1
|
Liu H, Bi L, Chen Q, He X, Yan H, Ni W, Wu W, He L, Liu H. Enrichment process, structural prediction, isolation, in vitro cytotoxic and anti-inflammatory effects of triterpenoid saponins in Camellia japonica L. leaves water extract through UPLC-Q-TOF based mass spectrometry similarity networking. Food Chem 2024; 441:138360. [PMID: 38219361 DOI: 10.1016/j.foodchem.2024.138360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Camellia japonica L. is rich in bioactive compounds, but its health-enhancing potential is often overshadowed by its ornamental value. Notably, triterpenoid saponins are prominent due to their surfactant properties. MolNetEnhancer revealed 537 compounds in C. japonica leaves water extract, classified into 32 categories, including 38 triterpenoid saponins. To enrich triterpenoid saponins, the process of D101 resin chromatography was employed. Molecular networking analysis based on UPLC-Q-TOF and quantitative analysis based on HPLC revealed saponins concentrated in fractions 3 and 4 (68.3% transfer). MS2LDA and NAP predicted structures for 38 triterpenoid saponins, revealing nearly half of them are potential new compounds. Comprehensive chromatographic and spectroscopic methods were used for purification and structural illustration of triterpenoid saponins, yielding 13, including 7 new compounds. Statistical analysis and in vitro assays revealed the cytotoxic and anti-inflammatory activities of these triterpenoid saponins played a crucial role in the anticancer effects.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
| | - Lisha Bi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qirun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
| | - Xiaozhi He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huan Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Ni
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
| | - Wenjuan Wu
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Li He
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Skin Health Research Center, Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China.
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China.
| |
Collapse
|
2
|
Kim HJ, Hong JH. Multiplicative Effects of Essential Oils and Other Active Components on Skin Tissue and Skin Cancers. Int J Mol Sci 2024; 25:5397. [PMID: 38791435 PMCID: PMC11121510 DOI: 10.3390/ijms25105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Naturally derived essential oils and their active components are known to possess various properties, ranging from anti-oxidant, anti-inflammatory, anti-bacterial, anti-fungal, and anti-cancer activities. Numerous types of essential oils and active components have been discovered, and their permissive roles have been addressed in various fields. In this comprehensive review, we focused on the roles of essential oils and active components in skin diseases and cancers as discovered over the past three decades. In particular, we opted to highlight the effectiveness of essential oils and their active components in developing strategies against various skin diseases and skin cancers and to describe the effects of the identified essential-oil-derived major components from physiological and pathological perspectives. Overall, this review provides a basis for the development of novel therapies for skin diseases and cancers, especially melanoma.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
3
|
Kim J, Kim HS, Choi DH, Choi J, Cho SY, Kim SH, Baek HS, Yoon KD, Son SW, Son ED, Hong YD, Ko J, Cho SY, Park WS. Kaempferol tetrasaccharides restore skin atrophy via PDK1 inhibition in human skin cells and tissues: Bench and clinical studies. Biomed Pharmacother 2022; 156:113864. [DOI: 10.1016/j.biopha.2022.113864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 11/02/2022] Open
|
4
|
Process Optimization Based on Biological Effects and Biomarker Contents of Camellia japonica L. for the Development of Anti-Hyperuricemic and Anti-Wrinkle Source. SEPARATIONS 2022. [DOI: 10.3390/separations9100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The purpose of this study was to simultaneously develop anti-hyperuricemic and anti-wrinkle source using Camellia japonica leaf (CJ). CJ extract was prepared. Its contents of biomarkers and biological activities were then analyzed. First, we investigated the extraction efficiency. The extraction rate was 10% or less with hot water or 80% ethanol. HPLC analysis revealed that CJ extract contained rutin, hyperoside, isoquercitrin, chlorogenic acid (CGA), gallocatechin gallate (GCG), and phillygenin. As a result of measuring contents of biomarkers in the extract, CGA was detected in 20, 40, and 60% ethanol extracts. GCG showed the highest content in the hot water extract. Hyperoside and isoquercitrin showed the highest contents in the 80% ethanol extract. Philligenin showed an even content of 0.1% or more in all samples except for 40% ethanol extract. Rutin showed the highest content in 80% ethanol extract. Elastase inhibitory abilities of six extracts and PPRM were investigated at a concentration of 0.5 mg/mL. Results revealed that PPRM and 80% ethanol extract showed about 80% and 62% inhibition, respectively. As a result of comparing elastase inhibitory activities of biomarkers, hyperoside, isoquercitrin, and philligenin showed higher activities. Among six extracts, the extract that could be used as an anti-hyperuricemic source was 80% ethanol extract. When xanthine oxidase (XO) inhibitory activities of biomarkers were evaluated, rutin and hyperoside showed excellent activities. In particular, when XO activity was measured by mixing rutin and hyperoside with 80% ethanol extract, the same efficacy as 80% ethanol extract was obtained. It was predicted that 80% ethanol extract could be used simultaneously as an anti-hyperuricemic and anti-wrinkle source. Further studies are needed to determine anti-hyperuricemic activities of rutin and hyeproside in vivo.
Collapse
|
5
|
A Combination of Natural Products, BenPros (Green Tea Extract, Soybean Extract and Camellia Japonica Oil), Ameliorates Benign Prostatic Hyperplasia. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common diseases in elderly men and causes lower urinary tract symptoms due to excessive proliferation of prostate stromal and epithelial cells. The present study investigated the improving effect of BenPros, an edible natural product mixture (green tea extract, soybean extract and camellia japonica oil), against the development of BPH in vitro and in vivo. BenPros treatment showed inhibitory ability on testosterone-induced androgen receptor, prostate-specific antigen (PSA), and 5α-reductase protein expression in LNCap-LN3 cells and anti-inflammatory effects on LPS-induced increases in interleukin-6 and tumor necrosis factor-α in RAW264.7 cells. In a testosterone propionate (TP)-induced BPH rat model, BenPros decreased the up-regulated serum 5α-dihydrotestosterone and PSA levels. Moreover, BenPros also significantly reduced PSA protein expression in prostate tissue. Furthermore, TP-induced increased expression of cyclooxygenase 2 and B-cell lymphoma 2 (Bcl-2) were reduced by BenPros, resulting in an increase in the Bcl-2/BCL2-related X ratio. These regulatory abilities of BenPros on BPH inducing markers also reduced prostate size and epithelial thickness based on histological analysis. These results indicate that BenPros has a protective ability against BPH in vitro and in vivo, and it may be a promising candidate as a functional food in regulating BPH.
Collapse
|
6
|
Pereira AG, Garcia-Perez P, Cassani L, Chamorro F, Cao H, Barba FJ, Simal-Gandara J, Prieto MA. Camellia japonica: A phytochemical perspective and current applications facing its industrial exploitation. Food Chem X 2022; 13:100258. [PMID: 35499017 PMCID: PMC9040028 DOI: 10.1016/j.fochx.2022.100258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
In response to the increased popularity of medicinal plants, a number of conservation groups are recommending the investigation on poorly characterized and widely distributed species, as it is the case of camellias. In particular, Camellia japonica L. is a widespread species found in Galicia (NW Spain), where it has been largely exploited with ornamental purposes. Recent findings on its phytochemical characterization showed thousands of bioactive ingredients, mostly represented by phenolic compounds, together with terpenoids, and fatty acids. These molecules present associated biological activities, acting as antioxidant, antimicrobial, anti-inflammatory, and anticancer agents. This review is aimed at describing the main bioactive compounds of C. japonica, as well as the health-enhancing properties attributed to this medicinal plant. Novel strategies are needed to implement an efficient industrialization process for C. japonica, ranging from small-scale approaches to the establishment of large plantations, thus involving important sectors, such as the food, pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Antia G Pereira
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| | - Pascual Garcia-Perez
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.,Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Lucia Cassani
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.,Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA, CCT-CONICET), Colón 10850, Mar del Plata 7600, Argentina
| | - Franklin Chamorro
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| | - Hui Cao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Fo-rensic Medicine Department, Universitat de València, Faculty of Pharmacy, Avda, Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.,Agrifood Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Miguel A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.,Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal.,Agrifood Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| |
Collapse
|
7
|
Oh JH, Nam GB, Karadeniz F, Kong CS, Ko J. Evaluation and enzyme-aided enhancement of anti-photoaging properties of Camellia japonica in UVA-irradiated keratinocytes. Z NATURFORSCH C 2022; 77:287-296. [PMID: 35072988 DOI: 10.1515/znc-2021-0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/30/2021] [Indexed: 01/15/2023]
Abstract
Exposure to ultraviolet (UV) radiation is the main reason behind extrinsic skin aging. Changes due to chronic UV exposure are called photoaging. Natural products are effective ingredients against UV-mediated skin damage. Present study investigated the anti-photoaging properties of Camellia japonica flowers which possess various bioactivities. To enrich the extracts of C. japonica flowers, pectinase and beta-glucosidase treatment was employed. Anti-photoaging effect was screened using the changes in MMP-1 and collagen levels in UVA-irradiated human HaCaT keratinocytes. The crude extract of C. japonica flowers (CE) was shown to decrease the UVA-induced MMP-1 secretion while attenuating the collagen levels. Pectinase and beta-glucosidase treated CE (ECE) showed increased anti-photoaging effects against UVA-induced changes in MMP-1 and collagen production. Camellenodiol (CMD), a known triterpenoid from C. japonica, isolated as the active ingredient of ECE and its anti-photoaging effect was screened. Results showed that CMD ameliorated the UVA-induced deterioration in collagen levels by suppressing MMP-1 production in transcriptional level. CMD treatment downregulated the phosphorylation of p38, ERK, and JNK MAPKs along their downstream effectors, c-Fos, and c-Jun. In conclusion, enzyme-assisted extraction of C. japonica flowers was suggested to enhance the anti-photoaging properties suggestively through high bioactive content such as CMD.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Gi Baeg Nam
- AMOREPACIFIC Research and Innovation Center, Yongin 17074, Korea
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea.,Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Jaeyoung Ko
- AMOREPACIFIC Research and Innovation Center, Yongin 17074, Korea
| |
Collapse
|
8
|
Camellia japonica Essential Oil Inhibits α-MSH-Induced Melanin Production and Tyrosinase Activity in B16F10 Melanoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6328767. [PMID: 34824592 PMCID: PMC8610653 DOI: 10.1155/2021/6328767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022]
Abstract
Essential oils are aromatic oils extracted from the leaves, stems, peels, petals, and roots of aromatic plants grown in nature or grown in organic methods and have various medical effects as natural substances. The essential oil extracted from Camellia japonica seeds exhibits various functional properties; however, its tyrosinase inhibitory activity has not been investigated extensively. This study is performed to investigate the chemical composition and tyrosinase inhibitory activity of Camellia japonica seed essential oil (CJS-EO). Hexamethylcyclotrisiloxane (42.36%) and octamethylcyclotetrasiloxane (23.28%) are the two primary components of CJS-EO, as identified via gas chromatography-mass spectrometry. The inhibitory activities of CJS-EO and positive control arbutin are further evaluated against mushroom tyrosinase. The results show that CJS-EO and arbutin inhibit tyrosinase activity. Moreover, CJS-EO significantly inhibits melanogenesis in the α-melanocyte-stimulating hormone-treated group, and a significant amount of melanin is suppressed. To ascertain the cause of the CJS-EO tyrosinase inhibitory effect and melanin reduction effect, genetic and protein analyses are performed. Based on our results, we tentatively conclude that CJS-EO can inhibit melanocytes from harmful factors such as tyrosinase-related protein. These results demonstrate that CJS-EO possesses potent antityrosinase activity and may be a good skin-whitening agent.
Collapse
|
9
|
Cho E, Kim J, Jeong DH, Kim HW. Anticancer properties of dried-pericarp water extracts of Camellia japonica L. fermented with Aspergillus oryzae through regulation of IGFBP-2/mTOR pathway. Sci Rep 2021; 11:21527. [PMID: 34728751 PMCID: PMC8564518 DOI: 10.1038/s41598-021-01127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022] Open
Abstract
This study aimed to investigate the anticancer activity of dried-pericarp water extract of fermented C. japonicus (CJ). The dried-pericarp water extracts of CJ were fermented using Aspergillus oryzae and Saccharomyces cerevisiae at 30 °C and 35 °C. The anticancer activities of both water extracts fermented at 30 °C and 35 °C using A. oryzae against FaDu cells were remarkably changed compared with unfermented dried-pericarp water extract of CJ, which has no anticancer activity. Cleaved-PARP, caspase 3, and apoptotic cells stained with annexin V/PI were significantly increased by treatment with A. oryzae extracts fermented at 30 °C. The insulin-like growth factor-binding protein 2 (IGFBP-2) protein level and mTOR phosphorylation by A. oryzae fermented extracts (AOFE) were dramatically reduced, and the expression levels of IGFBP-2 and phosphorylated mTOR were significantly increased depending on the glucose concentrations in FaDu cells. These results suggested that the cell viabilities in AOFE were restored as the glucose concentrations increased. Furthermore, it was confirmed LC/MS/MS that the content of gallic acid was increased by fermentation of Aspergillus oryzae (5.596 ± 0.1746 μg/mg) compared to the unfermented extract (1.620 ± 0.0432 μg/mg). Based on these results, the anticancer effect of AOFE was achieved through inhibition of the IGFBP-2/mTOR signaling pathway. These results suggest that AOFE may be a potential treatment for head and neck cancer.
Collapse
Affiliation(s)
- Eugene Cho
- Jeollanam-Do Forest Resource Research Institute, Naju, Jeonnam, 58213, Republic of Korea
| | - Jin Kim
- Gwangju Health University, Gwangsan-gu, Gwangju, 62287, Republic of Korea
| | - Da Hye Jeong
- Jeollanam-Do Forest Resource Research Institute, Naju, Jeonnam, 58213, Republic of Korea
| | - Hyoun Woo Kim
- Jeollanam-Do Forest Resource Research Institute, Naju, Jeonnam, 58213, Republic of Korea.
| |
Collapse
|
10
|
Zeng M, Li M, Zhang B, Li B, Kan Y, Zheng X, Feng W. Camellia oil inhibits oxidative stress and inflammatory response to ameliorate LPS-induced acute kidney injury via downregulation of TLR4-mediated activation of the NF-κB/AP-1/IRF3 and NLRP3 pathways. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
11
|
Zhong W, Shen J, Liao X, Liu X, Zhang J, Zhou C, Jin Y. Camellia ( Camellia oleifera Abel.) seed oil promotes milk fat and protein synthesis-related gene expression in bovine mammary epithelial cells. Food Sci Nutr 2020; 8:419-427. [PMID: 31993168 PMCID: PMC6977417 DOI: 10.1002/fsn3.1326] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Camellia (Camellia oleifera Abel.) seed oil is a commonly used edible oil of China. In ancient Chinese literature, it is mentioned to be helpful for postpartum repair and lactation in women. Research on camellia seed oil (CO) as a feed additive for dairy cattle is less. We investigated the effect of CO on the expression of milk fat and protein syntheses-related genes in differentiated bovine mammary epithelial cells (MAC-T) using soybean oil (SO) as the control. The results showed that CO increased the expression of genes related to de novo synthesis of fatty acids including sterol regulatory element-binding protein 1 (SREBP1), acetyl-CoA carboxylase 1 (ACC), fatty acid synthase (FASN), lipoprotein lipase (LPL), and stearoyl-CoA desaturase (SCD) (p < .05). Among the milk protein genes analyzed, CO increased β-casein mRNA expression (p < .05) and decreased αS1-casein mRNA expression (p < .05) in MAC-T cells. CO upregulated the pathways related to milk protein synthesis with increased mRNA levels of phosphoinositide 3-kinase (PI3K), RAC-alpha serine/threonine-protein kinase (AKT1), and mammalian target of rapamycin (mTOR) (p < .05) in MAC-T cells. Ribosomal protein S6 kinase beta-1 (S6K1) gene was upregulated, and eukaryotic initiation factor 4E (eIF4E) gene (p < .05) was downregulated with CO treatment. The mRNA expression levels of janus kinase 2 (JAK2), activator of transcription 5-β (STAT5-β), and E74-like factor 5 (ELF5) were elevated in MAC-T cells treated with CO (p < .05). Meanwhile, the protein expression levels of S6K1, STAT5-β, phosphorylated mTOR (p-mTOR), p-S6K1, and p-STAT5-β increased in MAC-T cells treated with CO (p < .05). In summary, CO promoted β-casein synthesis by regulating PI3K-mTOR-S6K1 and JAK2-STAT5 signaling pathways and influenced fatty acid synthesis by regulating SREBP1-related genes in MAC-T cells. We need to further confirm the function of CO using in vivo models.
Collapse
Affiliation(s)
- Wanqi Zhong
- Department of Animal ScienceCollege of Animal ScienceJilin UniversityChangchunChina
| | - Jinglin Shen
- Department of Animal ScienceCollege of Animal ScienceJilin UniversityChangchunChina
| | - Xiandong Liao
- Department of Animal ScienceCollege of Animal ScienceJilin UniversityChangchunChina
| | - Xinlu Liu
- Department of Animal ScienceCollege of Animal ScienceJilin UniversityChangchunChina
| | - Jing Zhang
- Department of Animal ScienceCollege of Animal ScienceJilin UniversityChangchunChina
| | - Changhai Zhou
- Department of Animal ScienceCollege of Animal ScienceJilin UniversityChangchunChina
| | - Yongcheng Jin
- Department of Animal ScienceCollege of Animal ScienceJilin UniversityChangchunChina
| |
Collapse
|
12
|
Kato M, Ayaki I, Tanaka I, Kimura M, Arai K, Akimoto R, Nozaki T, Ishihara KO. <i>Camellia japonica</i> Seed Extract Stimulates Nitric Oxide Production <i>via</i> Activation of Phosphoinositide 3-Kinase/Akt/endothelial Nitric Oxide Synthase Pathway in Endothelial Cells. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Abstract
Camellia oleifera, C. japonica and C. sinensis are three representative crops of the genus Camellia. In this work, we systematically investigated the lipid characteristics of these seed oils collected from different regions. The results indicated significant differences in acid value (AV), peroxide value (PV), iodine value (IV), saponification value (SV) and relative density of the above-mentioned camellia seed oils (p < 0.05). The C. japonica seed oils showed the highest AV (1.7 mg/g), and the C. sinensis seed oils showed the highest PV (17.4 meq/kg). The C. japonica seed oils showed the lowest IV (79.9 g/100 g), SV (192.7 mg/g) and refractive index (1.4633) of all the oils, while the C. sinensis seed oils showed the lowest relative density (0.911 g/cm3). The major fatty acids in the camellia seed oils were palmitic acid (16:0), oleic acid (18:1) and linoleic acid (18:2); the oleic acid in C. oleifera and C. japonica seed oils accounted for more than 80% of the total fatty acids. The oleic acid levels in the C. oleifera and C. japonica oils were higher than those in the C. sinensis seed oils, while the linoleic acid levels in the former were lower than those in the latter one. Differences also exist in the triacylglycerol (TAG) composition, although the most abundant TAG molecular species in the camellia seed oils was trioleoylglycerol (OOO). Seven sterol species, squalene and α-tocopherol were detected in the camellia seed oils, however, the contents of tocopherol and unsaponifiable molecules in the C. oleifera and C. japonica seed oils were significantly lower than those in the C. sinensis seed oil. These results demonstrated that the varieties of Camellia affected the seed oil lipid characteristics.
Collapse
Affiliation(s)
- Wei Zeng
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Yasushi Endo
- School of Bioscience and Biotechnology, Tokyo University of Technology
| |
Collapse
|
14
|
Kim M, Son D, Shin S, Park D, Byun S, Jung E. Protective effects of Camellia japonica flower extract against urban air pollutants. Altern Ther Health Med 2019; 19:30. [PMID: 30691451 PMCID: PMC6350298 DOI: 10.1186/s12906-018-2405-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
Abstract
Background Exposure of skin to urban air pollutants is closely related to skin aging and inflammatory responses such as wrinkles formation, pigmentation spot, atopic dermatitis, and acne. Thus, a great deal of interest has been focused on the development of natural resources that can provide a protective effect to skin from pollutants. Methods The antioxidative activity of Camellia japonica flower extract (CJFE) was evaluated by 1,2-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assay, and the inhibitory effect of CJFE by urban air pollutants-induced reactive oxygen species (ROS) production was determined in cultured normal human dermal fibroblasts (NHDFs). We additionally investigated the protective effects of CJFE against urban air pollutant using in vitro and ex vivo model. Results CJFE with high phenolic concentration showed antioxidative activity on scavenging capacity of 1,2-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation in a concentration dependent manner. CJFE inhibited urban air pollutants-induced ROS generation, matrixmetalloproteinase-1 (MMP-1) production and a xenobiotic response element (XRE)-luciferase activity indicating the aryl hydrocarbon receptor (AhR) transactivation. In addition, CJFE showed an excellent protective activity against pollutants-induced deteriorating effect in ex vivo model. CJFE reduced the level of pollutants-induced malondialdehyde (MDA), lipid peroxidation marker, inhibited MMP-1 expression and increased collagen synthesis. It also reduced the cell numbers with pyknotic nuclei (mainly occurring in apoptosis) and detachment of dermo-epidermal junction (DEJ) induced by pollutants. Conclusions Apparently, it is proposed that CJFE can be used as a protective material against pollutant-induced skin damages. Electronic supplementary material The online version of this article (10.1186/s12906-018-2405-4) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Effects of the Extracts from Fruit and Stem of Camellia japonica on Induced Pluripotency and Wound Healing. J Clin Med 2018; 7:jcm7110449. [PMID: 30463279 PMCID: PMC6262430 DOI: 10.3390/jcm7110449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
Small molecules that improve reprogramming, stem cell properties, and regeneration can be widely applied in regenerative medicine. Natural plant extracts represent an abundant and valuable source of bioactive small molecules for drug discovery. Natural products themselves or direct derivatives of them have continued to provide small molecules that have entered clinical trials, such as anticancer and antimicrobial drugs. Here, we tested 3695 extracts from native plants to examine whether they can improve induced pluripotent stem cell (iPSC) generation using genetically homogeneous secondary mouse embryonic fibroblasts (MEFs) harboring doxycycline (dox)-inducible reprograming transgenes. Among the tested extracts, extracts from the fruit and stem of Camellia japonica (CJ) enhanced mouse and human iPSC generation and promoted efficient wound healing in an in vivo mouse wound model. CJ is one of the best-known species of the genus Camellia that belongs to the Theaceae family. Our findings identified the natural plant extracts from the fruit and stem of CJ as novel regulators capable of enhancing cellular reprogramming and wound healing, providing a useful supplement in the development of a more efficient and safer method to produce clinical-grade iPSCs and therapeutics.
Collapse
|
16
|
Zhang Y, Guo H, Cheng BCY, Su T, Fu XQ, Li T, Zhu PL, Tse KW, Pan SY, Yu ZL. Dingchuan tang essential oil inhibits the production of inflammatory mediators via suppressing the IRAK/NF-κB, IRAK/AP-1, and TBK1/IRF3 pathways in lipopolysaccharide-stimulated RAW264.7 cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2731-2748. [PMID: 30233137 PMCID: PMC6129014 DOI: 10.2147/dddt.s160645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Dingchuan tang (asthma-relieving decoction), a formula of nine herbs, has been used for treating respiratory inflammatory diseases for >400 years in the People’s Republic of China. However, the mechanisms underlying the anti-inflammatory action of dingchuan tang is not fully understood. This study aims to investigate the effects of Dingchuan tang essential oil (DCEO) on inflammatory mediators and the underlying mechanism of action. Materials and methods DCEO was extracted by steam distillation. Lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were used as the cell model. Production of nitric oxide (NO) was determined by the Griess test. Protein secretion and mRNA levels of inflammatory mediators were measured by the enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. Protein levels were examined by Western blot. Nuclear localization of nuclear factor-kappa B (NF-κB) was detected using immunofluorescence analyses. Results DCEO significantly reduced LPS-triggered production of NO and prostaglandin E2 (PGE2) and decreased protein and mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). LPS induced upregulation of protein and mRNA levels of cytokines (interleukin-1β [IL-1β], interleukin-6 [IL-6], tumor necrosis factor-α [TNF-α]), and chemokines (monocyte chemoattractant protein-1 [MCP-1], chemokine [C-C motif] ligand 5 [CCL-5], and macrophage inflammatory protein [MIP]-1α) were suppressed by DCEO treatment. Phosphorylation and nuclear protein levels of transcription factors (activator protein-1 [AP-1], NF-κB, interferon regulatory factor 3 [IRF3]) were decreased by DCEO. Protein levels of phosphorylated IκB-α, IκB kinase α/β (IKKα/β), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), TGF β-activated kinase 1 (TAK1), TANK-binding kinase 1 (TBK1), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38), and c-Jun N-terminal kinase (JNK) were lowered by DCEO. Moreover, degradation of interleukin-1 receptor-associated kinase 1 (IRAK1) and IRAK4 induced by LPS was inhibited by DCEO treatment. Conclusion Suppression of the interleukin-1 receptor-associated kinase (IRAK)/NF-κB, IRAK/AP-1 and TBK1/IRF3 pathways was associated with the inhibitory effects of DCEO on inflammatory mediators in LPS-stimulated RAW264.7 macrophages. This study provides a pharmacological justification for the use of dingchuan tang in managing inflammatory disorders.
Collapse
Affiliation(s)
- Yi Zhang
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, .,Department of Pharmacology, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Hui Guo
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Brian Chi-Yan Cheng
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Tao Su
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Xiu-Qiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Ting Li
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Pei-Li Zhu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Kai-Wing Tse
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Si-Yuan Pan
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, People's Republic of China,
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, .,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, People's Republic of China, .,Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, People's Republic of China,
| |
Collapse
|
17
|
Satou T, Sato N, Kato H, Kawamura M, Watanabe S, Koike K. The Effect of Camellia Seed Oil Intake on Lipid Metabolism in Mice. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Camellia seed oil has mainly been applied to the production of cosmetics, and research into its dietary effects is required. Alterations in lipid metabolism by the intake of camellia seed oil were investigated. Health parameters such as diet intake, weight gain, fat mass, and plasma cholesterol and triglyceride levels were measured in mice fed a high fat diet containing camellia seed oil; comparisons were made to a normal diet and a high fat diet containing either soybean oil or olive oil as controls. No significant differences in weight gain and diet intake were observed between the groups. However, the camellia seed oil diet suppressed epididymal fat weight similarly to the olive oil diet. In total cholesterol and HDL (high density lipoprotein) cholesterol levels, the soybean oil, olive oil and camellia seed oil diet groups showed significant increases compared with the normal diet. However, increases in LDL (low density lipoprotein) cholesterol levels were inhibited by the camellia seed oil diet similarly to the olive oil diet. As the high oleic acid content of camellia seed oil is similar to that of olive oil, it is proposed that its presence mitigated fat accumulation and plasma cholesterol levels.
Collapse
Affiliation(s)
- Tadaaki Satou
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274–8510, Japan
| | - Naoko Sato
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274–8510, Japan
| | - Haruyo Kato
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274–8510, Japan
| | - Mana Kawamura
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274–8510, Japan
| | - Sanae Watanabe
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274–8510, Japan
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274–8510, Japan
| |
Collapse
|
18
|
Lee E, Jeong KW, Shin A, Jin B, Jnawali HN, Jun BH, Lee JY, Heo YS, Kim Y. Binding model for eriodictyol to Jun-N terminal kinase and its anti-inflammatory signaling pathway. BMB Rep 2014; 46:594-9. [PMID: 24195792 PMCID: PMC4133860 DOI: 10.5483/bmbrep.2013.46.12.092] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 11/21/2022] Open
Abstract
The anti-inflammatory activity of eriodictyol and its mode of action were investigated. Eriodictyol suppressed tumor necrosis factor (mTNF)-α, inducible nitric oxide synthase (miNOS), interleukin (mIL)-6, macrophage inflammatory protein (mMIP)-1, and mMIP-2 cytokine release in LPS-stimulated macrophages. We found that the anti-inflammatory cascade of eriodictyol is mediated through the Toll-like Receptor (TLR)4/CD14, p38 mitogen-activated protein kinases (MAPK), extracellular-signalregulated kinase (ERK), Jun-N terminal kinase (JNK), and cyclooxygenase (COX)-2 pathway. Fluorescence quenching and saturation-transfer difference (STD) NMR experiments showed that eriodictyol exhibits good binding affinity to JNK, 8.79 × 105 M-1. Based on a docking study, we propose a model of eriodictyol and JNK binding, in which eriodictyol forms 3 hydrogen bonds with the side chains of Lys55, Met111, and Asp169 in JNK, and in which the hydroxyl groups of the B ring play key roles in binding interactions with JNK. Therefore, eriodictyol may be a potent anti-inflammatory inhibitor of JNK. [BMB Reports 2013; 46(12): 594-599]
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yangmee Kim
- Department of Bioscience and Biotechnology, Bio-Molecular Informatics Center, Institute of KU Biotechnology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
19
|
Kim M, Li YX, Dewapriya P, Ryu B, Kim SK. Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia. BMB Rep 2014; 46:398-403. [PMID: 23977987 PMCID: PMC4133907 DOI: 10.5483/bmbrep.2013.46.8.237] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inflammatory conditions mediated by activated microglia lead to chronic neuro-degenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. This study was conducted to determine the effect of floridoside isolated from marine red algae Laurencia undulata on LPS (100 ng/ml) activated inflammatory responses in BV-2 microglia cells. The results show that floridoside has the ability to suppress pro-inflammatory responses in microglia by markedly inhibiting the production of nitric oxide (NO) and reactive oxygen species (ROS). Moreover, floridoside down-regulated the protein and gene expression levels of iNOS and COX-2 by significantly blocking the phosphorylation of p38 and ERK in BV-2 cells. Collectively, these results indicate that floridoside has the potential to be developed as an active agent for the treatment of neuro-inflammation. [BMB Reports 2013; 46(8): 398-403]
Collapse
Affiliation(s)
- MinJeong Kim
- Department of Chemistry; Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Korea
| | | | | | | | | |
Collapse
|
20
|
Kuete V, Seo EJ, Krusche B, Oswald M, Wiench B, Schröder S, Greten HJ, Lee IS, Efferth T. Cytotoxicity and pharmacogenomics of medicinal plants from traditional korean medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:341724. [PMID: 23935662 PMCID: PMC3725712 DOI: 10.1155/2013/341724] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/24/2013] [Indexed: 12/17/2022]
Abstract
Aim. The present study was designed to investigate the cytotoxicity of a panel of 280 Korean medicinal plants belonging to 73 families and 198 species against human CCRF-CEM leukemia cells. Selected phytochemicals were investigated in more detail for their mode of action. Methods. The resazurin assay was used to determine cytotoxicity of the plant extracts. Microarray-based mRNA expression profiling, COMPARE, and hierarchical cluster analyses were applied to identify which genes correlate with sensitivity or resistance to selected phytochemicals of the Korean plants. Results. The results of the resazurin assay showed that cytotoxicity extracts tested at 10 μ g/mL from 13 samples inhibited proliferation more than 50% (IC50 < 10 μ g/mL) and the most active plants are Sedum middendorffianum (15.33%) and Lycoris radiata (17.61%). Out of 13 selected phytochemicals from these plants, hopeaphenol and deoxynarciclasine were the most cytotoxic ones. Genes from various functional groups (transcriptional or translational regulation, signal transduction, cellular proliferation, intracellular trafficking, RNA metabolism, endoplasmic/sarcoplasmic reticulum function, etc.) were significantly correlated with response of tumor cell lines to these two compounds. Conclusion. The results provide evidence on the possible use of selected Korean medicinal plants and chemical constituents derived from them for the treatment of tumors.
Collapse
Affiliation(s)
- Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Benjamin Krusche
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mira Oswald
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Benjamin Wiench
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Sven Schröder
- HanseMerkur Center for Traditional Chinese Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Henry Johannes Greten
- Biomedical Sciences Institute Abel Salazar, University of Porto, Portugal
- Heidelberg School of Chinese Medicine, Heidelberg, Germany
| | - Ik-Soo Lee
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|
21
|
Kim HJ, Lee DJ, Ku JJ, Choi K, Park KW, Kang SH, Moon C, Lee PJ. Anti-inflammatory Effect of Extracts from Folk Plants in Ulleung Island. ACTA ACUST UNITED AC 2013. [DOI: 10.7732/kjpr.2013.26.2.169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|