1
|
Bahar AN, Keskin-Aktan A, Akarca-Dizakar SÖ, Sonugür G, Akbulut KG. AGK2, a SIRT2 inhibitor, ameliorates D-galactose-induced liver fibrosis by inhibiting fibrogenic factors. J Biochem Mol Toxicol 2024; 38:e70000. [PMID: 39400930 DOI: 10.1002/jbt.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
In our study, we aimed to investigate the effect of SIRT2 inhibition on function, fibrosis and inflammation in liver fibrosis induced by D-Galactose (D-Gal) administration. A total of 32 3-month-old Sprague Dawley rats were used in the study. Rats were divided into 4 groups as Control, d-Gal, Solvent+d-Gal, d-Gal+AGK2+Solvent. d-Gal (150 mg/kg/day), AGK-2 (10 µM/bw) as a specific SIRT2 inhibitor, 4%DMSO + PBS as a solvent was applied to the experimental groups and physiological saline was applied to the control group for 10 weeks. All applications were performed subcutaneously. Histological fibrotic changes were studied in the liver tissues by Masson's trichrome staining, hematoxylin and eosin staining and immunohistochemistry and the levels of selected factors were determined by quantitative reverse transcription-polymerase chain reaction, western blot analysis, and immunohistochemical analysis. Biochemical parameters and Paraoxonase levels were determined in the plasma. d-Galactose administration increased AST, AST-ALT Ratio, APRI, SIRT2 protein expression, IL1β, TGF β, β-catenin, Type I collagen, Type III collagen and α-SMA, collagen fiber density and histopathological score. ALT and lipid panels were not changed and paraxonase plasma level was shown to decrease. These effects were largely blocked by the SIRT2 inhibitor AGK2. These findings suggest that SIRT2 inhibition attenuates d-Gal-induced liver injury and that this protection may be due to its antifibrotic and anti-inflammatory activities.
Collapse
Affiliation(s)
- Aslı Nur Bahar
- Department of Physiology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Arzu Keskin-Aktan
- Department of Physiology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | | | - Gizem Sonugür
- Cancer Research Institute, Faculty of Medicine, Ankara University, Ankara, Turkey
| | | |
Collapse
|
2
|
Sharma S, Gali S, Kundu A, Park JH, Kim JS, Kim HS. Tenovin-1, a Selective SIRT1/2 Inhibitor, Attenuates High-fat Diet-induced Hepatic Fibrosis via Inhibition of HSC Activation in ZDF Rats. Int J Biol Sci 2024; 20:3334-3352. [PMID: 38993557 PMCID: PMC11234213 DOI: 10.7150/ijbs.97304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/21/2024] [Indexed: 07/13/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) increases the risk of non-alcoholic fatty liver disease (NAFLD) progression to advanced stages, especially upon high-fat diet (HFD). HFD-induced hepatic fibrosis can be marked by oxidative stress, inflammation, and activation of hepatic stellate cells. Sirtuin 1/2 (SIRT1/2), NAD-dependent class III histone deacetylases, are involved in attenuation of fibrosis. In our conducted research, TGF-β1-activated LX-2 cells, free fatty acid (FFA)-treated simultaneous co-culture (SCC) cells, and HFD-induced hepatic fibrosis in Zucker diabetic fatty (ZDF) rats, a widely used animal model in the study of metabolic syndromes, were used to evaluate the protective effect of Tenovin-1, a SIRT1/2 inhibitor. ZDF rats were divided into chow diet, HFD, and HFD + Tenovin-1 groups. Tenovin-1 reduced hepatic damage, inhibited inflammatory cell infiltration, micro/ macro-vesicular steatosis and prevented collagen deposition HFD-fed rats. Tenovin-1 reduced serum biochemical parameters, triglyceride (TG) and malondialdehyde (MDA) levels but increased glutathione, catalase, and superoxide dismutase levels. Tenovin-1 mitigated proinflammatory cytokines IL-6, IL-1β, TNFα and fibrosis biomarkers in HFD rats, TGF-β1-activated LX-2 and FFA treated SCC cells. Additionally, Tenovin-1 suppressed SIRT1/2 expression and inhibited JNK-1 and STAT3 phosphorylation in HFD rats and FFA-treated SCC cells. In conclusion, Tenovin-1 attenuates hepatic fibrosis by stimulating antioxidants and inhibiting inflammatory cytokines under HFD conditions in diabetic rats.
Collapse
Affiliation(s)
- Swati Sharma
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 26419, Republic of Korea
| | - Sreevarsha Gali
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 26419, Republic of Korea
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 26419, Republic of Korea
- Department of Pharmacology, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam-530045, Andhra Pradesh, India
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 26419, Republic of Korea
| | - Jae-Sung Kim
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 26419, Republic of Korea
| |
Collapse
|
3
|
Li S, Guo L. The role of Sirtuin 2 in liver - An extensive and complex biological process. Life Sci 2024; 339:122431. [PMID: 38242495 DOI: 10.1016/j.lfs.2024.122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Liver disease has become one of the main causes of health issue worldwide. Sirtuin (Sirt) 2 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, and is expressed in multiple organs including liver, which plays important and complex roles by interacting with various substrates. Physiologically, Sirt2 can improve metabolic homeostasis. Pathologically, Sirt2 can alleviate inflammation, endoplasmic reticulum (ER) stress, promote liver regeneration, maintain iron homeostasis, aggravate fibrogenesis and regulate oxidative stress in liver. In liver diseases, Sirt2 can mitigate fatty liver disease (FLD) including non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD), but aggravate hepatitis B (HBV) and liver ischemia-reperfusion injury (LIRI). The role of Sirt2 in liver cancer and aging-related liver diseases, however, has not been fully elucidated. In this review, these biological processes regulated by Sirt2 in liver are summarized, which aims to update the function of Sirt2 in liver and to explore the potential role of Sirt2 as a therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Shan Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai 200438, China.
| |
Collapse
|
4
|
Dai B, Liu S, Shen W, Chen L, Zhou Q, Han L, Zhang Q, Shan L. Role of SYVN1 in the control of airway remodeling in asthma protection by promoting SIRT2 ubiquitination and degradation. Biol Res 2023; 56:64. [PMID: 38041162 PMCID: PMC10693155 DOI: 10.1186/s40659-023-00478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Asthma is a heterogenous disease that characterized by airway remodeling. SYVN1 (Synoviolin 1) acts as an E3 ligase to mediate the suppression of endoplasmic reticulum (ER) stress through ubiquitination and degradation. However, the role of SYVN1 in the pathogenesis of asthma is unclear. RESULTS In the present study, an ovalbumin (OVA)-induced murine model was used to evaluate the effect of SYVN1 on asthma. An increase in SYVN1 expression was observed in the lungs of mice after OVA induction. Overexpression of SYVN1 attenuated airway inflammation, goblet cell hyperplasia and collagen deposition induced by OVA. The increased ER stress-related proteins and altered epithelial-mesenchymal transition (EMT) markers were also inhibited by SYVN1 in vivo. Next, TGF-β1-induced bronchial epithelial cells (BEAS-2B) were used to induce EMT process in vitro. Results showed that TGF-β1 stimulation downregulated the expression of SYVN1, and SYVN1 overexpression prevented ER stress response and EMT process in TGF-β1-induced cells. In addition, we identified that SYVN1 bound to SIRT2 and promoted its ubiquitination and degradation. SIRT2 overexpression abrogated the protection of SYVN1 on ER stress and EMT in vitro. CONCLUSIONS These data suggest that SYVN1 suppresses ER stress through the ubiquitination and degradation of SIRT2 to block EMT process, thereby protecting against airway remodeling in asthma.
Collapse
Affiliation(s)
- Bing Dai
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, China
| | - Si Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, China
| | - Wenxin Shen
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, China
| | - Li Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, China
| | - Qianlan Zhou
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, China
| | - Lina Han
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, China
| | - Qinzhen Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, China
| | - Lishen Shan
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
5
|
He Y, Su Y, Duan C, Wang S, He W, Zhang Y, An X, He M. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res Rev 2023; 84:101833. [PMID: 36565959 DOI: 10.1016/j.arr.2022.101833] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
With the aging of global population, the incidence of nonalcoholic fatty liver disease (NAFLD) has surged in recent decades. NAFLD is a multifactorial disease that follows a progressive course, ranging from simple fatty liver, nonalcoholic steatohepatitis (NASH) to liver cirrhosis and hepatocellular carcinoma (HCC). It is well established that aging induces pathological changes in liver and potentiates the occurrence and progression of NAFLD, HCC and other age-related liver diseases. Studies of senescent cells also indicate a pivotal engagement in the development of NAFLD via diverse mechanisms. Moreover, nicotinamide adenine dinucleotide (NAD+), silence information regulator protein family (sirtuins), and mechanistic target of rapamycin (mTOR) are three vital and broadly studied targets involved in aging process and NAFLD. Nevertheless, the crucial role of these aging-associated factors in aging-related NAFLD remains underestimated. Here, we reviewed the current research on the roles of aging, cellular senescence and three aging-related factors in the evolution of NAFLD to HCC, aiming at inspiring promising therapeutic targets for aging-related NAFLD and its progression.
Collapse
Affiliation(s)
- Yongyuan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghong Su
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Duan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Basic Medicine, Kunming Medical University, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
6
|
Zhang Y, Long X, Ruan X, Wei Q, Zhang L, Wo L, Huang D, Lin L, Wang D, Xia L, Zhao Q, Liu J, Zhao Q, He M. SIRT2-mediated deacetylation and deubiquitination of C/EBPβ prevents ethanol-induced liver injury. Cell Discov 2021; 7:93. [PMID: 34642310 PMCID: PMC8511299 DOI: 10.1038/s41421-021-00326-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Protein acetylation has emerged to play pivotal roles in alcoholic liver disease (ALD). Sirutin 2 (SIRT2) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase involved in the regulation of aging, metabolism, and stress. However, the role of SIRT2 in ALD remains unclear. Here, we report that the SIRT2-mediated deacetylation-deubiquitination switch of CCAAT/enhancer-binding protein beta (C/EBPβ) prevents ALD. Our results showed that hepatic SIRT2 protein expression was negatively correlated with the severity of alcoholic liver injury in ALD patients. Liver-specific SIRT2 deficiency sensitized mice to ALD, whereas transgenic SIRT2 overexpression in hepatocytes significantly prevented ethanol-induced liver injury via normalization of hepatic steatosis, lipid peroxidation, and hepatocyte apoptosis. Mechanistically, we identified C/EBPβ as a critical substrate of SIRT2 implicated in ALD. SIRT2-mediated deacetylation at lysines 102 and 211 decreased C/EBPβ ubiquitination, resulting in enhanced protein stability and subsequently increased transcription of C/EBPβ-target gene LCN2. Importantly, hepatic deacetylated C/EBPβ and LCN2 compensation reversed SIRT2 deletion-induced ALD aggravation in mice. Furthermore, C/EBPβ protein expression was positively correlated with SIRT2 and LCN2 expression in the livers of ALD patients and was inversely correlated with ALD development. Therefore, activating SIRT2-C/EBPβ-LCN2 signaling pathway is a potential therapy for ALD.
Collapse
Affiliation(s)
- Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xidai Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xin Ruan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wei
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulu Wo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongdong Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longshuai Lin
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Difei Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xia
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinghua Zhao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Naim S, Fernandez-Marrero Y, de Brot S, Bachmann D, Kaufmann T. Loss of BOK Has a Minor Impact on Acetaminophen Overdose-Induced Liver Damage in Mice. Int J Mol Sci 2021; 22:ijms22063281. [PMID: 33807047 PMCID: PMC8004760 DOI: 10.3390/ijms22063281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 12/27/2022] Open
Abstract
Acetaminophen (APAP) is one of the most commonly used analgesic and anti-pyretic drugs, and APAP intoxication is one of the main reasons for liver transplantation following liver failure in the Western world. While APAP poisoning ultimately leads to liver necrosis, various programmed cell death modalities have been implicated, including ER stress-triggered apoptosis. The BCL-2 family member BOK (BCL-2-related ovarian killer) has been described to modulate the unfolded protein response and to promote chemical-induced liver injury. We therefore investigated the impact of the loss of BOK following APAP overdosing in mice. Surprisingly, we observed sex-dependent differences in the activation of the unfolded protein response (UPR) in both wildtype (WT) and Bok-/- mice, with increased activation of JNK in females compared with males. Loss of BOK led to a decrease in JNK activation and a reduced percentage of centrilobular necrosis in both sexes after APAP treatment; however, this protection was more pronounced in Bok-/- females. Nevertheless, serum ALT and AST levels of Bok-/- and WT mice were comparable, indicating that there was no major difference in the overall outcome of liver injury. We conclude that after APAP overdosing, loss of BOK affects initiating signaling steps linked to ER stress, but has a more minor impact on the outcome of liver necrosis. Furthermore, we observed sex-dependent differences that might be worthwhile to investigate.
Collapse
Affiliation(s)
- Samara Naim
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland; (S.N.); (Y.F.-M.); (D.B.)
| | - Yuniel Fernandez-Marrero
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland; (S.N.); (Y.F.-M.); (D.B.)
- Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Laenggassstrasse 122, CH-3012 Bern, Switzerland;
| | - Daniel Bachmann
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland; (S.N.); (Y.F.-M.); (D.B.)
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland; (S.N.); (Y.F.-M.); (D.B.)
- Correspondence:
| |
Collapse
|
8
|
Kim HJ, Lee Y, Fang S, Kim W, Kim HJ, Kim JW. GPx7 ameliorates non-alcoholic steatohepatitis by regulating oxidative stress. BMB Rep 2021. [PMID: 32317079 PMCID: PMC7330808 DOI: 10.5483/bmbrep.2020.53.6.280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases. NAFLD can further progress to irreversible liver failure such as non-alcoholic steatohepatitis (NASH) fibrosis and cirrhosis. However, specific regulator of NASH- fibrosis has yet to be established. Here, we found that glutathione peroxidase 7 (GPx7) was markedly expressed in NASH fibrosis. Although GPx7 is an antioxidant enzyme protecting other organs, whether GPx7 plays a role in NASH fibrosis has yet to be studied. We found that knockdown of GPx7 in transforming growth factor-β (TGF-β) and free fatty acids (FFA)- treated LX-2 cells elevated the expression of pro-fibrotic and pro-inflammatory genes and collagen synthesis. Consistently, GPx7 overexpression in LX-2 cells led to the suppression of ROS production and reduced the expression of pro-fibrotic and pro-inflammatory genes. Further, NASH fibrosis induced by choline-deficient amino acid defined, high fat diet (CDAHFD) feeding was significantly accelerated by knockdown of GPx7, as evidenced by up-regulated liver fibrosis and inflammation compared with CDAHFD control mice. Collectively, these results suggest that GPx7 might be a novel therapeutic target to prevent the progression and development of NAFLD.
Collapse
Affiliation(s)
- Hyeon Ju Kim
- Department of Biochemistry and Molecular Biology, Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul 03722; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Korea
| | - Yoseob Lee
- Department of Biochemistry and Molecular Biology, Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul 03722; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Korea
| | - Sungsoon Fang
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul 07061, Korea
| | - Hyo Jung Kim
- 1Department of Biochemistry and Molecular Biology, Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Woo Kim
- Department of Biochemistry and Molecular Biology, Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul 03722; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
9
|
Lee CH, Han JH, Kim S, Lee H, Kim S, Nam DH, Cho DH, Woo CH. Metformin ameliorates bile duct ligation-induced acute hepatic injury via regulation of ER stress. BMB Rep 2020. [PMID: 31791444 PMCID: PMC7330811 DOI: 10.5483/bmbrep.2020.53.6.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cholestasis is a condition in which the bile duct becomes narrowed or clogged by a variety of factors and bile acid is not released smoothly. Bile acid-induced liver injury is facilitated by necrotic cell death, neutrophil infiltration, and inflammation. Metformin, the first-line treatment for type 2 diabetes, is known to reduce not only blood glucose but also inflammatory responses. In this study, we investigated the effects of metformin on liver injury caused by cholestasis with bile acid-induced hepatocyte injury. Static bile acid-induced liver injury is thought to be related to endoplasmic reticulum (ER) stress, inflammatory response, and chemokine expression. Metformin treatment reduced liver injury caused by bile acid, and it suppressed ER stress, inflammation, chemokine expression, and neutrophil infiltration. Similar results were obtained in mouse primary hepatocytes exposed to bile acid. Hepatocytes treated with tauroursodeoxycholic acid, an ER stress inhibitor, showed inhibition of ER stress, as well as reduced levels of inflammation and cell death. These results suggest that metformin may protect against liver injury by suppressing ER stress and inflammation and reducing chemokine expression.
Collapse
Affiliation(s)
- Chi-Ho Lee
- Department of Pharmacology and Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415, Korea
| | - Jung-Hwa Han
- Department of Pharmacology and Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415, Korea
| | - Sujin Kim
- Department of Pharmacology and Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415, Korea
| | - Heejung Lee
- Department of Pharmacology and Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415, Korea
| | - Suji Kim
- Department of Pharmacology and Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415, Korea
| | - Dae-Hwan Nam
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA
| | - Du-Hyong Cho
- Department of Pharmacology and Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415, Korea
| | - Chang-Hoon Woo
- Department of Pharmacology and Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415, Korea
| |
Collapse
|
10
|
Dysregulation of Epigenetic Control Contributes to Schizophrenia-Like Behavior in Ebp1 +/- Mice. Int J Mol Sci 2020; 21:ijms21072609. [PMID: 32283721 PMCID: PMC7178112 DOI: 10.3390/ijms21072609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 11/17/2022] Open
Abstract
Dysregulation of epigenetic machinery can cause a variety of neurological disorders associated with cognitive abnormalities. In the hippocampus of postmortem Schizophrenia (SZ) patients, the most notable finding is the deregulation of GAD67 along with differential regulation of epigenetic factors associated with glutamate decarboxylase 67 (GAD67) expression. As we previously reported, ErbB3-binding protein 1 (EBP1) is a potent epigenetic regulator. EBP1 can induce repression of Dnmt1, a well-studied transcriptional repressor of GAD67. In this study, we investigated whether EBP1 contributes to the regulation of GAD67 expression in the hippocampus, controlling epigenetic machinery. In accordance with SZ-like behaviors in Ebp1(+/−) mice, heterozygous deletion of EBP1 led to a dramatic reduction of GAD67 expression, reflecting an abnormally high level of Dnmt1. Moreover, we found that EBP1 binds to the promoter region of HDAC1, which leads to histone deacetylation of GAD67, and suppresses histone deacetylase 1 (HDAC1) expression, inversely mirroring an unusually high level of HDAC1 in Ebp1(+/−) mice. However, EBP1 mutant (p.Glu 183 Ter) found in SZ patients did not elevate the expression of GAD67, failing to suppress Dnmt1 and/or HDAC1 expression. Therefore, this data supports the hypothesis that a reduced amount of EBP1 may contribute to an etiology of SZ due to a loss of transcriptional inhibition of epigenetic repressors, leading to a decreased expression of GAD67.
Collapse
|
11
|
Zhou Z, Qi J, Kim JW, You MJ, Lim CW, Kim B. AK-1, a Sirt2 inhibitor, alleviates carbon tetrachloride-induced hepatotoxicity in vivo and in vitro. Toxicol Mech Methods 2020; 30:324-335. [PMID: 32063085 DOI: 10.1080/15376516.2020.1729915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background/Aim: Acute liver injury (ALI) is a life-threatening clinical syndrome that is usually caused by toxic chemicals, drugs, or pathogen infections. Sirtuin2 (Sirt2), an NAD+-dependent deacetylase, appears to play detrimental roles in liver injury. Here, we evaluated the therapeutic application targeting Sirt2 in carbon tetrachloride (CCl4)-induced ALI, by using AK-1 (a Sirt2 inhibitor).Methods: For in vivo experiments, a single injection of CCl4 was used to induce ALI. One hour later, mice were intraperitoneally injected with AK-1 and were sacrificed 24 h after CCl4 administration. For in vitro experiments, primary mouse hepatocytes were used to determine the effects of AK-1 on oxidative stress and hepatocellular death induced by CCl4.Results: AK-1 alleviated CCl4-induced ALI as confirmed by histopathologic analysis, and decreased levels of serum biochemicals and inflammatory cytokines. Although it barely affected the expression of hepatic cytochrome P450 enzymes, AK-1 attenuated CCl4-induced oxidative stress and its related cell death. Mechanistically, Sirt2 inhibition significantly increased the nuclear protein level of nuclear factor erythroid 2-related factor 2 (Nrf2), and meanwhile decreased phosphorylation of c-Jun N-terminal kinases (JNK), in normal and injured livers. Similar results were observed in vitro. AK-1 significantly attenuated CCl4-induced cytotoxicity and oxidative stress by up-regulating the activity of Nrf2, and down-regulating JNK signaling in hepatocytes.Conclusions: Our results suggest that AK-1 treatment attenuated oxidative stress and cell death in the ALI model, at least partially, via activating Nrf2 and inhibiting JNK signaling, and that Sirt2 inhibition might be a potential approach to cure ALI.
Collapse
Affiliation(s)
- Zixiong Zhou
- Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Jing Qi
- Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Jong-Won Kim
- Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Myung-Jo You
- Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Chae Woong Lim
- Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Bumseok Kim
- Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Biosafety Research Institute, Jeonbuk National University, Iksan, South Korea
| |
Collapse
|
12
|
Tian X, Yan F, Zheng J, Cui X, Feng L, Li S, Jin L, James TD, Ma X. Endoplasmic Reticulum Targeting Ratiometric Fluorescent Probe for Carboxylesterase 2 Detection in Drug-Induced Acute Liver Injury. Anal Chem 2019; 91:15840-15845. [PMID: 31713417 DOI: 10.1021/acs.analchem.9b04189] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carboxylesterase 2 (CES2), an endoplasmic reticulum (ER) located phase I enzyme, plays a vital role in the metabolism of various endogenous and exogenous substances, and is regarded as an important target for the design of prodrugs. Unfortunately, superior highly selective ER targeting fluorescent probes for monitoring of CES2 are not currently available. Herein, we report an ER targeting CES2 selective and sensitive ratiometric fluorescent probe ERNB based on the ER localizing group p-toluenesulfonamide. ERNB possessed high specificity, sensitivity, and exhibited excellent subcellular localization when compared to commercial ER tracker, and was used to image CES2 in the ER of living cells. Additionally, using ERNB we evaluated the CES2 regulation under d,l-dithiothreitol and tunicamycin-induced ER stress. Furthermore, we determined the down regulation of CES2 activity and expression in the acetaminophen-induced acute liver injury model. On the basis of these results, we conclude that ERNB is a promising tool for highlighting the role of CES2 in the ER and in exploring the role of CES2 in the development of diseases associated with ER stress.
Collapse
Affiliation(s)
- Xiangge Tian
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Fei Yan
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 209 Tongshan Road , Xuzhou , Jiangsu 221004 , China
| | - Jingyuan Zheng
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Xiaolin Cui
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Lei Feng
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Sheng Li
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Lingling Jin
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China
| | - Tony D James
- Department of Chemistry , University of Bath , Bath BA2 7AY , United Kingdom
| | - Xiaochi Ma
- Academy of Integrative Medicine, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, College of Pharmacy , Dalian Medical University , Lvshun South Road No. 9 , Dalian 116044 , China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 209 Tongshan Road , Xuzhou , Jiangsu 221004 , China
| |
Collapse
|
13
|
Concurrent activation of growth factor and nutrient arms of mTORC1 induces oxidative liver injury. Cell Discov 2019; 5:60. [PMID: 31754457 PMCID: PMC6868011 DOI: 10.1038/s41421-019-0131-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/07/2019] [Indexed: 01/21/2023] Open
Abstract
mTORC1 is a protein kinase important for metabolism and is regulated by growth factor and nutrient signaling pathways, mediated by the Rheb and Rag GTPases, respectively. Here we provide the first animal model in which both pathways were upregulated through concurrent mutations in their GTPase-activating proteins, Tsc1 and Depdc5. Unlike former models that induced limited mTORC1 upregulation, hepatic deletion of both Tsc1 and Depdc5 (DKO) produced strong, synergistic activation of the mTORC1 pathway and provoked pronounced and widespread hepatocyte damage, leading to externally visible liver failure phenotypes, such as jaundice and systemic growth defects. The transcriptome profile of DKO was different from single knockout mutants but similar to those of diseased human livers with severe hepatitis and mouse livers challenged with oxidative stress-inducing chemicals. In addition, DKO liver cells exhibited prominent molecular pathologies associated with excessive endoplasmic reticulum (ER) stress, oxidative stress, DNA damage and inflammation. Although DKO liver pathologies were ameliorated by mTORC1 inhibition, ER stress suppression unexpectedly aggravated them, suggesting that ER stress signaling is not the major conduit of how hyperactive mTORC1 produces liver damage. Interestingly, superoxide scavengers N-acetylcysteine (NAC) and Tempol, chemicals that reduce oxidative stress, were able to recover liver phenotypes, indicating that mTORC1 hyperactivation induced liver damage mainly through oxidative stress pathways. Our study provides a new model of unregulated mTORC1 activation through concomitant upregulation of growth factor and nutrient signaling axes and shows that mTORC1 hyperactivation alone can provoke oxidative tissue injury.
Collapse
|
14
|
Protective role of AGK2 on thioacetamide-induced acute liver failure in mice. Life Sci 2019; 230:68-75. [PMID: 31129140 DOI: 10.1016/j.lfs.2019.05.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
|