, which in turn stimulate cell proliferation and replication errors, which can be turned into carcinogenic mutations. Exploring the role of RUNX2 in the pathogenesis of breast cancer can lead to revealing new therapeutic targets.
Collapse
Affiliation(s)
- Daniel Wysokinski
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| |
Collapse
|
8
|
Wysokinski D, Pawlowska E, Blasiak J. RUNX2: A Master Bone Growth Regulator That May Be Involved in the DNA Damage Response. DNA Cell Biol 2015; 34:305-15. [DOI: 10.1089/dna.2014.2688] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
| | | | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
The temporal expression of estrogen receptor alpha-36 and runx2 in human bone marrow derived stromal cells during osteogenesis. Biochem Biophys Res Commun 2014; 453:552-6. [PMID: 25281901 DOI: 10.1016/j.bbrc.2014.09.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 01/30/2023]
Abstract
During bone maintenance in vivo, estrogen signals through estrogen receptor (ER)-α. The objectives of this study were to investigate the temporal expression of ERα36 and ascertain its functional relevance during osteogenesis in human bone marrow derived stromal cells (BMSC). This was assessed in relation to runt-related transcription factor-2 (runx2), a main modulatory protein involved in bone formation. ERα36 and runx2 subcellular localisation was assessed using immunocytochemistry, and their mRNA expression levels by real time PCR throughout the process of osteogenesis. The osteogenically induced BMSCs demonstrated a rise in ERα36 mRNA during proliferation followed by a decline in expression at day 10, which represents a change in dynamics within the culture between the proliferative stage and the differentiative stage. The mRNA expression profile of runx2 mirrored that of ERα36 and showed a degree subcellular co-localisation with ERα36. This study suggests that ERα36 is involved in the process of osteogenesis in BMSCs, which has implications in estrogen deficient environments.
Collapse
|
10
|
Kook SH, Jeon YM, Lim SS, Jang MJ, Cho ES, Lee SY, Choi KC, Kim JG, Lee JC. Fibroblast growth factor-4 enhances proliferation of mouse embryonic stem cells via activation of c-Jun signaling. PLoS One 2013; 8:e71641. [PMID: 23967228 PMCID: PMC3742512 DOI: 10.1371/journal.pone.0071641] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/01/2013] [Indexed: 01/07/2023] Open
Abstract
Fibroblast growth factor-4 (FGF4) is expressed in embryonic stages and in adult tissues, where it plays critical roles in modulating multiple cellular functions. However, the exact roles of FGF4 on proliferation and differentiation of embryonic stem cells (ESCs) are not completely understood. Exogenous addition of FGF4 stimulated proliferation of mouse ESCs (mESCs), as proven by the increases in DNA synthesis and cell cycle regulatory protein induction. These increases were almost completely inhibited by pre-treating cells with anti-FGF4 antibody. FGF4 also activated c-Jun N-terminal kinase (JNK) and extracellular-signal regulated kinase (ERK) signaling, but not p38 kinase. Blockage of JNK signaling by SP600125 or by transfection with its specific siRNA significantly inhibited FGF4-stimulated cell proliferation through the suppression of c-Jun induction and activator protein-1 (AP-1) activity. However, ERK or p38 kinase inhibitor did not affect FGF4-stimulated proliferation in mESCs. FGF4 suppressed osteogenic differentiation of mESCs by inhibiting expression of transcription factors involved in bone formation. Further, exogenous FGF4 addition stimulated proliferation of human periodontal ligament stem cells (hPDLSCs) and bone marrow mesenchymal stem cells (BMMSCs) via activation of ERK signaling. FGF4 also augmented mineralization of hPDLSCs, but not of BMMSCs. Collectively, it is suggested that FGF4 triggers proliferation of stem cells by activating MAPK-mediated signaling, while it affects differently osteogenic differentiation according to the origins of stem cells.
Collapse
Affiliation(s)
- Sung-Ho Kook
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kook SH, Jeon YM, Park SS, Lee JC. Periodontal fibroblasts modulate proliferation and osteogenic differentiation of embryonic stem cells through production of fibroblast growth factors. J Periodontol 2013; 85:645-54. [PMID: 23805819 DOI: 10.1902/jop.2013.130252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Periodontal ligament fibroblasts (PLFs) maintain homeostasis of periodontal ligaments by producing paracrine factors that affect various functions of stem-like cells. It is hypothesized that PLFs induce proliferation and differentiation of stem cells more effectively than gingival fibroblasts (GFs) and skin fibroblasts (SFs). METHODS PLFs and GFs were isolated from extracted teeth and cultured in the presence and absence of osteogenesis-inducing factors. Mouse embryonic stem (mES) cells and SFs were purchased commercially. mES cells were incubated with culture supernatants of these fibroblasts or cocultured directly with the cells. Proliferation and mineralization in mES cells were determined at various times of incubation. Immunostaining and polymerase chain reaction were performed. The activity of mitogen-activated protein kinase and alkaline phosphatase (ALP) was also measured. RESULTS In cocultures, PLFs stimulated proliferation of mES cells more effectively than GFs or SFs. Similarly, the addition of culture supernatant of PLFs induced the most prominent proliferation of mES cells, and this was significantly inhibited by treatment with antibody against fibroblast growth factor (FGF)4 or the c-Jun N-terminal kinase inhibitor SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one). Supplementation with culture supernatant from the fibroblasts induced osteogenic differentiation of mES cells in the order PLFs > GFs > SFs. These activities of PLFs were related to their potential to produce osteogenic markers, such as ALP and runt-related transcription factor-2 (Runx2), and to secrete FGF7. Pretreatment of mES cells with the extracellular signal-regulated kinase inhibitor PD98059 [2-(2-amino-3-methyoxyphenyl)-4H-1-benzopyran-4-one] or SP600125 clearly attenuated mineralization induced by culture supernatant of PLF with attendant decreases in mRNA levels of Runx2, bone sialoprotein, osteocalcin, and osteopontin. CONCLUSION PLFs regulate the proliferation and osteogenic differentiation of mES cells more strongly than GFs and SFs via the secretion of FGF through a mechanism that involves mitogen-activated protein kinase-mediated signaling.
Collapse
Affiliation(s)
- Sung-Ho Kook
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | | | | | | |
Collapse
|
12
|
Jeon YM, Kook SH, Rho SJ, Lim SS, Choi KC, Kim HS, Kim JG, Lee JC. Fibroblast growth factor-7 facilitates osteogenic differentiation of embryonic stem cells through the activation of ERK/Runx2 signaling. Mol Cell Biochem 2013; 382:37-45. [PMID: 24026476 DOI: 10.1007/s11010-013-1716-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/29/2013] [Indexed: 12/29/2022]
Abstract
Fibroblast growth factor-7 (FGF7) is known to regulate proliferation and differentiation of cells; however, little information is available on how FGF7 affects the differentiation of embryonic stem cells (ESCs). We examined the effects of FGF7 on proliferation and osteogenic differentiation of mouse ESCs. Exogenous FGF7 addition did not change the proliferation rate of mouse ESCs. In contrast, the addition of FGF7 facilitated the dexamethasone, ascorbic acid, and β-glycerophosphate (DAG)-induced increases in bone-like nodule formation and calcium accumulation. FGF7 also augmented mRNA expression of runt-related transcription factor-2 (Runx2), osterix, bone sialoprotein (BSP), and osteocalcin (OC) in the presence of DAG. FGF7-mediated increases in the mineralization and bone-specific gene expression were almost completely attenuated by pretreating with anti-FGF7 antibody. FGF7 treatment accelerated the DAG-induced activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in the cells. A pharmacological inhibitor specific to ERK, but not to JNK or p38 kinase, dramatically suppressed FGF7-mediated mineralization and accumulation of collagen and OC in the presence of DAG. This suppression was accompanied by the reduction in Runx2, osterix, BSP, and OC mRNA levels, which were increased by FGF7 in the presence of DAG. Collectively, our results suggest that FGF7 stimulates osteogenic differentiation, but not proliferation, in ESCs, by activating ERK/Runx2 signaling.
Collapse
Affiliation(s)
- Young-Mi Jeon
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 561-756, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Park SS, Kim KA, Lee SY, Lim SS, Jeon YM, Lee JC. X-ray radiation at low doses stimulates differentiation and mineralization of mouse calvarial osteoblasts. BMB Rep 2012; 45:571-6. [DOI: 10.5483/bmbrep.2012.45.10.101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
14
|
Overexpression of runt-related transcription factor-2 is associated with advanced tumor progression and poor prognosis in epithelial ovarian cancer. J Biomed Biotechnol 2012; 2012:456534. [PMID: 23093845 PMCID: PMC3475129 DOI: 10.1155/2012/456534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/04/2012] [Accepted: 08/04/2012] [Indexed: 12/29/2022] Open
Abstract
Aim. To investigate clinical significance of runt-related transcription factor (RUNX)-2 in epithelial ovarian cancer (EOC).
Methods. RUNX2 protein expression and its subcellular localization were detected by immunohistochemistry in 116 patients with EOC.
Results. RUNX2 protein was predominantly expressed in cell nucleus of EOC tissues. The expression level of RUNX2 in EOC tissues was significantly higher than that in normal ovarian tissues (P < 0.001). In addition, the nuclear labeling index (LI) of RUNX2 in tumor cells was significantly associated with the advanced clinical stage of EOC tissues (P = 0.001). Moreover, EOC patients with high RUNX2 LI had significantly shorter overall (P < 0.001) and progression-free (P = 0.002) survival than those with low RUNX2 LI. Especially, subgroup analysis revealed that EOC patients with high clinical stages (III~IV) in high RUNX2 expression group demonstrated a significantly worse clinical outcome than those in low RUNX2 expression group, but patients with low clinical stages (I~II) had no significantly different prognosis between high and low RUNX2 expression groups.
Conclusions. Our data suggest for the first time that RUNX2 overexpression is associated with advanced tumor progression and poor clinical outcome of EOC patients. RUNX2 might be a novel prognostic marker of EOC.
Collapse
|