1
|
Ma Q, Zhuo D, Guan F, Li X, Yang X, Tan Z. Vesicular Ganglioside GM1 From Breast Tumor Cells Stimulated Epithelial-to-Mesenchymal Transition of Recipient MCF-10A Cells. Front Oncol 2022; 12:837930. [PMID: 35558506 PMCID: PMC9086854 DOI: 10.3389/fonc.2022.837930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Small extracellular vesicles (sEVs) are a type of membrane structure secreted by cells, which are involved in physiological and pathological processes by participating in intercellular communication. Glycosphingolipids (GSLs) are enriched in sEV and can be delivered to recipient cells. In this study, we found that overexpression of B3GALT4, the glycosyltransferase responsible for ganglioside GM1 synthesis, can induce the epithelial-mesenchymal transition (EMT) process in MCF-10A cells. Moreover, GM1 was verified to be presented on sEV from breast cancer cells. Overexpression of B3GALT4 resulted in elevated vesicular GM1 levels and increased sEV secretion in breast cancer cells. Proteomic analysis revealed that eleven sEV secretion-related proteins were differentially expressed, which might contribute to the altered sEV secretion. Of the identified proteins, 15 oncogenic differentially expressed proteins were documented to be presented in sEV. With the treatment of GM1-enriched sEV from breast cancer cells, the EMT process was induced in recipient non-tumorigenic epithelial MCF-10A cells. Our findings demonstrated that GM1-enriched sEVs derived from breast cancer cells induced the EMT process of recipient cells, which might provide essential information on the biological function of vesicular GM1.
Collapse
Affiliation(s)
- Qilong Ma
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi’an, China
| | - Dinghao Zhuo
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Guan
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi’an, China
| | - Xiang Li
- School of Medicine, Northwest University, Xi’an, China
| | - Xiaomin Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Breast Surgery, Tumor Hospital of Shaanxi Province, Xi’an, China
| | - Zengqi Tan
- School of Medicine, Northwest University, Xi’an, China
| |
Collapse
|
2
|
Mehta N, Shaik S, Prasad A, Chaichi A, Sahu SP, Liu Q, Hasan SMA, Sheikh E, Donnarumma F, Murray KK, Fu X, Devireddy R, Gartia MR. Multimodal Label-Free Monitoring of Adipogenic Stem Cell Differentiation Using Endogenous Optical Biomarkers. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2103955. [PMID: 34924914 PMCID: PMC8680429 DOI: 10.1002/adfm.202103955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 05/13/2023]
Abstract
Stem cell-based therapies carry significant promise for treating human diseases. However, clinical translation of stem cell transplants for effective treatment requires precise non-destructive evaluation of the purity of stem cells with high sensitivity (<0.001% of the number of cells). Here, a novel methodology using hyperspectral imaging (HSI) combined with spectral angle mapping-based machine learning analysis is reported to distinguish differentiating human adipose-derived stem cells (hASCs) from control stem cells. The spectral signature of adipogenesis generated by the HSI method enables identifying differentiated cells at single-cell resolution. The label-free HSI method is compared with the standard techniques such as Oil Red O staining, fluorescence microscopy, and qPCR that are routinely used to evaluate adipogenic differentiation of hASCs. HSI is successfully used to assess the abundance of adipocytes derived from transplanted cells in a transgenic mice model. Further, Raman microscopy and multiphoton-based metabolic imaging is performed to provide complementary information for the functional imaging of the hASCs. Finally, the HSI method is validated using matrix-assisted laser desorption/ionization-mass spectrometry imaging of the stem cells. The study presented here demonstrates that multimodal imaging methods enable label-free identification of stem cell differentiation with high spatial and chemical resolution.
Collapse
Affiliation(s)
- Nishir Mehta
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shahensha Shaik
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Alisha Prasad
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ardalan Chaichi
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sushant P Sahu
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Qianglin Liu
- LSU AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Syed Mohammad Abid Hasan
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Elnaz Sheikh
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xing Fu
- LSU AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ram Devireddy
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
3
|
Ryu JS, Ko K, Ko K, Kim JS, Kim SU, Chang KT, Choo YK. Roles of gangliosides in the differentiation of mouse pluripotent stem cells to neural stem cells and neural cells. Mol Med Rep 2017; 16:987-993. [DOI: 10.3892/mmr.2017.6719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/12/2017] [Indexed: 11/06/2022] Open
|
4
|
Itokazu Y, Kato-Negishi M, Nakatani Y, Ariga T, Yu RK. Effects of amyloid β-peptides and gangliosides on mouse neural stem cells. Neurochem Res 2013; 38:2019-27. [PMID: 23851714 DOI: 10.1007/s11064-013-1108-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/19/2013] [Accepted: 06/29/2013] [Indexed: 01/04/2023]
Abstract
The interaction of amyloid β-proteins (Aβs) with membrane lipids has been postulated as an early event in Aβ fibril formation in Alzheimer's disease. We evaluated the effects of several putative bioactive Aβs and gangliosides on neural stem cells (NSCs) isolated from embryonic mouse brains or the subventricular zone of adult mouse brains. Incubation of the isolated NSCs with soluble Aβ1-40 alone did not cause any change in the number of NSCs, but soluble Aβ1-42 increased their number. Aggregated Aβ1-40 and Aβ1-42 increased the number of NSCs but soluble and aggregated Aβ25-35 decreased the number. Soluble Aβ1-40 and Aβ1-42 did not affect the number of apoptotic cells but aggregated Aβ1-40 and Aβ1-42 did. When NSCs were treated with a combination of GM1 or GD3 and soluble Aβ1-42, cell proliferation was enhanced, indicating that both GM1 and GD3 as well as Aβs are involved in promoting cell proliferation and survival of NSCs. These observations suggest the potential of beneficial effects of using gangliosides and Aβs for promoting NSC proliferation.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
| | | | | | | | | |
Collapse
|