1
|
Li X, Zhao X, Yu X, Zhao J, Fang X. Construction of a multi-tissue compound-target interaction network of Qingfei Paidu decoction in COVID-19 treatment based on deep learning and transcriptomic analysis. J Bioinform Comput Biol 2024; 22:2450016. [PMID: 39036847 DOI: 10.1142/s0219720024500161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The Qingfei Paidu decoction (QFPDD) is a widely acclaimed therapeutic formula employed nationwide for the clinical management of coronavirus disease 2019 (COVID-19). QFPDD exerts a synergistic therapeutic effect, characterized by its multi-component, multi-target, and multi-pathway action. However, the intricate interactions among the ingredients and targets within QFPDD and their systematic effects in multiple tissues remain undetermined. To address this, we qualitatively characterized the chemical components of QFPDD. We integrated multi-tissue transcriptomic analysis with GraphDTA, a deep learning model, to screen for potential compound-target interactions of QFPDD in multiple tissues. We predicted 13 key active compounds, 127 potential targets and 27 pathways associated with QFPDD across six different tissues. Notably, oleanolic acid-AXL exhibited leading affinity in the heart, blood, and liver. Molecular docking and molecular dynamics simulation confirmed their strong binding affinity. The robust interaction between oleanolic acid and the AXL receptor suggests that AXL is a promising target for developing clinical intervention strategies. Through the construction of a multi-tissue compound-target interaction network, our study further elucidated the mechanisms through which QFPDD effectively combats COVID-19 in multiple tissues. Our work also establishes a framework for future investigations into the systemic effects of other Traditional Chinese Medicine (TCM) formulas in disease treatment.
Collapse
Affiliation(s)
- Xia Li
- Third Clinical College, Shanxi Provincial Integrated TCM and WM Hospital, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, P. R. China
| | - Xuetong Zhao
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, P. R. China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinjian Yu
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianping Zhao
- Third Clinical College, Shanxi Provincial Integrated TCM and WM Hospital, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, P. R. China
| | - Xiangdong Fang
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Yuan MH, Zhong WX, Wang YL, Liu YS, Song JW, Guo YR, Zeng B, Guo YP, Guo L. Therapeutic effects and molecular mechanisms of natural products in thrombosis. Phytother Res 2024; 38:2128-2153. [PMID: 38400575 DOI: 10.1002/ptr.8151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Thrombotic disorders, such as myocardial infarction and stroke, are the leading cause of death in the global population and have become a health problem worldwide. Drug therapy is one of the main antithrombotic strategies, but antithrombotic drugs are not completely safe, especially the risk of bleeding at therapeutic doses. Recently, natural products have received widespread interest due to their significant efficacy and high safety, and an increasing number of studies have demonstrated their antithrombotic activity. In this review, articles from databases, such as Web of Science, PubMed, and China National Knowledge Infrastructure, were filtered and the relevant information was extracted according to predefined criteria. As a result, more than 100 natural products with significant antithrombotic activity were identified, including flavonoids, phenylpropanoids, quinones, terpenoids, steroids, and alkaloids. These compounds exert antithrombotic effects by inhibiting platelet activation, suppressing the coagulation cascade, and promoting fibrinolysis. In addition, several natural products also inhibit thrombosis by regulating miRNA expression, anti-inflammatory, and other pathways. This review systematically summarizes the natural products with antithrombotic activity, including their therapeutic effects, mechanisms, and clinical applications, aiming to provide a reference for the development of new antithrombotic drugs.
Collapse
Affiliation(s)
- Ming-Hao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Xiao Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Lu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Shi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Wen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Rou Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi-Ping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Askri S, Edziri H, Hamouda MB, Mchiri C, Gharbi R, El-Gawad HHA, El-Tahawy MM. Synthesis, biological evaluation, density functional calculation and molecular docking analysis of novel spiropyrrolizidines derivatives as potential anti-microbial and anti-coagulant agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Quintal-Martínez JP, Quintal-Ortiz IG, Alonzo-Salomón LG, Muñoz-Rodríguez D, Segura-Campos MR. Antithrombotic Study and Identification of Metabolites in Leaf Extracts of Chaya [ Cnidoscolus aconitifolius (Mill.) I.M. Johnst.]. J Med Food 2021; 24:1304-1312. [PMID: 34619052 DOI: 10.1089/jmf.2021.0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Mexico, Cnidoscolus aconitifolius (chaya) has been used to treat cardiovascular diseases (CVD). Because CVD are the number one cause of mortality, chaya use has become a health strategy. The aim of this study was to evaluate the antithrombotic activity and identify the metabolites in the most active extract. Aqueous (Aq), ethanolic (EtOH), acetonic (An), ethyl acetate (AcOEt), diethyl ether (Et2O), and hexanic (Hx) extracts were obtained. Platelet aggregation, phospholipase A2, prothrombin time (PT), activated partial thromboplastin time (aPTT), and clot lysis were evaluated. Metabolites were identified by gas chromatography-mass spectrometry (GC-MS). EtOH showed the greatest inhibition of platelet aggregation and phospholipase A2. Ac had the greatest effect on PT and aPTT. AcOEt had the greatest effect on clot lysis. EtOH, with the highest potential, was analyzed by GC-MS; fatty acids and triterpenes were identified. Thus, EtOH showed greater antiplatelet activity and other extracts showed moderate activity. This is a preliminary antithrombotic study. Future research will allow the development of nutraceuticals or functional ingredients for the prevention and treatment of thrombosis.
Collapse
Affiliation(s)
| | | | | | - David Muñoz-Rodríguez
- Faculty of Chemical Engineering, Autonomous University of Yucatán, Merida, Yucatan, Mexico
| | | |
Collapse
|
5
|
Madike LN, Pillay M, Popat KC. Antithrombogenic properties of Tulbaghia violacea–loaded polycaprolactone nanofibers. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520903748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A broad range of polymers have been utilized for the development of blood-contacting implantable medical devices; however, their rate of failure has raised the need for developing more hemocompatible biomaterial surfaces. In this study, a novel scaffold based on polycaprolactone incorporated with 10% and 15% (w/w) Tulbaghia violacea plant extracts were fabricated using electrospinning technique. The fabricated scaffolds were then treated with T. violacea aqueous plant extracts (100 and 1000 µg/mL) to investigate their use as interfaces for blood-contacting implants. The 10% Tvio scaffold produced the lowest mean fibre diameter (193 ± 30 nm), whereas the 15% Tvio scaffold produces the highest mean fibre diameter (538 ± 236 nm) when compared with the control polycaprolactone (275 ± 61 nm) scaffold. The number of adhered platelets was directly linked to fibre diameter and concentration of plant extract in such a way that the lowest fibre diameter scaffold (10% Tvio) inhibited platelet adhesion, whereas more platelets adhered to the scaffold with the highest fibre diameter (15% Tvio scaffolds). There was also an increase in platelet adhesion as the concentration of T. violacea was increased from 100 to 1000 µg/mL for all designed scaffolds. The improved blood compatibility demonstrated by the 10% Tvio scaffold suggests that the plant possesses antithrombogenic properties, particularly at lower concentrations.
Collapse
Affiliation(s)
- Lerato N Madike
- Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Michael Pillay
- Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Ketul C Popat
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Wu L, Xiong W, Hu JW, Li XH, Fu JP, Si CL, Wang J. Chemical Constituents of Xylem of Sophora japonica Roots. Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2425-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
In Vivo and In Vitro Evaluation of Pharmacological Potentials of Secondary Bioactive Metabolites of Dalbergia candenatensis Leaves. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5034827. [PMID: 29441113 PMCID: PMC5758950 DOI: 10.1155/2017/5034827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/09/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022]
Abstract
Background. Dalbergia species has wide range of secondary metabolites and is traditionally used in treatment of painful micturition, swelling, and leprosy and as blood tonic. The study evaluates membrane stabilizing, anticoagulant, analgesic, cytotoxic, subacute anti-inflammatory, and depression potentials of D. candenatensis leaves metabolites. Methods. Membrane stabilizing activity was evaluated by hypotonic induced hemolysis assay, whereas anticoagulant activity is done through extrinsic pathway by measuring prothrombin time. Analgesic action, cytotoxic effect, and subacute anti-inflammatory activity were determined by acetic acid induced writhing model, brine shrimp lethality bioassay, and formaldehyde induced model, respectively. Depression activity was measured by the Open Field, Hole Cross, Hole Board, and thiopentone induced sleeping time measuring methods. Results. D. candenatensis contains phenolic, flavonoid, and tannin, quantified as 416.25 mg, 330.00 mg, and 432.22 mg Gallic Acid Equivalent/100 g of dry extract, respectively. Extract showed maximum inhibition of writhe, hemolysis, and edema, approximate to 57.14%, 36.62%, and 34.1%, respectively. LC50 value for nauplii was 151.499 μg/ml. Mean prothrombin time was approximate to 31.0 ± 2.31 seconds at 1.0 mg/ml. Extract showed depression activity, and maximum sleeping time was noted to be about 141 minutes. Conclusion. D. candenatensis leaves show dose dependent membrane stabilizing, anticoagulant, depression, analgesic, moderate cytotoxic, and subacute anti-inflammatory activities.
Collapse
|
8
|
Wang WW, Xu SH, Zhao YZ, Zhang C, Zhang YY, Yu BY, Zhang J. Microbial hydroxylation and glycosylation of pentacyclic triterpenes as inhibitors on tissue factor procoagulant activity. Bioorg Med Chem Lett 2016; 27:1026-1030. [PMID: 28109788 DOI: 10.1016/j.bmcl.2016.12.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/08/2016] [Accepted: 12/27/2016] [Indexed: 11/19/2022]
Abstract
To discover new inhibitors on tissue factor procoagulant activity, 20 pentacyclic triterpenes were semi-synthetized through microbial transformation and assayed on the model of human THP-1 cells stimulated by lipopolysaccharide. In the biotransformation two types of reactions were observed, regio-selective hydroxylation and glycosylation. The bioassay results showed that most of tested compounds were significant effective on this model and two of the biotransformation products 23-hydroxy-28-O-β-d-glucopyranosyl betulinic acid (3d) and 28-O-β-d-glucopyranosyl oleanic acid (1a) exhibited most potential activities with the IC50 values of 0.028, 0.035nM respectively. The preliminary structure and activity relationship analysis revealed that the aglycones with single free hydroxyl group on the skeleton (1, 1j) were less effective than that with more free hydroxyl groups (1d, 1f, 2), mono-glycosylation can significantly enhance their inhibitory effects. Our findings also provide some potential leading compounds for tissue factor-related diseases, such as cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shao-Hua Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Ya-Zheng Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yuan-Yuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
9
|
Lee W, Ku SK, Bae JS. Anti-inflammatory effects of Baicalin, Baicalein, and Wogonin in vitro and in vivo. Inflammation 2015; 38:110-25. [PMID: 25249339 DOI: 10.1007/s10753-014-0013-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, three structurally related polyphenols found in the Chinese herb Huang Qui, namely baicalin, baicalein, and wogonin, were examined for its effects on inflammatory responses by monitoring the effects of baicalin, baicalein, and wogonin on lipopolysaccharide (LPS)-mediated vascular inflammatory responses. We found that each compound inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion/transendothelial migration of monocytes to human endothelial cells. Each compound induced potent inhibition of phorbol-12-myristate 13-acetate and LPS-induced endothelial cell protein C receptor shedding. It also suppressed LPS-induced hyperpermeability and leukocytes migration in vivo. Furthermore, each compound suppressed the production of tumor necrosis factor-α or interleukin-6 and the activation of nuclear factor-κB or extracellular regulated kinases 1/2 by LPS. Moreover, treatment with each compound resulted in reduced LPS-induced lethal endotoxemia. These results suggest that baicalin, baicalein, and wogonin posses anti-inflammatory functions by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | | | | |
Collapse
|
10
|
Abstract
Sepsis is a state of disrupted inflammatory homeostasis that is initiated by infection. High mobility group box 1 (HMGB1) protein acting as a late mediator of severe vascular inflammatory conditions, such as sepsis and endothelial cell protein C receptor (EPCR), is involved in vascular inflammation. Fisetin, an active compound from the family Fabaceae, was reported to have antiviral, neuroprotective, and anti-inflammatory activities. Here, we determined the anti-septic effects of fisetin on HMGB1-mediated inflammatory responses and on the shedding of EPCR in vitro and in vivo, for the first time. First, we monitored the effects of post-treatment fisetin on lipopolysaccharide (LPS) and cecal ligation and puncture (CLP)-mediated release of HMGB1 and HMGB1-mediated regulation of pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and septic mice. Post-treatment fisetin was found to suppress LPS-mediated release of HMGB1 and HMGB1-mediated cytoskeletal rearrangements. Fisetin also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in septic mice. Fisetin induced potent inhibition of phorbol-12-myristate 13-acetate (PMA) and CLP-induced EPCR. Fisetin also inhibited the expression and activity of tumor necrosis factor-α converting enzyme, induced by PMA in endothelial cells. In addition, fisetin inhibited the production of tumor necrosis factor-α and the activation of AKT, nuclear factor-κB, and extracellular regulated kinases 1/2 by HMGB1 in HUVECs. Fisetin also down-regulated CLP-induced release of HMGB1, production of interleukin 1β, and reduced septic mortality. Collectively, these results suggest that fisetin may be a candidate therapeutic agent for the treatment of vascular inflammatory diseases via inhibition of the HMGB1 signaling pathway.
Collapse
|
11
|
Lee W, Ku SK, Park EJ, Na DH, Kim KM, Bae JS. Exendin-4 inhibits HMGB1-induced inflammatory responses in HUVECs and in murine polymicrobial sepsis. Inflammation 2015; 37:1876-88. [PMID: 24826914 DOI: 10.1007/s10753-014-9919-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exendin-4 (EX4) has been reported to attenuate myocardial ischemia and reperfusion (I/R) injury and inflammatory and oxidative responses. Nuclear DNA-binding protein high-mobility group box 1 (HMGB1) protein acts as a late mediator of severe vascular inflammatory conditions. However, the effect of EX4 on HMGB1-induced inflammatory response has not been studied. First, we accessed this question by monitoring the effects of posttreatment EX4 on lipopolysaccharide (LPS) and cecal ligation and puncture (CLP)-mediated release of HMGB1 and HMGB1-mediated regulation of proinflammatory responses in human umbilical vein endothelial cells (HUVECs) and septic mice. Posttreatment EX4 was found to suppress LPS-mediated release of HMGB1 and inhibited HMGB1-mediated hyperpermeability and leukocyte migration in septic mice. EX4 also induced downregulation of CLP-induced release of HMGB1, production of IL-6, and mortality. Collectively, these results suggest that EX4 may be regarded as a candidate therapeutic agent for treatment of vascular inflammatory diseases via inhibition of the HMGB1 signaling pathway.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
12
|
Yoo H, Ku SK, Zhou W, Han MS, Na M, Bae JS. Anti-septic effects of phenolic glycosides from Rhododendron brachycarpum in vitro and in vivo. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Rebamang AM, Thabo N, Nontando FC, Andy RO. Anticoagulant and anti-inflammatory activity of a triterpene from Protorhus longifolia stem bark. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/jmpr2015.5740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Ryu R, Jung UJ, Seo YR, Kim HJ, Moon BS, Bae JS, Lee DG, Choi MS. Beneficial effect of persimmon leaves and bioactive compounds on thrombosis. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0031-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
15
|
Lee W, Bae JS. Anti-inflammatory Effects of Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) In Vitro and In Vivo. Inflammation 2015; 38:1502-16. [DOI: 10.1007/s10753-015-0125-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Lee W, Ku SK, Jeong TC, Lee S, Bae JS. Ginsenosides Inhibit HMGB1-induced Inflammatory Responses in HUVECs and in Murine Polymicrobial Sepsis. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.10.2955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Kwak S, Ku SK, Han MS, Bae JS. Vascular barrier protective effects of baicalin, baicalein and wogonin in vitro and in vivo. Toxicol Appl Pharmacol 2014; 281:30-8. [PMID: 25223693 DOI: 10.1016/j.taap.2014.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/26/2014] [Accepted: 09/02/2014] [Indexed: 11/19/2022]
Abstract
Inhibition of high mobility group box 1 (HMGB1) protein and restoration of endothelial integrity is emerging as an attractive therapeutic strategy in the management of sepsis. Here, three structurally related polyphenols found in the Chinese herb Huang Qui, baicalin (BCL), baicalein (BCN), and wogonin (WGN), were examined for their effects on lipopolysaccharide (LPS)- or cecal ligation and puncture (CLP)-mediated release of HMGB1 and on modulation of HMGB1-mediated inflammatory responses. According to our data, BCL, BCN, and WGN inhibited the release of HMGB1 and down-regulated HMGB1-dependent inflammatory responses in human endothelial cells. BCL, BCN, and WGN also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. In addition, treatment with BCL, BCN, and WGN reduced CLP-induced release of HMGB1 and sepsis-related mortality and pulmonary injury in mice. These results indicate that BCL, BCN, and WGN could be candidate therapeutic agents for various severe vascular inflammatory diseases owing to their inhibition of the HMGB1 signaling pathway.
Collapse
Affiliation(s)
- Soyoung Kwak
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Min-Su Han
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Fatima Hospital, Daegu 701-600, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
18
|
Kim M, Han CH, Lee MY. Enhancement of platelet aggregation by ursolic Acid and oleanolic Acid. Biomol Ther (Seoul) 2014; 22:254-9. [PMID: 25009707 PMCID: PMC4060080 DOI: 10.4062/biomolther.2014.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 01/05/2023] Open
Abstract
The pentacyclic triterpenoid ursolic acid (UA) and its isomer oleanolic acid (OA) are ubiquitous in food and plant medicine, and thus are easily exposed to the population through natural contact or intentional use. Although they have diverse health benefits, reported cardiovascular protective activity is contentious. In this study, the effect of UA and OA on platelet aggregation was examined on the basis that alteration of platelet activity is a potential process contributing to cardiovascular events. Treatment of UA enhanced platelet aggregation induced by thrombin or ADP, which was concentration-dependent in a range of 5-50 μM. Quite comparable results were obtained with OA, in which OA-treated platelets also exhibited an exaggerated response to either thrombin or ADP. UA treatment potentiated aggregation of whole blood, while OA failed to increase aggregation by thrombin. UA and OA did not affect plasma coagulation assessed by measuring prothrombin time and activated partial thromboplastin time. These results indicate that both UA and OA are capable of making platelets susceptible to aggregatory stimuli, and platelets rather than clotting factors are the primary target of them in proaggregatory activity. These compounds need to be used with caution, especially in the population with a predisposition to cardiovascular events.
Collapse
Affiliation(s)
- Mikyung Kim
- College of Pharmacy, Dongguk University, Goyang 410-820
| | - Chang-Ho Han
- Department of Internal Medicine, College of Korean Medicine, Dongguk University, Gyeongju 780-714, Republic of Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Dongguk University, Goyang 410-820
| |
Collapse
|
19
|
Lee W, Ku SK, Bae JS. Factor Xa inhibits HMGB1-induced septic responses in human umbilical vein endothelial cells and in mice. Thromb Haemost 2014; 112:757-69. [PMID: 25007770 DOI: 10.1160/th14-03-0233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/12/2014] [Indexed: 12/24/2022]
Abstract
Nuclear DNA-binding protein high mobility group box 1 (HMGB1) acts as a late mediator of severe vascular inflammatory conditions, such as sepsis. Activated factor X (FXa) is an important player in the coagulation cascade responsible for thrombin generation, and it influences cell signalling in various cell types by activating protease-activated receptors (PARs). However, the effect of FXa on HMGB1-induced inflammatory response has not been studied. First, we addressed this issue by monitoring the effects of post-treatment with FXa on lipopolysaccharide (LPS)- and cecal ligation and puncture (CLP)-mediated release of HMGB1 and HMGB1-mediated regulation of pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and septic mice. Post-treatment with FXa was found to suppress LPS-mediated release of HMGB1 and HMGB1-mediated cytoskeletal rearrangements. FXa also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in septic mice. In addition, FXa inhibited the production of tumour necrosis factor-α and interleukin (IL)-1β. FXa also facilitated the downregulation of CLP-induced release of HMGB1, production of IL-6, and mortality. Collectively, these results suggest that FXa may be regarded as a candidate therapeutic agent for treating vascular inflammatory diseases by inhibiting the HMGB1 signalling pathway.
Collapse
Affiliation(s)
| | | | - Jong-Sup Bae
- Jong-Sup Bae, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Republic of Korea, Tel.: +82 53 950 8570, Fax: +82 53 950 8557, E-mail:
| |
Collapse
|
20
|
Lee W, Ku SK, Bae JS. Vascular barrier protective effects of orientin and isoorientin in LPS-induced inflammation in vitro and in vivo. Vascul Pharmacol 2014; 62:3-14. [DOI: 10.1016/j.vph.2014.04.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/12/2014] [Accepted: 04/18/2014] [Indexed: 01/11/2023]
|
21
|
Liu J, Zheng L, Wu N, Ma L, Zhong J, Liu G, Lin X. Oleanolic acid induces metabolic adaptation in cancer cells by activating the AMP-activated protein kinase pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5528-5537. [PMID: 24856665 DOI: 10.1021/jf500622p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cancer cells are well-known to require a constant supply of protein, lipid, RNA, and DNA via altered metabolism for accelerated cell proliferation. Targeting metabolic pathways is, therefore, a promising therapeutic strategy for cancers. Oleanolic acid (OA) is widely distributed in dietary and medicinal plants and displays a selective cytotoxicity to cancer cells, primarily by inducing apoptosis and cell cycle arrest. This study investigated if OA inhibited growth of tumor cells by affecting their metabolism. OA was found to activate AMP-activated protein kinase (AMPK), the master regulator of metabolism, in prostate cancer cell line PC-3 and breast cancer cell line MCF-7. AMPK activation is required for the antitumor activity of OA on cancer cells. Lipogenesis, protein synthesis, and aerobic glycolysis were inhibited in cancer cells treated with OA, in an AMPK activation-dependent manner. The metabolic alteration was shown to mediate the tumor suppressor activity of OA on cancer cells. Collectively, this study provides evidence that OA, as a widely distributed nutritional component, is able to exert antitumor function by interfering in the metabolic pathway in cancer cells. This finding should encourage researchers to study if affecting cancer metabolism is a common mechanism by which nutritional compounds suppress cancers.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Ku SK, Yoo H, Zhou W, Na M, Bae JS. Antiplatelet activities of hyperosidein vitroandin vivo. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.925970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
23
|
Antiplatelet, anticoagulant, and profibrinolytic activities of baicalin. Arch Pharm Res 2014; 38:893-903. [DOI: 10.1007/s12272-014-0410-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
|
24
|
Ku SK, Kim JA, Bae JS. Vascular barrier protective effects of piperlonguminine in vitro and in vivo. Inflamm Res 2014; 63:369-79. [PMID: 24468889 DOI: 10.1007/s00011-014-0708-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 12/29/2013] [Accepted: 01/12/2014] [Indexed: 01/05/2023] Open
Abstract
AIM AND OBJECTIVE The nuclear DNA binding protein known as high-mobility group box 1 (HMGB1) acts as a late mediator of severe vascular inflammatory conditions, such as sepsis and septic shock. Piperlonguminine (PL), an important component of Piper longum fruit, is known to exhibit anti-hyperlipidemic, anti-platelet, and anti-melanogenesis activities. However, little is known about its effects on HMGB1-mediated inflammatory response. METHODS We investigated the effects of PL on HMGB1-mediated inflammatory response by monitoring the effects of PL on lipopolysaccharide or cecal ligation and puncture (CLP)-mediated release of HMGB1, as well as on the modulation of HMGB1-mediated inflammatory responses. RESULTS According to our data, PL caused inhibition of the release of HMGB1 and downregulation of HMGB1-dependent inflammatory responses in human endothelial cells. PL also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. In addition, treatment with PL reduced the CLP-induced release of HMGB1 and sepsis-related mortality. CONCLUSION These results indicate that PL could be a candidate therapeutic agent for various severe vascular inflammatory diseases via inhibition of the HMGB1 signaling pathway.
Collapse
Affiliation(s)
- Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, 712-715, Republic of Korea
| | | | | |
Collapse
|
25
|
Lee W, Ku S, Yoo H, Song K, Bae J. Andrographolide inhibits HMGB1-induced inflammatory responses in human umbilical vein endothelial cells and in murine polymicrobial sepsis. Acta Physiol (Oxf) 2014; 211:176-87. [PMID: 24581270 DOI: 10.1111/apha.12264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/06/2013] [Accepted: 02/24/2014] [Indexed: 01/18/2023]
Abstract
AIM Nuclear DNA-binding protein high-mobility group box 1 (HMGB1) protein acts as a late mediator of severe vascular inflammatory conditions, such as septic shock, upregulating pro-inflammatory cytokines. Andrographolide (AG) is isolated from the plant of Andrographis paniculata and used as a folk medicine for treatment of viral infection, diarrhoea, dysentery and fever. However, the effect of AG on HMGB1-induced inflammatory response has not been studied. METHODS Firstly, we accessed this question by monitoring the effects of post-treatment AG on lipopolysaccharide (LPS) and caecal ligation and puncture (CLP)-mediated release of HMGB1 and HMGB1-mediated regulation of pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and septic mice. RESULTS Post-treatment AG was found to suppress LPS-mediated release of HMGB1 and HMGB1-mediated cytoskeletal rearrangements. AG also inhibited HMGB1-mediated hyperpermeability and leucocyte migration in septic mice. In addition, AG inhibited production of tumour necrosis factor-α (TNF-α) and activation of AKT, nuclear factor-κB (NF-κB) and extracellular-regulated kinases (ERK) 1/2 by HMGB1 in HUVECs. AG also induced downregulation of CLP-induced release of HMGB1, production of interleukin (IL) 1β/6/8 and mortality. CONCLUSION Collectively, these results suggest that AG may be regarded as a candidate therapeutic agent for the treatment of vascular inflammatory diseases via inhibition of the HMGB1 signalling pathway.
Collapse
Affiliation(s)
- W. Lee
- College of Pharmacy; CMRI; Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu Korea
- Department of Biochemistry and Cell Biology; School of Medicine; Kyungpook National University; Daegu Korea
| | - S. Ku
- Department of Anatomy and Histology; College of Korean Medicine; Daegu Haany University; Gyeongsan Korea
| | - H. Yoo
- College of Pharmacy; CMRI; Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu Korea
| | - K. Song
- College of Pharmacy; CMRI; Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu Korea
| | - J. Bae
- College of Pharmacy; CMRI; Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu Korea
| |
Collapse
|
26
|
Yoo H, Ku SK, Lee T, Bae JS. Orientin Inhibits HMGB1-Induced Inflammatory Responses in HUVECs and in Murine Polymicrobial Sepsis. Inflammation 2014; 37:1705-17. [DOI: 10.1007/s10753-014-9899-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Ku SK, Bae JS. Antiplatelet, anticoagulant, and profibrinolytic activities of withaferin A. Vascul Pharmacol 2014; 60:120-6. [DOI: 10.1016/j.vph.2014.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 01/24/2014] [Accepted: 01/30/2014] [Indexed: 02/09/2023]
|
28
|
Ryu R, Jung UJ, Kim HJ, Lee W, Bae JS, Park YB, Choi MS. Anticoagulant and Antiplatelet Activities of Artemisia princeps Pampanini and Its Bioactive Components. Prev Nutr Food Sci 2014; 18:181-7. [PMID: 24471130 PMCID: PMC3892488 DOI: 10.3746/pnf.2013.18.3.181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/23/2013] [Indexed: 11/23/2022] Open
Abstract
Artemisia princeps Pampanini (AP) has been used as a traditional medicine in Korea, China and Japan and reported to exhibit various beneficial biological effects including anti-inflammatory, antioxidant, anti-atherogenic and lipid lowering activities; however, its antiplatelet and anticoagulant properties have not been studied. In the present study, we evaluated the effects of an ethanol extract of Artemisia princeps Pampanini (EAP) and its major flavonoids, eupatilin and jaceosidin, on platelet aggregation and coagulation. To determine the antiplatelet activity, arachidonic acid (AA)-, collagen- and ADP (adenosine diphosphate)-induced platelet aggregation were examined along with serotonin and thromboxane A2 (TXA2) generation in vitro. The anticoagulant activity was determined by monitoring the activated partial thromboplastin time (aPTT) and prothrombin time (PT) in vitro. The data showed that EAP and its major flavonoids, eupatilin and jaceosidin, significantly reduced AA-induced platelet aggregation and the generation of serotonin and TXA2, although no significant change in platelet aggregation induced by collagen and ADP was observed. Moreover, EAP significantly prolonged the PT and aPTT. The PT and/or aPTT were significantly increased in the presence of eupatilin and jaceosidin. Thus, these results suggest that EAP may have the potential to prevent or improve thrombosis by inhibiting platelet activation and blood coagulation.
Collapse
Affiliation(s)
- Ri Ryu
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 702-701, Korea
| | - Un Ju Jung
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea
| | - Hye-Jin Kim
- Foods R&D, CJ Cheil Jedang Corporation, Seoul 152-051, Korea
| | - Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea ; Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 702-701, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Yong Bok Park
- Department of Genetic Engineering, Kyungpook National University, Daegu 702-701, Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 702-701, Korea ; Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
29
|
Antiplatelet, anticoagulant, and profibrinolytic activities of cudratricusxanthone A. Arch Pharm Res 2013; 37:1069-78. [DOI: 10.1007/s12272-013-0290-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/04/2013] [Indexed: 11/26/2022]
|
30
|
Lee W, Yoo H, Ku SK, Kim JA, Bae JS. Anticoagulant activities of piperlonguminine in vitro and in vivo. BMB Rep 2013; 46:484-9. [PMID: 24148768 PMCID: PMC4133832 DOI: 10.5483/bmbrep.2013.46.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/23/2013] [Accepted: 03/04/2013] [Indexed: 12/27/2022] Open
Abstract
Piperlonguminine (PL), an important component of Piper longum fruits, is known to exhibit anti-hyperlipidemic, anti-platelet and anti-melanogenic activities. Here, the anticoagulant activities of PL were examined by monitoring activated-partial-thromboplastin-time (aPTT), prothrombin-time (PT), and the activities of thrombin and activated factor X (FXa). The effects of PL on the expressions of plasminogen activator inhibitor type 1 (PAI-1) and tissue-type plasminogen activator (t-PA) were also tested in tumor necrosis factor-α (TNF-α) activated HUVECs. The results showed that PL prolonged aPTT and PT significantly and inhibited the activities of thrombin and FXa. PL inhibited the generation of thrombin and FXa in HUVECs. In accordance with these anticoagulant activities, PL prolonged in vivo bleeding time and inhibited TNF-α induced PAI-1 production. Furthermore, PAI-1/t-PA ratio was significan- tly decreased by PL. Collectively, our results suggest that PL possesses antithrombotic activities and that the current study could provide bases for the development of new anticoagulant agents.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | | | |
Collapse
|
31
|
Ku SK, Lee IC, Kim JA, Bae JS. Antithrombotic activities of pellitorine in vitro and in vivo. Fitoterapia 2013; 91:1-8. [PMID: 23973654 DOI: 10.1016/j.fitote.2013.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 12/25/2022]
Abstract
Pellitorine (PLT), an active amide compound, is well known to possess insecticidal, antibacterial and anticancer properties. However, the anti-coagulant functions of PLT are not studied yet. Here, the anticoagulant activities of PLT were examined by monitoring activated partial thromboplastin time (aPTT), prothrombin time (PT), and the activities of cell-based thrombin and activated factor X (FXa). Furthermore, the effects of PLT on the expressions of plasminogen activator inhibitor type 1 (PAI-1) and tissue-type plasminogen activator (t-PA) were tested in tumor necrosis factor (TNF)-α activated human umbilical vein endothelial cells (HUVECs). Treatment with PLT resulted in prolonged aPTT and PT and inhibition of the activities of thrombin and FXa, and PLT inhibited production of thrombin and FXa in HUVECs. And PLT inhibited thrombin-catalyzed fibrin polymerization and platelet aggregation. In accordance with these anticoagulant activities, PLT elicited anticoagulant effects in mouse. In addition, treatment with PLT resulted in the inhibition of TNF-α-induced production of PAI-1 and in the significant reduction of the PAI-1 to t-PA ratio. Collectively, PLT possesses antithrombotic activities and offers bases for development of a novel anticoagulant.
Collapse
Affiliation(s)
- Sae-Kwang Ku
- Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - In-Chul Lee
- Department of Cosmetic Science and Technology, Seowon University, Cheongju 361-742, Republic of Korea
| | - Jeong Ah Kim
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701 Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701 Republic of Korea.
| |
Collapse
|
32
|
Ku SK, Lee IC, Bae JS. Antithrombotic activities of oroxylin A in vitro and in vivo. Arch Pharm Res 2013; 37:679-86. [PMID: 23963976 DOI: 10.1007/s12272-013-0233-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
Here, the anticoagulant activities of oroxylin A (OroA), a major component of Scutellaria baicalensis Georgi, were examined by monitoring activated partial thromboplastin time (aPTT), prothrombin time (PT), and the activities of cell-based thrombin and activated factor X (FXa). Furthermore, the effects of OroA on the expressions of plasminogen activator inhibitor type 1 (PAI-1) and tissue-type plasminogen activator (t-PA) were tested in tumor necrosis factor (TNF)-α activated human umbilical vein endothelial cells (HUVECs). Treatment with OroA resulted in prolonged aPTT and PT and inhibition of the activities of thrombin and FXa, and OroA inhibited production of thrombin and FXa in HUVECs. And OroA inhibited thrombin-catalyzed fibrin polymerization and platelet aggregation. In accordance with these anticoagulant activities, OroA elicited anticoagulant effects in mouse. In addition, treatment of OroA resulted in the inhibition of TNF-α-induced production of PAI-1, and treatment with OroA resulted in the significant reduction of the PAI-1 to t-PA ratio. Collectively, OroA possess antithrombotic activities and offer bases for development of a novel anticoagulant.
Collapse
Affiliation(s)
- Sae-Kwang Ku
- Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, Gyeongsan, 712-715, Republic of Korea
| | | | | |
Collapse
|
33
|
Ku SK, Han MS, Bae JS. Down-regulation of endothelial protein C receptor shedding by persicarin and isorhamnetin-3-O-galactoside. Thromb Res 2013; 132:e58-63. [PMID: 23726966 DOI: 10.1016/j.thromres.2013.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/04/2013] [Accepted: 05/05/2013] [Indexed: 11/16/2022]
Abstract
Increasing evidence has shown that beyond its role in coagulation, endothelial protein C receptor (EPCR) plays an important role in the cytoprotective pathway. Previous reports have shown that EPCR can be shed from the cell surface, and that this is mediated by tumor necrosis factor-α converting enzyme (TACE) and that sEPCR levels are increased in patients with systemic inflammatory diseases. Persicarin and isorhamnetin-3-O-galactoside (I3G) are active compounds from Oenanthe javanica, which has been widely studied for its neuroprotective, antioxidant, and barrier protective activities. However, little is known of the effects of persicarin on EPCR shedding. Here, we investigated this issue by monitoring the effects of persicarin and I3G on phorbol-12-myristate 13-acetate (PMA) and on cecal ligation and puncture (CLP)-mediated EPCR shedding and underlying mechanisms. According to the results, persicarin and I3G induced potent inhibition of PMA and CLP-induced EPCR shedding by suppressing expression of TACE. In addition, persicarin and I3G reduced PMA-stimulated phosphorylation of p38MAPK, extracellular regulated kinases (ERK) 1/2, and c-Jun N-terminal kinase (JNK). Given these results, persicarin and I3G could be used as a candidate therapeutic for treatment of severe vascular inflammatory diseases.
Collapse
Affiliation(s)
- Sae-Kwang Ku
- Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, Gyeongsan, 712-715, Republic of Korea
| | | | | |
Collapse
|
34
|
Ku SK, Bae JS. Concentration dependent anti-inflammatory effects thrombin on polyphosphate-mediated inflammatory responses in vitro and in vivo. Inflamm Res 2013; 62:609-16. [DOI: 10.1007/s00011-013-0613-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/12/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022] Open
|