1
|
HDAC inhibitor and proteasome inhibitor induce cleavage and exosome-mediated secretion of HSP90 in mouse pluripotent stem cells. Biochem Biophys Res Commun 2022; 620:29-34. [DOI: 10.1016/j.bbrc.2022.06.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 11/22/2022]
|
2
|
Bennett SA, Cobos SN, Mirzakandova M, Fallah M, Son E, Angelakakis G, Rana N, Hugais M, Torrente MP. Trichostatin A Relieves Growth Suppression and Restores Histone Acetylation at Specific Sites in a FUS ALS/FTD Yeast Model. Biochemistry 2021; 60:3671-3675. [PMID: 34788013 PMCID: PMC10041660 DOI: 10.1021/acs.biochem.1c00455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that often occurs concurrently with frontotemporal dementia (FTD), another disorder involving progressive neuronal loss. ALS and FTD form a neurodegenerative continuum and share pathological and genetic features. Mutations in a multitude of genes have been linked to ALS/FTD, including FUS. The FUS protein aggregates and forms inclusions within affected neurons. However, the precise mechanisms connecting protein aggregation to neurotoxicity remain under intense investigation. Recent evidence points to the contribution of epigenetics to ALS/FTD. A main epigenetic mechanism involves the post-translational modification (PTM) of histone proteins. We have previously characterized the histone PTM landscape in a FUS ALS/FTD yeast model, finding a decreased level of acetylation on lysine residues 14 and 56 of histone H3. Here, we describe the first report of amelioration of disease phenotypes by controlling histone acetylation on specific modification sites. We show that inhibiting histone deacetylases, via treatment with trichostatin A, suppresses the toxicity associated with FUS overexpression in yeast by preserving the levels of H3K56ac and H3K14ac without affecting the expression or aggregation of FUS. Our data raise the novel hypothesis that the toxic effect of protein aggregation in neurodegeneration is related to its association with altered histone marks. Altogether, we demonstrate the ability to counter the repercussions of protein aggregation on cell survival by preventing specific histone modification changes. Our findings launch a novel mechanistic framework that will enable alternative therapeutic approaches for ALS/FTD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Seth A Bennett
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Samantha N Cobos
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | | | - Michel Fallah
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
| | - Elizaveta Son
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
| | - George Angelakakis
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
| | - Navin Rana
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
| | - Muna Hugais
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
| | - Mariana P Torrente
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
3
|
Chang MC, Wang TM, Chien HH, Pan YH, Tsai YL, Jeng PY, Lin LD, Jeng JH. Effect of butyrate, a bacterial by-product, on the viability and ICAM-1 expression/production of human vascular endothelial cells: Role in infectious pulpal/periapical diseases. Int Endod J 2021; 55:38-53. [PMID: 34420220 DOI: 10.1111/iej.13614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023]
Abstract
AIM To investigate the effects of butyric acid (BA), a metabolic product generated by pulp and root canal pathogens, on the viability and intercellular adhesion molecule-1 (ICAM-1) production of endothelial cells, which are crucial to angiogenesis and pulpal/periapical wound healing. METHODOLOGY Endothelial cells were exposed to butyrate with/without inhibitors. Cell viability, apoptosis and reactive oxygen species (ROS) were evaluated using an MTT assay, PI/annexin V and DCF fluorescence flow cytometry respectively. RNA and protein expression was determined using a polymerase chain reaction assay and Western blotting or immunofluorescent staining. Soluble ICAM-1 (sICAM-1) was measured using an enzyme-linked immunosorbent assay. The quantitative results were expressed as mean ± standard error (SE) of the mean. The data were analysed using a paired Student's t-test where necessary. A p-value ≤0.05 was considered to indicate a statistically significant difference between groups. RESULTS Butyrate (>4 mM) inhibited cell viability and induced cellular apoptosis and necrosis. It inhibited cyclin B1 but stimulated p21 and p27 expression. Butyrate stimulated ROS production and hemeoxygenase-1 (HO-1) expression as well as activated the Ac-H3, p-ATM, p-ATR, p-Chk1, p-Chk2, p-p38 and p-Akt expression of endothelial cells. Butyrate stimulated ICAM-1 mRNA/protein expression and significant sICAM-1 production (p < .05). Superoxide dismutase, 5z-7oxozeaenol, SB203580 and compound C (p < .05), but not ZnPP, CGK733, AZD7762 or LY294002, attenuated butyrate cytotoxicity to endothelial cells. Notably, little effect on butyrate-stimulated sICAM-1 secretion was found. Valproic acid, phenylbutyrate and trichostatin (three histone deacetylase inhibitors) significantly induced sICAM-1 production (p < .05). CONCLUSION Butyric acid inhibited proliferation, induced apoptosis, stimulated ROS and HO-1 production and increased ICAM-1 mRNA expression and protein synthesis in endothelial cells. Cell viability affected by BA was diminished by some inhibitors; however, the increased sICAM-1 secretion by BA was not affected by any of the tested inhibitors. These results facilitate understanding of the pathogenesis, prevention and treatment of pulpal/periapical diseases.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tong-Mei Wang
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Hua-Hong Chien
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Ling Tsai
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Deh Lin
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan.,School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
4
|
Abstract
Stem cells (SCs) are discovered long back but the idea that SCs possess therapeutic potential came up just a few decades back. In a past decade stem cell therapy is highly emerged and displayed tremendous potential for the treatment of a wide range of diseases and disorders such as blindness and vision impairment, type I diabetes, infertility, HIV, etc. SCs are very susceptible to destruction after transplantation into the host because of the inability to sustain elevated stress conditions inside the damaged tissue/organ. Heat shock proteins (HSPs) are molecular chaperones/stress proteins expressed in response to stress (elevated temperature, harmful chemicals, ischemia, viruses, etc) inside a living cell. HSPs protect the cell from damage by assisting in the proper folding of cellular proteins. This review briefly summarises different types of HSPs, their classification, cellular functions as well as the role of HSPs in regulating SC self-renewal and survival in the transplanted host. Applications of HSP modulated SCs in regenerative medicine and for the treatment of ischemic heart disease, myocardial infarction (MI), osteoarthritis, ischemic stroke, spinocerebellar ataxia type 3 (SCA3), leukemia, hepatic ischemia-reperfusion injury, Graft-versus-host disease (GVHD) and Parkinson's disease (PD) are discussed. In order to provide potential insights in understanding molecular mechanisms related to SCs in vertebrates, correlations between HSPs and SCs in cnidarians and planarians are also reviewed. There is a need to advance research in order to validate the use of HSPs for SC therapy and establish effective treatment strategies.
Collapse
|
5
|
Fernandes CFDL, Iglesia RP, Melo-Escobar MI, Prado MB, Lopes MH. Chaperones and Beyond as Key Players in Pluripotency Maintenance. Front Cell Dev Biol 2019; 7:150. [PMID: 31428613 PMCID: PMC6688531 DOI: 10.3389/fcell.2019.00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Pluripotency is orchestrated by distinct players and chaperones and their partners have emerged as pivotal molecules in proteostasis control to maintain stemness. The proteostasis network consists of diverse interconnected pathways that function dynamically according to the needs of the cell to quality control and maintain protein homeostasis. The proteostasis machinery of pluripotent stem cells (PSCs) is finely adjusted in response to distinct stimuli during cell fate commitment to determine successful organism development. Growing evidence has shown different classes of chaperones regulating crucial cellular processes in PSCs. Histones chaperones promote proper nucleosome assembly and modulate the epigenetic regulation of factors involved in PSCs’ rapid turnover from pluripotency to differentiation. The life cycle of pluripotency proteins from synthesis and folding, transport and degradation is finely regulated by chaperones and co-factors either to maintain the stemness status or to cell fate commitment. Here, we summarize current knowledge of the chaperone network that govern stemness and present the versatile role of chaperones in stem cells resilience. Elucidation of the intricate regulation of pluripotency, dissecting in detail molecular determinants and drivers, is fundamental to understanding the properties of stem cells in order to provide a reliable foundation for biomedical research and regenerative medicine.
Collapse
Affiliation(s)
- Camila Felix de Lima Fernandes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rebeca Piatniczka Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Isabel Melo-Escobar
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana Brandão Prado
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marilene Hohmuth Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Park JA, Park S, Park WY, Han MK, Lee Y. Splitomicin, a SIRT1 Inhibitor, Enhances Hematopoietic Differentiation of Mouse Embryonic Stem Cells. Int J Stem Cells 2019; 12:21-30. [PMID: 30836727 PMCID: PMC6457709 DOI: 10.15283/ijsc18040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 12/16/2018] [Accepted: 01/14/2019] [Indexed: 01/07/2023] Open
Abstract
Background and Objectives Embryonic stem (ES) cells have pluripotent ability to differentiate into multiple tissue lineages. SIRT1 is a class III histone deacetylase which modulates chromatin remodeling, gene silencing, cell survival, metabolism, and development. In this study, we examined the effects of SIRT1 inhibitors on the hematopoietic differentiation of mouse ES cells. Methods and Results Treatment with the SIRT1 inhibitors, nicotinamide and splitomicin, during the hematopoietic differentiation of ES cells enhanced the production of hematopoietic progenitors and slightly up-regulated erythroid and myeloid specific gene expression. Furthermore, treatment with splitomicin increased the percentage of erythroid and myeloid lineage cells. Conclusions Application of the SIRT1 inhibitor splitomicin during ES cell differentiation to hematopoietic cells enhanced the yield of specific hematopoietic lineage cells from ES cells. This result suggests that SIRT1 is involved in the regulation of hematopoietic differentiation of specific lineages and that the modulation of the SIRT1 activity can be a strategy to enhance the efficiency of hematopoietic differentiation.
Collapse
Affiliation(s)
- Jeong-A Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju, Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Korea
| | - Woo-Youn Park
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Myung-Kwan Han
- Department of Microbiology, Chonbuk National University Medical School, Jeonju, Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
7
|
Liu H, Xia J, Wang T, Li W, Song Y, Tan G. Differentiation of human glioblastoma U87 cells into cholinergic neuron. Neurosci Lett 2019; 704:1-7. [PMID: 30928478 DOI: 10.1016/j.neulet.2019.03.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022]
Abstract
To facilitate research methodologies for investigating the role of cholinergic nerves in many diseases, establishing an in vitro cholinergic neuron model is necessary. In this study, we investigated whether human glioblastoma U87 cells could be differentiated into cholinergic neurons in vitro. Sodium butyrate was used as the differentiation agent. The differentiated cells established by inducing U87 cells with sodium butyrate were named D-U87 cells. Immunofluorescence was used to label the neuronal markers MAP2, NF-M, and ChAT and the glial marker GFAP in D-U87 cells. Flow cytometry was used to measure cell cycle distribution in D-U87 cells. PCR, protein chip, and western blot assays were used to measure the expression levels of muscarinic cholinergic receptor 1 (M1), M4, ChAT, SYP and Akt. ELISA was used to measure neurotransmitter levels. As a result, we found that sodium butyrate induced U87 cell differentiation into cells with neuronal characteristics and increased not only the expression levels of the cholinergic neuron-related proteins M1, M4, ChAT and SYP in D-U87 cells but also the acetylcholine neurotransmitters in D-U87 cells. Moreover, the Akt protein expression in D-U87 cells was increased compared with that in U87 cells. Finally, we found that M1, M4, ChAT and SYP protein expression and acetylcholine secretion levels were significantly decreased in D-U87 cells after treatment with the Akt inhibitor MK-2206. These results demonstrate that D-U87 cells exhibit cholinergic neuron characteristics and that sodium butyrate induced U87 cell differentiation into cholinergic neuron partially through Akt signaling.
Collapse
Affiliation(s)
- Honghui Liu
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Jinye Xia
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Tiansheng Wang
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Wei Li
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Yexun Song
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Guolin Tan
- Department of Otorhinolaryngology - Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China.
| |
Collapse
|
8
|
Selaginella bryopteris Aqueous Extract Improves Stability and Function of Cryopreserved Human Mesenchymal Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8530656. [PMID: 28811868 PMCID: PMC5546052 DOI: 10.1155/2017/8530656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/02/2017] [Accepted: 06/15/2017] [Indexed: 02/07/2023]
Abstract
The effective long-term cryopreservation of human mesenchymal stem cells (MSCs) is an essential prerequisite step and represents a critical approach for their sustained supply in basic research, regenerative medicine, and tissue engineering applications. Therefore, attempts have been made in the present investigation to formulate a freezing solution consisting of a combination of Selaginella bryopteris water-soluble extract with and without dimethyl sulfoxide (Me2SO) for the efficient long-term storage of human umbilical cord blood- (hUCB-) derived MSCs. The cryopreservation experiment using the formulated freezing solution was further performed with hUCB MSCs in a controlled rate freezer. A significant increase in postthaw cell viability and cell attachment of MSCs was achieved with freezing medium containing Selaginella bryopteris water extract along with 10% Me2SO as compared to the freezing medium containing Me2SO (10% v/v) alone. Furthermore, the decreasing apoptotic events and reactive oxygen species production along with increasing expression of heat shock proteins also confirmed the beneficial effect of Selaginella bryopteris water extract. The beneficial effect of Selaginella bryopteris water extract was validated by its ability to render postpreservation high cell viability. In conclusion, the formulated freezing solution has been demonstrated to be effective for the standardization of cryopreservation protocol for hMSCs.
Collapse
|
9
|
Long-Term Surveillance and Timeline of Progression of Presumed Low-Risk Intraductal Papillary Mucinous Neoplasms. AJR Am J Roentgenol 2017; 209:320-326. [PMID: 28590817 DOI: 10.2214/ajr.16.17249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The purpose of this study was to assess risk of progression and rate of growth of presumed low-risk branch duct intraductal papillary mucinous neoplasms surveyed for more than 4 years. MATERIALS AND METHODS A keyword search of electronic medical charts was performed for the years 2001-2013. Cystic lesions that met the criteria for clinical branch duct intraductal papillary mucinous neoplasm, lacked baseline high-risk or worrisome features, and had more than 4 years of surveillance were included in this study. Two radiologists performed cyst size measurements to assess interreader variability. Cyst progression was defined either as 2-mm or greater or 20% or greater increase in diameter or as development of worrisome features. Kaplan-Meier curves were generated to evaluate cyst progression time and linear mixed models to evaluate growth rates. RESULTS The search revealed 2423 patients with cystic pancreatic lesions. Among these patients 228 had imaging follow-up for 4 or more years, and 131 met the clinical criteria for branch duct intraductal papillary mucinous neoplasms. Among the 131 cysts, 73 (55.7%) progressed: 61 (46.6%) increased in size, 10 (7.6%) increased in size and developed worrisome features, and two (1.5%) developed worrisome features only. Of the 71 cysts that increased in size, 50 (70.4%) did so within the first 5 years, and 21 (29.6%) grew after 5 years. No patient had adenocarcinoma. There was no significant difference in growth rate based on cyst size within the first 50 months. After 50 months, cysts larger than 20 mm continued to increase in size (p < 0.05) and had faster growth rates. CONCLUSION Among presumed low-risk branch duct intraductal papillary mucinous neoplasms, most increased in size, approximately 30% after 5 years. Cysts with baseline size larger than 20 mm continued to grow beyond 5 years at a faster rate.
Collapse
|
10
|
Koukourakis MI, Mitrakas AG, Giatromanolaki A. Therapeutic interactions of autophagy with radiation and temozolomide in glioblastoma: evidence and issues to resolve. Br J Cancer 2016; 114:485-96. [PMID: 26889975 PMCID: PMC4782209 DOI: 10.1038/bjc.2016.19] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is a unique model of non-metastasising disease that kills the vast majority of patients through local growth, despite surgery and local irradiation. Glioblastoma cells are resistant to apoptotic stimuli, and their death occurs through autophagy. This review aims to critically present our knowledge regarding the autophagic response of glioblastoma cells to radiation and temozolomide (TMZ) and to delineate eventual research directions to follow, in the quest of improving the curability of this incurable, as yet, disease. Radiation and TMZ interfere with the autophagic machinery, but whether cell response is driven to autophagy flux acceleration or blockage is disputable and may depend on both cell individuality and radiotherapy fractionation or TMZ schedules. Potent agents that block autophagy at an early phase of initiation or at a late phase of autolysosomal fusion are available aside to agents that induce functional autophagy, or even demethylating agents that may unblock the function of autophagy-initiating genes in a subset of tumours. All these create a maze, which if properly investigated can open new insights for the application of novel radio- and chemosensitising policies, exploiting the autophagic pathways that glioblastomas use to escape death.
Collapse
Affiliation(s)
- Michael I Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace, PO Box 12, Alexandroupolis 68100, Greece
| | - Achilleas G Mitrakas
- Department of Radiotherapy/Oncology, Democritus University of Thrace, PO Box 12, Alexandroupolis 68100, Greece
| | | |
Collapse
|
11
|
Hypoxia optimises tumour growth by controlling nutrient import and acidic metabolite export. Mol Aspects Med 2016; 47-48:3-14. [DOI: 10.1016/j.mam.2015.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Ledaki I, McIntyre A, Wigfield S, Buffa F, McGowan S, Baban D, Li JL, Harris AL. Carbonic anhydrase IX induction defines a heterogeneous cancer cell response to hypoxia and mediates stem cell-like properties and sensitivity to HDAC inhibition. Oncotarget 2015; 6:19413-27. [PMID: 26305601 PMCID: PMC4637295 DOI: 10.18632/oncotarget.4989] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/16/2015] [Indexed: 01/16/2023] Open
Abstract
Carbonic anhydrase IX (CAIX) is strongly induced by hypoxia and its overexpression is associated with poor therapeutic outcome in cancer. Here, we report that hypoxia promotes tumour heterogeneity through the epigenetic regulation of CAIX. Based on hypoxic CAIX expression we identify and characterize two distinct populations of tumour cells, one that has inducible expression of CAIX and one that does not. The CAIX+ve population is enriched with cells expressing cancer stem cell markers and which have high self-renewal capacity. We show that differential CAIX expression is due to differences in chromatin structure. To further investigate the relationship between chromatin organization and hypoxic induction of CAIX expression we investigated the effect of JQ1 an inhibitor of BET bromodomain proteins and A366 a selective inhibitor of the H3K9 methyltransferase G9a/GLP. We identified that these drugs were able to modulate hypoxic CAIX expression induction. This further highlights the role of epigenetic modification in adaption to hypoxia and also in regulation of heterogeneity of cells within tumours. Interestingly, we identified that the two subpopulations show a differential sensitivity to HDAC inhibitors, NaBu or SAHA, with the CAIX positive showing greater sensitivity to treatment. We propose that drugs modulating chromatin regulation of expression may be used to reduce heterogeneity induced by hypoxia and could in combination have significant clinical consequences.
Collapse
Affiliation(s)
- Ioanna Ledaki
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Alan McIntyre
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Simon Wigfield
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Francesca Buffa
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Simon McGowan
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Dilair Baban
- High Throughput Genomics, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ji-liang Li
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Adrian L. Harris
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, UK
| |
Collapse
|
13
|
Giatromanolaki A, Sivridis E, Mitrakas A, Kalamida D, Zois CE, Haider S, Piperidou C, Pappa A, Gatter KC, Harris AL, Koukourakis MI. Autophagy and lysosomal related protein expression patterns in human glioblastoma. Cancer Biol Ther 2015; 15:1468-78. [PMID: 25482944 DOI: 10.4161/15384047.2014.955719] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma cells are resistant to apoptotic stimuli with autophagic death prevailing under cytotoxic stress. Autophagy interfering agents may represent a new strategy to test in combination with chemo-radiation. We investigated the patterns of expression of autophagy related proteins (LC3A, LC3B, p62, Beclin 1, ULK1 and ULK2) in a series of patients treated with post-operative radiotherapy. Experiments with glioblastoma cell lines (T98 and U87) were also performed to assess autophagic response under conditions simulating the adverse intratumoral environment. Glioblastomas showed cytoplasmic overexpression of autophagic proteins in a varying extent, so that cases could be grouped into low and high expression groups. 10/23, 5/23, 13/23, 5/23, 8/23 and 9/23 cases examined showed extensive expression of LC3A, LC3B, Beclin 1, Ulk 1, Ulk 2 and p62, respectively. Lysosomal markers Cathepsin D and LAMP2a, as well as the lyososomal biogenesis transcription factor TFEB were frequently overexpressed in glioblastomas (10/23, 11/23, and 10/23 cases, respectively). TFEB was directly linked with PTEN, Cathepsin D, HIF1α, LC3B, Beclin 1 and p62 expression. PTEN was also significantly related with LC3B but not LC3A expression, in both immunohistochemistry and gene expression analysis. Confocal microscopy in T98 and U87 cell lines showed distinct identity of LC3A and LC3B autophagosomes. The previously reported stone-like structure (SLS) pattern of LC3 expression was related with prognosis. SLS were inducible in glioblastoma cell lines under exposure to acidic conditions and 2DG mediated glucose antagonism. The present study provides the basis for autophagic characterization of human glioblastoma for further translational studies and targeted therapy trials.
Collapse
Affiliation(s)
- Alexandra Giatromanolaki
- a Department of Pathology ; Democritus University of Thrace/University General Hospital of Alexandroupolis ; Alexandroupolis , Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim YE, Park JA, Park SK, Kang HB, Kwon HJ, Lee Y. Enhancement of Transgene Expression by HDAC Inhibitors in Mouse Embryonic Stem Cells. Dev Reprod 2015; 17:379-87. [PMID: 25949154 PMCID: PMC4382945 DOI: 10.12717/dr.2013.17.4.379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 12/07/2013] [Accepted: 12/13/2013] [Indexed: 12/04/2022]
Abstract
Embryonic stem (ES) cells can self-renew and differentiate to various cells depending on the culture condition. Although ES cells are a good model for cell type specification and can be useful for application in clinics in the future, studies on ES cells have many experimental restraints including low transfection efficiency and transgene expression. Here, we observed that transgene expression after transfection was enhanced by treatment with histone deacetylse (HDAC) inhibitors such as trichostatin A, sodium butyrate, and valproic acid. Transfection was performed using conventional transfection reagents with a retroviral vector encoding GFP under the control of CMV promoter as a reporter. Treatment of ES cells with HDAC inhibitors after transfection increased population of GFP positive cells up to 180% compared with untreated control. ES cells showed normal expression of stem cell markers after treatment with HDAC inhibitors. Transgene expression was further enhanced by modifying transfection procedure. GFP positive cells selected after transfection were proved to have the stem cell properties. Our improved protocol for enhanced gene delivery and expression in mouse ES cells without hampering ES cell properties will be useful for study and application of ES cells.
Collapse
Affiliation(s)
- Young-Eun Kim
- Department of Biochemistry, College of Natural Sciences, Republic of Korea ; Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Jeong-A Park
- Department of Biochemistry, College of Natural Sciences, Republic of Korea
| | - Sang-Kyu Park
- Department of Biochemistry, College of Natural Sciences, Republic of Korea
| | - Ho-Bum Kang
- Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Hyung-Joo Kwon
- Center for Medical Science Research, Republic of Korea ; Department of Microbiology, College of Medicine, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Republic of Korea ; Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Republic of Korea
| |
Collapse
|
15
|
Franci G, Casalino L, Petraglia F, Miceli M, Menafra R, Radic B, Tarallo V, Vitale M, Scarfò M, Pocsfalvi G, Baldi A, Ambrosino C, Zambrano N, Patriarca E, De Falco S, Minchiotti G, Stunnenberg HG, Altucci L. The class I-specific HDAC inhibitor MS-275 modulates the differentiation potential of mouse embryonic stem cells. Biol Open 2013; 2:1070-7. [PMID: 24167717 PMCID: PMC3798190 DOI: 10.1242/bio.20135587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/24/2013] [Indexed: 01/08/2023] Open
Abstract
Exploitation of embryonic stem cells (ESC) for therapeutic use and biomedical applications is severely hampered by the risk of teratocarcinoma formation. Here, we performed a screen of selected epi-modulating compounds and demonstrate that a transient exposure of mouse ESC to MS-275 (Entinostat), a class I histone deacetylase inhibitor (HDAC), modulates differentiation and prevents teratocarcinoma formation. Morphological and molecular data indicate that MS-275-primed ESCs are committed towards neural differentiation, which is supported by transcriptome analyses. Interestingly, in vitro withdrawal of MS-275 reverses the primed cells to the pluripotent state. In vivo, MS275-primed ES cells injected into recipient mice give only rise to benign teratomas but not teratocarcinomas with prevalence of neural-derived structures. In agreement, MS-275-primed ESC are unable to colonize blastocysts. These findings provide evidence that a transient alteration of acetylation alters the ESC fate.
Collapse
Affiliation(s)
- Gianluigi Franci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli , Vico L. De Crecchio 7, 80138 Napoli , Italy ; Department of Molecular Biology, Faculties of Science and Medicine, Radboud University, Nijmegen Center for Molecular Life Sciences , 6500 HB Nijmegen , The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alekseenko LL, Zemelko VI, Zenin VV, Pugovkina NA, Kozhukharova IV, Kovaleva ZV, Grinchuk TM, Fridlyanskaya II, Nikolsky NN. Heat shock induces apoptosis in human embryonic stem cells but a premature senescence phenotype in their differentiated progeny. Cell Cycle 2012; 11:3260-9. [PMID: 22895173 DOI: 10.4161/cc.21595] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Embryonic stem cells (ESC) are able to self-renew and to differentiate into any cell type. To escape error transmission to future cell progeny, ESC require robust mechanisms to ensure genomic stability. It was stated that stress defense of mouse and human ESC against oxidative stress and irradiation is superior compared with differentiated cells. Here, we investigated heat shock response of human ESC (hESC) and their differentiated progeny. Fibroblast-like cells were generated by spontaneous hESC differentiation via embryoid bodies. Like normal human diploid fibroblasts, these cells have a finite lifespan in culture, undergo replicative senescence and die. We found that sublethal heat shock affected survival of both cell types, but in hESC it induced apoptosis, whereas in differentiated cells it produced cell cycle arrest and premature senescence phenotype. Heat shock survived hESC and differentiated cells restored the properties of initial cells. Heated hESC progeny exhibited pluripotent markers and the capacity to differentiate into the cells of three germ layers. Fibroblast-like cells resisted heat shock, proliferated for a limited number of passages and entered replicative senescence as unheated parental cells. Taken together, these results show for the first time that both hESC and their differentiated derivatives are sensitive to heat shock, but the mechanisms of their stress response are different: hESC undergo apoptosis, whereas differentiated cells under the same conditions exhibit stress-induced premature senescence (SIPS) phenotype. Both cell types that survived sublethal heat shock sustain parental cell properties.
Collapse
|