1
|
Chou CH, Yen CH, Liu CJ, Tu HF, Lin SC, Chang KW. The upregulation of VGF enhances the progression of oral squamous carcinoma. Cancer Cell Int 2024; 24:115. [PMID: 38528565 DOI: 10.1186/s12935-024-03301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a prevalent neoplasm worldwide, necessitating a deeper understanding of its pathogenesis. VGF nerve growth factor inducible (VGF), a neuropeptide, plays critical roles in nerve and endocrine cell regulation. METHODS In this study, the TCGA datasets were initially screened, identifying the upregulation of VGF in various malignancies. We focused on OSCC cell lines, identifying the suppressor mRNA miR-432-5p as a negative regulator of VGF. Additionally, we examined the prognostic value of VGF expression in OSCC tumors and its impact on cellular functions. RESULTS VGF expression was found to be an independent prognostic predictor in OSCC tumors. Cells expressing VGF exhibited increased oncogenicity, influencing the proliferation and migration of oral mucosal fibroblast. Transcriptome analysis revealed associations between VGF and various pathological processes, including malignancies, exosome release, fibrosis, cell cycle disruption, and tumor immune suppression. Moreover, IL23R expression, a favorable OSCC prognostic factor, was inversely correlated with VGF expression. Exogenous IL23R expression was found to suppress VGF-associated mobility phenotypes. CONCLUSIONS This study highlights the multifaceted role of VGF in OSCC pathogenesis and introduces the miR-432-5p-VGF-IL23R regulatory axis as a critical mediator. The combined expression of VGF and IL23R emerges as a potent predictor of survival in oral carcinoma cases, suggesting potential implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Chung-Hsien Chou
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Han Yen
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Taipei Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsi-Feng Tu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Kuo-Wei Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Jiang M, Wang X, Gao X, Cardenas A, Baccarelli AA, Guo X, Huang J, Wu S. Association of DNA methylation in circulating CD4 +T cells with short-term PM 2.5 pollution waves: A quasi-experimental study of healthy young adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113634. [PMID: 35617899 DOI: 10.1016/j.ecoenv.2022.113634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Fine particulate matter (PM2.5) is a modifiable environmental risk factor with established adverse effects on human health. However, associations between acute PM2.5 fluctuation and DNA methylation remain unknown. METHODS A quasi-experimental study utilizing naturally occurring PM2.5 pollution waves (PPWs) was conducted on 32 healthy young adults. Repeated follow-up measurements were performed and participants served as their own controls before, during, and after PPWs. Exposure measurements including indoor and ambient PM2.5 levels, and equivalent personal PM2.5 exposure were further estimated based on the time-location information. DNA methylation profiles of circulating CD4+T cells were obtained using Illumina HumanMethylationEPIC BeadChip. Linear mixed-effect models were applied to estimate the associations between two scenarios (during-PPWs vs. pre-PPWs periods and during-PPWs vs. post-PPWs periods) and methylation level of each CpG site. We further validated their associations with the personal PM2.5 exposure, and GO and KEGG analyses and mediation analysis were conducted accordingly. RESULTS Data from 26 participants were included in final analysis after quality control. Short-term high PM2.5 exposure was associated with DNA methylation changes of participants. Nine differently methylated CpG sites were not only significantly associated with PPWs periods but also with personal PM2.5 exposure in 24-h prior to the health examinations (p < 0.01). Gene ontology analysis found that five sites were associated with two pathways relating to membrane protein synthesis. PM2.5-related changes in CpG sites were mediated by sP-selectin, 8-isoPGF2α, EGF, GRO, IL-15, and IFN-α2, with mediated proportions ranging from 9.65% to 23.40%. CONCLUSIONS This is the first quasi-experimental study showing that short-term high PM2.5 exposure could alter the DNA methylation of CD4+T cells, which provided valuable information for further exploring underlying biological mechanisms and epigenetic biomarkers for PM2.5-related acute health effects.
Collapse
Affiliation(s)
- Meijie Jiang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinmei Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Keogh K, Kenny DA, Waters SM. Gene co-expression networks contributing to the expression of compensatory growth in metabolically active tissues in cattle. Sci Rep 2019; 9:6093. [PMID: 30988346 PMCID: PMC6465245 DOI: 10.1038/s41598-019-42608-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/02/2019] [Indexed: 01/04/2023] Open
Abstract
Compensatory growth (CG) is an accelerated growth phenomenon which occurs in animals upon re-alimentation following a period of dietary restriction. The objective of this study was to perform gene co-expression analysis on metabolic tissues of animals undergoing CG, in order to elucidate the molecular control governing this phenomenon. Thirty Holstein Friesian bulls were fed a restricted diet for 125 days, after which they received feed ad libitum. Following 55 days of ad libitum feeding all animals were slaughtered. RNAseq and gene co-expression analyses were performed on tissue samples collected at slaughter including liver, rumen papillae and jejunum epithelium tissues. A period of CG resulted in 15 networks of co-expressed genes. One network of genes, involved in proteasome core complex, signal transduction and protein synthesis was found to be similar across liver and jejunum tissue datasets (r = 0.68, P = 0.04). Results from this study also showed that a large portion of co-expressed genes had not previously been implicated in the expression of CG, thus this study identifies novel genes involved in controlling CG across tissues, with hub genes holding potential for use as biomarkers for the selection of animals with a greater propensity to display CG.
Collapse
Affiliation(s)
- Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co, Meath, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co, Meath, Ireland
| | - Sinead M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co, Meath, Ireland.
| |
Collapse
|
4
|
Jun YW, Park H, Lee YK, Kaang BK, Lee JA, Jang DJ. D-AKAP1a is a signal-anchored protein in the mitochondrial outer membrane. FEBS Lett 2016; 590:954-61. [PMID: 26950402 DOI: 10.1002/1873-3468.12123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 11/08/2022]
Abstract
Dual A-kinase anchoring protein 1a (D-AKAP1a, AKAP1) regulates cAMP signaling in mitochondria. However, it is not clear how D-AKAP1a is associated with mitochondria. In this study, we show that D-AKAP1a is a transmembrane protein in the mitochondrial outer membrane (MOM). We revealed that the N-terminus of D-AKAP1a is exposed to the intermembrane space of mitochondria and that its C-terminus is located on the cytoplasmic side of the MOM. Moderate hydrophobicity and the positively charged flanking residues of the transmembrane domain of D-AKAP1a were important for targeting. Taken together, D-AKAP1a can be classified as a signal-anchored protein in the MOM. Our topological study provides valuable information about the molecular and cellular mechanisms of mitochondrial targeting of AKAP1.
Collapse
Affiliation(s)
- Yong-Woo Jun
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Korea
| | - Heeju Park
- Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Korea
| | - You-Kyung Lee
- Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University, Yuseong-gu, Daejeon, Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jin-A Lee
- Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University, Yuseong-gu, Daejeon, Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Korea.,Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Korea
| |
Collapse
|
5
|
Kim KH, Jun YW, Park Y, Lee JA, Suh BC, Lim CS, Lee YS, Kaang BK, Jang DJ. Intracellular membrane association of the Aplysia cAMP phosphodiesterase long and short forms via different targeting mechanisms. J Biol Chem 2014; 289:25797-811. [PMID: 25077971 DOI: 10.1074/jbc.m114.572222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamine-induced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between their N termini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P2, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively.
Collapse
Affiliation(s)
- Kun-Hyung Kim
- From the Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, 386, Gajang-dong, Sangju-si, Kyungbuk 742-711, Korea
| | - Yong-Woo Jun
- From the Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, 386, Gajang-dong, Sangju-si, Kyungbuk 742-711, Korea
| | - Yongsoo Park
- the Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jin-A Lee
- the Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, 461-6, Jeonmin-dong, Yuseong-gu, Daejeon 305-811, Korea
| | - Byung-Chang Suh
- the Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea
| | - Chae-Seok Lim
- the Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-747, Korea, and
| | - Yong-Seok Lee
- the Department of Life Science, College of Natural Science, Chung-Ang University, Seoul 156-756, Korea
| | - Bong-Kiun Kaang
- the Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-747, Korea, and
| | - Deok-Jin Jang
- From the Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, 386, Gajang-dong, Sangju-si, Kyungbuk 742-711, Korea,
| |
Collapse
|