1
|
Deng F, Zhang C, Lu T, Liao EJ, Huang H, Wei S. Roles of circRNAs in hematological malignancies. Biomark Res 2022; 10:50. [PMID: 35840998 PMCID: PMC9284813 DOI: 10.1186/s40364-022-00392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
As one of the leading causes of death, hematologic malignancies are associated with an ever-increasing incidence, and drug resistance and relapse of patients after treatment represent clinical challenges. Therefore, there are pressing demands to uncover biomarkers to indicate the development, progression, and therapeutic targets for hematologic malignancies. Circular RNAs (circRNAs) are covalently closed circular-single-stranded RNAs whose biosynthesis is regulated by various factors and is widely-expressed and evolutionarily conserved in many organisms and expressed in a tissue−/cell-specific manner. Recent reports have indicated that circRNAs plays an essential role in the progression of hematological malignancies. However, circRNAs are difficult to detect with low abundance using conventional techniques. We need to learn more information about their features to develop new detection methods. Herein, we sought to retrospect the current knowledge about the characteristics of circRNAs and summarized research on circRNAs in hematological malignancies to explore a potential direction.
Collapse
Affiliation(s)
- Fahua Deng
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Chengsi Zhang
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Tingting Lu
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, Guizhou Province, China.,Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Ezhong Joshua Liao
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China.,Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Hai Huang
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, Guizhou Province, China. .,Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China.
| | - Sixi Wei
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, Guizhou Province, China. .,Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China.
| |
Collapse
|
2
|
Ng WL, Mohd Mohidin TB, Shukla K. Functional role of circular RNAs in cancer development and progression. RNA Biol 2018; 15:995-1005. [PMID: 29954251 DOI: 10.1080/15476286.2018.1486659] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a large class of endogenously expressed non-coding RNAs formed by covalently closed loops through back-splicing. High throughput sequencing technologies have identified thousands of circRNAs with high sequence conservation and cell type specific expression in eukaryotes. CircRNAs play multiple important roles in cellular physiology functioning as miRNA sponges, transcriptional regulators, RBP binding molecules, templates for protein translation, and immune regulators. In a clinical context, circRNAs expression is correlated with patient's clinicopathological features in cancers including breast, liver, gastric, colorectal, and lung cancer. Additionally, distinct properties of circRNAs, such as high stability, exonuclease resistance, and existence in body fluids, show promising role for circRNAs as molecular biomarkers for tumor diagnosis, non-invasive monitoring, prognosis, and therapeutic intervention. Therefore, it is critical to further understand the molecular mechanism underlying circRNAs interaction in tumors and the recent progress of this RNA species in cancer development. In this review, we provide a detailed description of biological functions, molecular role of circRNAs in different cancers, and its potential role as biomarkers in a clinical context.
Collapse
Affiliation(s)
- Wei Lun Ng
- a Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| | - Taznim Begam Mohd Mohidin
- a Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| | - Kirti Shukla
- b School of Science , Monash University Malaysia , Subang Jaya , Selangor , Malaysia
| |
Collapse
|
3
|
Kim Y, Jeong EJ, Han Lee IS, Kim MY, Cho JY. (E)-3-(3-methoxyphenyl)-1-(2-pyrrolyl)-2-propenone displays suppression of inflammatory responses via inhibition of Src, Syk, and NF-κB. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 20:91-9. [PMID: 26807028 PMCID: PMC4722197 DOI: 10.4196/kjpp.2016.20.1.91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 12/24/2022]
Abstract
(E)-3-(3-methoxyphenyl)-1-(2-pyrrolyl)-2-propenone (MPP) is an aldol condensation product resulting from pyrrole-2-carbaldehyde and m- and p- substituted acetophenones. However, its biological activity has not yet been evaluated. Since it has been reported that some propenone-type compounds display anti-inflammatory activity, we investigated whether MPP could negatively modulate inflammatory responses. To do this, we employed lipopolysaccharide (LPS)-stimulated macrophage-like RAW264.7 cells and examined the inhibitory levels of nitric oxide (NO) production and transcriptional activation, as well as the target proteins involved in the inflammatory signaling cascade. Interestingly, MPP was found to reduce the production of NO in LPS-treated RAW264.7 cells, without causing cytotoxicity. Moreover, this compound suppressed the mRNA levels of inflammatory genes, such as inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-α. Using luciferase reporter gene assays performed in HEK293 cells and immunoblotting analysis with nuclear protein fractions, we determined that MPP reduced the transcriptional activation of nuclear factor (NF)-κB. Furthermore, the activation of a series of upstream signals for NF-κB activation, composed of Src, Syk, Akt, and IκBα, were also blocked by this compound. It was confirmed that MPP was able to suppress autophosphorylation of overexpressed Src and Syk in HEK293 cells. Therefore, these results suggest that MPP can function as an anti-inflammatory drug with NF-κB inhibitory properties via the suppression of Src and Syk.
Collapse
Affiliation(s)
- Yong Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Eun Jeong Jeong
- Department of Science Education, Kangwon National University, Chuncheon 24341, Korea
| | - In-Sook Han Lee
- Department of Science Education, Kangwon National University, Chuncheon 24341, Korea
| | - Mi-Yeon Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
4
|
Abstract
It is now clear that there is a diversity of circular RNAs in biological systems. Circular RNAs can be produced by the direct ligation of 5' and 3' ends of linear RNAs, as intermediates in RNA processing reactions, or by "backsplicing," wherein a downstream 5' splice site (splice donor) is joined to an upstream 3' splice site (splice acceptor). Circular RNAs have unique properties including the potential for rolling circle amplification of RNA, the ability to rearrange the order of genomic information, protection from exonucleases, and constraints on RNA folding. Circular RNAs can function as templates for viroid and viral replication, as intermediates in RNA processing reactions, as regulators of transcription in cis, as snoRNAs, and as miRNA sponges. Herein, we review the breadth of circular RNAs, their biogenesis and metabolism, and their known and anticipated functions.
Collapse
Affiliation(s)
- Erika Lasda
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
5
|
Dung TTM, Lee J, Kim E, Yoo BC, Ha VT, Kim Y, Yoon DH, Hong S, Baek KS, Sung NY, Kim TW, Kim JH, Cho JY. Anti-inflammatory Activities of Gouania leptostachya
Methanol Extract and its Constituent Resveratrol. Phytother Res 2014; 29:381-92. [DOI: 10.1002/ptr.5262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/05/2014] [Accepted: 10/25/2014] [Indexed: 11/09/2022]
Affiliation(s)
- To Thi Mai Dung
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
| | - Jongsung Lee
- Department of Dermatological Health Management; Eulji University; Seongnam 461-713 Korea
| | - Eunji Kim
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
| | - Byong Chul Yoo
- Research Institute and Hospital; National Cancer Center; Goyang 410-769 Republic of Korea
| | - Van Thai Ha
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
| | - Yong Kim
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
| | - Deok Hyo Yoon
- Department of Biochemistry; Kangwon National University; Chuncehon 200-701 Korea
| | - Sungyoul Hong
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
| | - Nak Yoon Sung
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
| | - Tae Woong Kim
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
- Department of Biochemistry; Kangwon National University; Chuncehon 200-701 Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine; Chonbuk National University; Jeonju 561-756 Korea
| | - Jae Youl Cho
- Department of Genetic Engineering; Sungkyunkwan University; Suwon 440-746 Korea
| |
Collapse
|