1
|
Xia Y, Feng X, Ning Y, Zhang W, Hu Z, Chen Q, Wang J, Qin H, Lu Y, Dong Y. PLEKHG2 Promotes NSCLC Cell Growth by Increasing Glycolysis via Activated PI3K/AKT Pathway. J Cancer 2023; 14:3550-3560. [PMID: 38021149 PMCID: PMC10647195 DOI: 10.7150/jca.88857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose: PLEKHG2 is a member of the diffuse B-cell lymphoma family. The function of PLEKHG2 in NSCLC was still unclear. This study aimed to investigate the relationship between the upregulated expression of PLEKHG2 and the prognosis of NSCLC and to revealed its mechanisms. Materials and methods: The expression of PLEKHG2 in NSCLC patients and its relationship with prognosis were first determined by analyzing public databases. Validation was performed in NSCLC cell lines and patient`s tumor tissues. PLEKHG2-silenced H1299 cells and PLEKHG2 overexpressing PC9 cells were constructed and used to validate its function. Glycolysis was evaluated by assaying cellular metabolites, glucose uptake and the expression levels of biomarkers of glycolysis. The relationship of PLEKHG2 and the PI3K/Akt pathway was demonstrated by small molecule inhibitors. The function of PLEKHG2 was evaluated in vivo by a H1299 cell derived xenograft (CDX) model. Results: PLEKEHG2 was highly expressed in NSCLC tissues and associated with poor prognosis. In PLEKHG2 knockdown H1299 cells, ATP and lactate production and glucose uptake were significantly inhibited. The opposite results were observed in PC9 cells with PLEKHG2 overexpression. The increased glycolysis following PLEKHG2 overexpression was abolished by adding the PI3K/AKT pathway inhibitor LY294002, suggesting that PLEKHG2 promotes glycolysis in NSCLC cells via activation of the PI3K/AKT pathway. Finally, we found that PLEKHG2 knockdown inhibited the tumor growth in the H1299 CDX model. Conclusion: PLEKHG2 contributed to NSCLC development by promoting glycolysis via activation of the PI3K/AKT pathway. PLEKHG2 was a potential therapeutic target and biomarker for poor prognosis of NSCLC.
Collapse
Affiliation(s)
- Yang Xia
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Xinyu Feng
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunye Ning
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Zhenli Hu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Qianqian Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Jun Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Hao Qin
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Yang Lu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Xu S, Cheng Z, Du B, Diao Y, Li Y, Li X. LncRNA AP000695.2 promotes glycolysis of lung adenocarcinoma via the miR-335-3p/TEAD1 axis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1592-1605. [PMID: 37723874 PMCID: PMC10577454 DOI: 10.3724/abbs.2023227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 04/14/2023] [Indexed: 09/20/2023] Open
Abstract
AP000695.2 is a novel long non-coding RNA (lncRNA). Its aberrant high expression is remarkably associated with poor prognosis of patients with lung adenocarcinoma (LUAD). However, its role and underlying mechanism in LUAD remains unclear. Previous bioinformatics analysis indicated that AP000695.2 may be closely related to the glycolysis of LUAD. This study aims to verify and explore the mechanism of AP000695.2 in glycolysis of LUAD. Overexpression plasmid and siRNA are used to construct cell models of upregulation and downregulation of AP000695.2, respectively. AP000695.2 is highly expressed in lung cancer cell lines as revealed by qPCR. Western blot analysis, FDG uptake, lactate production assay and ECAR determination results show that high expression of AP000695.2 facilitates glycolysis of LUAD cells. CCK-8, EdU staining, Transwell and wound healing assays show that high expression of AP000695.2 promotes cell growth and migration of LUAD. The relationship between AP000695.2 and miR-335-3p is confirmed by bioinformatics analysis and dual-luciferase reporter assays. Through the dual-luciferase reporter assay, TEA domain transcription factor 1 (TEAD1) is identified as a target gene of miR-335-3p. Rescue experiments are applied to verify the relationship among AP000695.2, miR-335-3p and TEAD1. Our study indicates that AP000695.2 is involved in the mechanism of LUAD through functioning as a ceRNA to competitively sponge miR-335-3p, thereby regulating the expression of TEAD1. In the in vivo models, AP000695.2 depletion restrains tumor growth and glycolysis. AP000695.2 promotes the glycolysis of LUAD by regulating the miR-335-3p/TEAD1 axis, and it may serve as a potential target of anti-tumor energy metabolism therapy.
Collapse
Affiliation(s)
- Shuoyan Xu
- />Department of Nuclear Medicinethe First Hospital of China Medical UniversityShenyang110001China
| | - Zhiming Cheng
- />Department of Nuclear Medicinethe First Hospital of China Medical UniversityShenyang110001China
| | - Bulin Du
- />Department of Nuclear Medicinethe First Hospital of China Medical UniversityShenyang110001China
| | - Yao Diao
- />Department of Nuclear Medicinethe First Hospital of China Medical UniversityShenyang110001China
| | - Yaming Li
- />Department of Nuclear Medicinethe First Hospital of China Medical UniversityShenyang110001China
| | - Xuena Li
- />Department of Nuclear Medicinethe First Hospital of China Medical UniversityShenyang110001China
| |
Collapse
|
3
|
Zhou C, Zhu D, Zhou S, Wang H, Huang M. Screening differential circular RNA expression profiles and the potential role of hsa_circ_0085465 in liver cancer. J Cancer Res Ther 2023; 19:548-555. [PMID: 37470573 DOI: 10.4103/jcrt.jcrt_1868_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Aims This study aimed to screen the circular RNAs (circRNAs) that are differentially expressed between liver cancer and paired paracarcinoma tissues and then elucidate their role in cancer progression. Materials and Methods High-throughput sequencing of cancer and paired paracarcinoma tissues was followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the parental genes of the differentially expressed circRNAs, which were also verified via real-time quantitative polymerase chain reaction analysis of the tissues. In addition, the function of selected circRNAs was determined using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- sulfophenyl)-2H-tetrazolium (MTS) and transwell assays. Results Total 218 and 121 circRNAs were differentially upregulated and downregulated, respectively; these were mainly enriched with GO and KEGG terms related to biological functions. From five representatives of the differentially expressed circRNAs, we selected hsa_circ_0085465 for further analysis, discovering that its overexpression promoted the proliferation, migration, and invasion of 97 L cells. Conclusion Taken together, our results suggest that hsa_circ_0085465 is relevant to liver cancer progression.
Collapse
Affiliation(s)
- Churen Zhou
- Department of Interventional Radiology Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Duo Zhu
- Department of Interventional Radiology Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sibin Zhou
- Department of Interventional Radiology Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haofan Wang
- Department of Interventional Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mingsheng Huang
- Department of Interventional Radiology Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Li H, Zhu D, Yang Y, Ma Y, Chen Y, Xue P, Chen J, Qin M, Xu D, Cai C, Cheng H. Determinants of DNMT2/TRDMT1 preference for substrates tRNA and DNA during the evolution. RNA Biol 2023; 20:875-892. [PMID: 37966982 PMCID: PMC10653749 DOI: 10.1080/15476286.2023.2272473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
RNA methyltransferase DNMT2/TRDMT1 is the most conserved member of the DNMT family from bacteria to plants and mammals. In previous studies, we found some determinants for tRNA recognition of DNMT2/TRDMT1, but the preference mechanism of this enzyme for substrates tRNA and DNA remains to be explored. In the present study, CFT-containing target recognition domain (TRD) and target recognition extension domain (TRED) in DNMT2/TRDMT1 play a crucial role in the substrate DNA and RNA selection during the evolution. Moreover, the classical substrate tRNA for DNMT2/TRDMT1 had a characteristic sequence CUXXCAC in the anticodon loop. Position 35 was occupied by U, making cytosine-38 (C38) twist into the loop, whereas C, G or A was located at position 35, keeping the C38-flipping state. Hence, the substrate preference could be modulated by the easily flipped state of target cytosine in tRNA, as well as TRD and TRED. Additionally, DNMT2/TRDMT1 cancer mutant activity was collectively mediated by five enzymatic characteristics, which might impact gene expressions. Importantly, G155C, G155V and G155S mutations reduced enzymatic activities and showed significant associations with diseases using seven prediction methods. Altogether, these findings will assist in illustrating the substrate preference mechanism of DNMT2/TRDMT1 and provide a promising therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Huari Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daiyun Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yapeng Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yunfei Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yong Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Pingfang Xue
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Juan Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mian Qin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dandan Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao Cai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongjing Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Fu J, Zhang J, Chen X, Liu Z, Yang X, He Z, Hao Y, Liu B, Yao D. ATPase family AAA domain-containing protein 2 (ATAD2): From an epigenetic modulator to cancer therapeutic target. Theranostics 2023; 13:787-809. [PMID: 36632213 PMCID: PMC9830439 DOI: 10.7150/thno.78840] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2) has been widely reported to be a new emerging oncogene that is closely associated with epigenetic modifications in human cancers. As a coactivator of transcription factors, ATAD2 can participate in epigenetic modifications and regulate the expression of downstream oncogenes or tumor suppressors, which may be supported by the enhancer of zeste homologue 2. Moreover, the dominant structure (AAA + ATPase and bromine domains) can make ATAD2 a potential therapeutic target in cancer, and some relevant small-molecule inhibitors, such as GSK8814 and AZ13824374, have also been discovered. Thus, in this review, we focus on summarizing the structural features and biological functions of ATAD2 from an epigenetic modulator to a cancer therapeutic target, and further discuss the existing small-molecule inhibitors targeting ATAD2 to improve potential cancer therapy. Together, these inspiring findings would shed new light on ATAD2 as a promising druggable target in cancer and provide a clue on the development of candidate anticancer drugs.
Collapse
Affiliation(s)
- Jiahui Fu
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhiying Liu
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xuetao Yang
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhendan He
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yue Hao
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| |
Collapse
|
6
|
Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023; 157:113993. [PMID: 36379120 DOI: 10.1016/j.biopha.2022.113993] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy. Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms. This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.
Collapse
|
7
|
Zhang K, Sun X, Sun W, Wang M, Han F. Exosomal microRNA-506 inhibits biological activity of lung adenocarcinoma cells and increases sensitivity to cisplatin-based hyperthermia. Cell Signal 2022; 100:110469. [PMID: 36115547 DOI: 10.1016/j.cellsig.2022.110469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Exosomal microRNAs (miRNAs) play a vital role in the occurrence and development of lung adenocarcinoma (LUAD). Based on the bioinformatics analyses, the current study sought to explore the effects of exosomal miR-506 on LUAD cell biology and the efficacy of cisplatin (CDDP)-based hyperthermia (HT). After sample preparation, we identified decreased miR-506 and elevated ATAD2. LUAD cells were subsequently transfected with miR-506 mimic, oe-ATAD2 and PI3K/AKT signaling pathway inhibitor LY294002 to analyze effects of the miR-506/ATAD2/PI3K/AKT axis on cell biological processes and chemoresistance. Effects of exosomal miR-506 on sensitivity of LUAD cells to CDDP-based HT were further assessed in a co-culture system of BMSC-derived exosomes and LUAD cells, which was also validated in tumor-bearing nude mice. miR-506 down-regulated ATAD2 to inhibit the PI3K/AKT signaling pathway, thereby inhibiting the malignant phenotypes of LUAD cells and augmenting LUAD cell sensitivity to CDDP-based HT. Further, BMSCs-derived exosomes harboring miR-506 sensitized LUAD cells to DDP/HT both in vitro and in vivo. Collectively, our findings revealed that exosomal miR-506 sensitized LUAD cells to CDDP-based HT by inhibiting ATAD2/PI3K/AKT signaling pathway, offering a potential therapeutic target for LUAD treatment.
Collapse
Affiliation(s)
- Kunming Zhang
- Department of Internal Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Xiwen Sun
- Department of Medical Imaging, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Weikai Sun
- Department of Radiotherapy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Meng Wang
- Department of Radiotherapy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Fushi Han
- Department of Nuclear Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China.
| |
Collapse
|
8
|
Tumor-Promoting ATAD2 and Its Preclinical Challenges. Biomolecules 2022; 12:biom12081040. [PMID: 36008934 PMCID: PMC9405547 DOI: 10.3390/biom12081040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
ATAD2 has received extensive attention in recent years as one prospective oncogene with tumor-promoting features in many malignancies. ATAD2 is a highly conserved bromodomain family protein that exerts its biological functions by mainly AAA ATPase and bromodomain. ATAD2 acts as an epigenetic decoder and transcription factor or co-activator, which is engaged in cellular activities, such as transcriptional regulation, DNA replication, and protein modification. ATAD2 has been reported to be highly expressed in a variety of human malignancies, including gastrointestinal malignancies, reproductive malignancies, urological malignancies, lung cancer, and other types of malignancies. ATAD2 is involved in the activation of multiple oncogenic signaling pathways and is closely associated with tumorigenesis, progression, chemoresistance, and poor prognosis, but the oncogenic mechanisms vary in different cancer types. Moreover, the direct targeting of ATAD2’s bromodomain may be a very challenging task. In this review, we summarized the role of ATAD2 in various types of malignancies and pointed out the pharmacological direction.
Collapse
|
9
|
Zhou X, Yuan Y, Kuang H, Tang B, Zhang H, Zhang M. BUB1B (BUB1 Mitotic Checkpoint Serine/Threonine Kinase B) Promotes Lung Adenocarcinoma by Interacting with Zinc Finger Protein ZNF143 and Regulating Glycolysis. Bioengineered 2022; 13:2471-2485. [PMID: 35068350 PMCID: PMC8974056 DOI: 10.1080/21655979.2021.2013108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common causes of cancer death in men. BUB1B (BUB1 mitotic checkpoint serine/threonine kinase B) has been reported to contribute to the initiation and development of several cancers. Here, we aimed to explore the potential role of BUB1B in LUAD. We found BUB1B was upregulated in LUAD, suggesting its potential role as a biomarker for LUAD diagnosis. Significantly, LUAD patients with high BUB1B expression had a shorter survival time than those with low BUB1B expression. Knocking-out BUB1B resulted in suppression of cell proliferation, migration, and invasion in vitro, and inhibition of tumor growth in the xenograft experiment. Further analysis revealed that BUB1B regulates glycolysis in LUAD and interacting with ZNF143 in LUAD cells. The interaction was demonstrated by silencing ZNF143, which led to a decrease in proliferation, migration, and invasion in LUAD cells, whereas overexpressing BUB1B had the opposite effects. Our study suggested that the ZNF143/BUB1B axis plays a pivotal role in LUAD progression, which might be a potential target for LUAD management.
Collapse
Affiliation(s)
- Xiaolei Zhou
- Department of respiratory and critical medicine, Henan Chest Hospital, Zhengzhou, P.R. China
| | - Yanli Yuan
- Department of respiratory and critical medicine, Henan Chest Hospital, Zhengzhou, P.R. China
| | - Hongping Kuang
- Department of respiratory and critical medicine, Henan Chest Hospital, Zhengzhou, P.R. China
| | - Bingxiang Tang
- Department of respiratory and critical medicine, Henan Chest Hospital, Zhengzhou, P.R. China
| | - Hui Zhang
- Department of respiratory and critical medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Manlin Zhang
- Department of respiratory and critical medicine, Henan Chest Hospital, Zhengzhou, P.R. China
| |
Collapse
|
10
|
Mai S, Liang L, Mai G, Liu X, Diao D, Cai R, Liu L. Development and Validation of Lactate Metabolism-Related lncRNA Signature as a Prognostic Model for Lung Adenocarcinoma. Front Endocrinol (Lausanne) 2022; 13:829175. [PMID: 35422758 PMCID: PMC9004472 DOI: 10.3389/fendo.2022.829175] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lung cancer has been a prominent research focus in recent years due to its role in cancer-related fatalities globally, with lung adenocarcinoma (LUAD) being the most prevalent histological form. Nonetheless, no signature of lactate metabolism-related long non-coding RNAs (LMR-lncRNAs) has been developed for patients with LUAD. Accordingly, we aimed to develop a unique LMR-lncRNA signature to determine the prognosis of patients with LUAD. METHOD The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to derive the lncRNA expression patterns. Identification of LMR-lncRNAs was accomplished by analyzing the co-expression patterns between lncRNAs and LMR genes. Subsequently, the association between lncRNA levels and survival outcomes was determined to develop an effective signature. In the TCGA cohort, Cox regression was enlisted to build an innovative signature consisting of three LMR-lncRNAs, which was validated in the GEO validation cohort. GSEA and immune infiltration analysis were conducted to investigate the functional annotation of the signature and the function of each type of immune cell. RESULTS Fourteen differentially expressed LMR-lncRNAs were strongly correlated with the prognosis of patients with LUAD and collectively formed a new LMR-lncRNA signature. The patients could be categorized into two cohorts based on their LMR-lncRNA signatures: a low-risk and high-risk group. The overall survival of patients with LUAD in the high-risk group was considerably lower than those in the low-risk group. Using Cox regression, this signature was shown to have substantial potential as an independent prognostic factor, which was further confirmed in the GEO cohort. Moreover, the signature could anticipate survival across different groups based on stage, age, and gender, among other variables. This signature also correlated with immune cell infiltration (including B cells, neutrophils, CD4+ T cells, CD8+ T cells, etc.) as well as the immune checkpoint blockade target CTLA-4. CONCLUSION We developed and verified a new LMR-lncRNA signature useful for anticipating the survival of patients with LUAD. This signature could give potentially critical insight for immunotherapy interventions in patients with LUAD.
Collapse
Affiliation(s)
- Shijie Mai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Liang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Genghui Mai
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiguang Liu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingwei Diao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruijun Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Le Liu, ; Ruijun Cai,
| | - Le Liu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- *Correspondence: Le Liu, ; Ruijun Cai,
| |
Collapse
|
11
|
SKA3 promotes lung adenocarcinoma metastasis through the EGFR-PI3K-Akt axis. Biosci Rep 2021; 40:222162. [PMID: 32068236 PMCID: PMC7048675 DOI: 10.1042/bsr20194335] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
The processes that lead to lung adenocarcinoma (LUAD) metastasis are poorly characterized. Spindle and kinetochore associated complex subunit 3 (SKA3) plays a key role in cervical cancer development, but its contribution to LUAD is unknown. Here, we found that SKA3 is overexpressed in LUAD and its expression correlates with lymph node metastasis and poor prognosis. SKA3 silencing experiments identified SKA3 as an oncogene that promotes the metastasis of LUAD cell lines and tissues. SKA3 was found to induce the expression of matrix metalloproteinase (MMP)-2, -7, and -9, which activate PI3K–AKT. SKA3 was also found to bind and activate EGFR to activate PI3K–AKT. In summary, we identify a role for SKA3 in LUAD metastasis through its ability to bind EFGR and activate PI3K–AKT signaling.
Collapse
|
12
|
Nayak A, Dutta M, Roychowdhury A. Emerging oncogene ATAD2: Signaling cascades and therapeutic initiatives. Life Sci 2021; 276:119322. [PMID: 33711386 DOI: 10.1016/j.lfs.2021.119322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
ATAD2 is a promising oncoprotein with tumor-promoting functions in many cancers. It is a valid cancer drug-target and a potential cancer-biomarker for multiple malignancies. As a cancer/testis antigen (CTA), ATAD2 could also be a probable candidate for immunotherapy. It is a unique CTA that belongs to both AAA+ ATPase and bromodomain family proteins. Since 2007, several research groups have been reported on the pleiotropic oncogenic functions of ATAD2 in diverse signaling pathways, including Rb/E2F-cMyc pathway, steroid hormone signaling pathway, p53 and p38-MAPK-mediated apoptotic pathway, AKT pathway, hedgehog signaling pathway, HIF1α signaling pathway, and Epithelial to Mesenchymal Transition (EMT) pathway in various cancers. In all these pathways, ATAD2 participates in chromatin dynamics, DNA replication, and gene transcription, demonstrating its role as an epigenetic reader and transcription factor or coactivator to promote tumorigenesis. However, despite the progress, an overall mechanism of ATAD2-mediated oncogenesis in diverse origin is elusive. In this review, we summarize the accumulated evidence to envision the overall ATAD2 signaling networks during carcinogenesis and highlight the area where missing links await further research. Besides, the structure-function aspect of ATAD2 is also discussed. Since the efforts have already been initiated to explore targeted drug molecules and RNA-based therapeutic alternatives against ATAD2, their potency and prospects have been elucidated. Together, we believe this is a well-rounded review on ATAD2, facilitating a new drift in ATAD2 research, essential for its clinical implication as a biomarker and/or cancer drug-target.
Collapse
Affiliation(s)
- Aditi Nayak
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Madhuri Dutta
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
13
|
Nayak A, Kumar S, Singh SP, Bhattacharyya A, Dixit A, Roychowdhury A. Oncogenic potential of ATAD2 in stomach cancer and insights into the protein-protein interactions at its AAA + ATPase domain and bromodomain. J Biomol Struct Dyn 2021; 40:5606-5622. [PMID: 33438526 DOI: 10.1080/07391102.2021.1871959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ATAD2 has recently been shown to promote stomach cancer. However, nothing is known about the functional network of ATAD2 in stomach carcinogenesis. This study illustrates the oncogenic potential of ATAD2 and the participation of its ATPase and bromodomain in stomach malignancy. Expression of ATAD2 in stomach cancer is analyzed by in silico and in vitro techniques including western blot and immunofluorescence microscopy of stomach cancer cells (SCCs) and tissues. The oncogenic potential of ATAD2 is examined thoroughly using genetic alterations, driver gene prediction, survival analysis, identification of interacting partners, and analysis of canonical pathways. To understand the protein-protein interactions (PPI) at residue level, molecular docking and molecular dynamics simulations (1200 ns) are performed. Enhanced expression of ATAD2 is observed in H. pylori-infected SCCs, patient biopsy tissues, and all stages and grades of stomach cancer. High expression of ATAD2 is found to be negatively correlated with the survival of stomach cancer patients. ATAD2 is a cancer driver gene with 37 mutational sites and a predictable factor for stomach cancer prognosis with high accuracy. The top canonical pathways of ATAD2 indicate its participation in stomach malignancy. The ATAD2-PPI in stomach cancer identify top-ranked partners; ESR1, SUMO2, SPTN2, and MYC show preference for the bromodomain whereas NCOA3 and HDA11 have preference for the ATPase domain of ATAD2. The oncogenic characterization of ATAD2 provides strong evidence to consider ATAD2 as a stomach cancer biomarker. These studies offer an insight for the first time into the ATAD2-PPI interface presenting a novel target for cancer therapeutics. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditi Nayak
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Sugandh Kumar
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Asima Bhattacharyya
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, Khurda, Odisha, India
| | | | - Anasuya Roychowdhury
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
14
|
Zhou L, Yang C, Zhang N, Zhang X, Zhao T, Yu J. Silencing METTL3 inhibits the proliferation and invasion of osteosarcoma by regulating ATAD2. Biomed Pharmacother 2020; 125:109964. [PMID: 32044716 DOI: 10.1016/j.biopha.2020.109964] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common primary malignant bone tumor in children and young adults. RNA N6-methyladenosine (m6A) is the most abundant internal modification in mammalian mRNA, which is involved in tumorigenesis and tumor progression. It has been reported that methyltransferase-like 3 (METTL3), the first reported m6A "writer", plays critical roles in cancer progression. However, its role and molecular mechanism in osteosarcoma is poor studied. In this study, we aimed to investigate the functional role and underlying mechanism of METTL3 in the progression of osteosarcoma. METHODS We detected the mRNA expression of METTL3 in osteosarcoma cell lines, and immunofluorescence assay was performed to observe the location of METTL3. Cell lines with METTL3 gene overexpression or knockdown were established by pcDNA3.1-METTL3 or siRNA interferences in order to determine the function of METTL3 in osteosarcoma in vitro. Transcriptomic RNA sequencing (RNA-seq) were used to screen the target genes of METTL3 in osteosarcoma. RESULTS We found that METTL3 localized in cytoplasm and nucleus of osteosarcoma cells. Silencing METTL3 in SAOS-2 and MG63 cells significantly inhibited the m6A methylation level, proliferation, migration, and invasion abilities, as well as promoted cell apoptosis. However, up-regulation of METTL3 had no significant effect on the biological behaviors of U2OS cells. Further mechanism analysis suggested that METTL3 knockdown inhibited the expression of ATPase family AAA domain containing 2 (ATAD2). Moreover, ATAD2 knockdown inhibited the proliferation and invasion of SAOS-2 and MG63 cells, while its overexpression showed a significant increase in cell proliferation and invasion. Furthermore, METTL3 knockdown abrogated the promoting effects of ATAD2 overexpression on osteosarcoma cells proliferation and invasion. CONCLUSION Overall, our study revealed that METTL3 functions as an oncogene in the growth and invasion of osteosarcoma by regulating ATAD2, suggesting a potential therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Orthopedic Oncology Surgery, Shandong Cancer Hospital and Institute Affiliated to Shandong University, Jinan 250117, China; Shandong Cancer Hospital and Institute Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Changsheng Yang
- Department of Orthopedic Oncology Surgery, Shandong Cancer Hospital and Institute Affiliated to Shandong University, Jinan 250117, China; Shandong Cancer Hospital and Institute Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Ning Zhang
- Department of Orthopedics, Jinan City People's Hospital, Jinan 271100, China
| | - Xin Zhang
- Department of Orthopedic Oncology Surgery, Shandong Cancer Hospital and Institute Affiliated to Shandong University, Jinan 250117, China; Shandong Cancer Hospital and Institute Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Tingbao Zhao
- Department of Orthopedic Oncology Surgery, Shandong Cancer Hospital and Institute Affiliated to Shandong University, Jinan 250117, China; Shandong Cancer Hospital and Institute Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jinming Yu
- Shandong Cancer Hospital and Institute Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute Affiliated to Shandong University, Jinan 250117, China.
| |
Collapse
|
15
|
Nayak A, Roy AD, Rout N, Singh SP, Bhattacharyya A, Roychowdhury A. HIF1α-dependent upregulation of ATAD2 promotes proliferation and migration of stomach cancer cells in response to hypoxia. Biochem Biophys Res Commun 2020; 523:916-923. [PMID: 31959473 DOI: 10.1016/j.bbrc.2019.12.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/21/2019] [Indexed: 12/20/2022]
Abstract
Stomach cancer is a difficult-to-treat disease. Lack of detection markers and limited understanding of the disease mechanisms contribute to the aggressive nature of stomach cancer cells (SCCs). Recently, an ATPase, ATAD2 has been found to be highly expressed in stomach cancer contributing to increased malignancy. However, nothing is known about the mechanism of ATAD2 upregulation and its involvement in stomach carcinogenesis. Since hypoxic microenvironment plays a crucial role in the progression of solid tumors like stomach cancer; we have examined the regulation and function of ATAD2 expression in hypoxic SCCs. ATAD2 is induced in hypoxia-treated SCCs. Stomach adenocarcinoma and metastatic tissues with high HIF1α level also show enhanced ATAD2 expression. In the absence of hypoxia-inducible factor HIF1α, ATAD2 protein level is found to be less indicating towards a potential correlation between them. We identify the presence of HIF1α-binding site (HBS) and HIF1α ancillary site (HAS) in the ATAD2 promoter. Using both in vitro and in vivo binding studies, we confirm that HIF1α binds with the ATAD2 promoter in hypoxic condition. ATAD2 upregulation promotes proliferation and migration of SCCs exposed to hypoxia. Thus, we identify ATAD2 as a hypoxia-responsive and HIF1α-regulated gene and elucidate that upregulated expression of ATAD2 enhances tumor-promoting functions in hypoxic SCCs. Therefore, we propose ATAD2 as a promising therapeutic target for stomach cancer.
Collapse
Affiliation(s)
- Aditi Nayak
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, 752050, India
| | - Arjama Dhar Roy
- Cancer and Molecular Signaling Lab, School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, P.O. Bhimpur-Padanpur, Via: Jatni, Dist. Khurda, Odisha, 752050, India
| | - Niranjan Rout
- Oncopathology, Acharya Harihar Regional Cancer Centre, Cuttack, 753007, Odisha, India
| | | | - Asima Bhattacharyya
- Cancer and Molecular Signaling Lab, School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, P.O. Bhimpur-Padanpur, Via: Jatni, Dist. Khurda, Odisha, 752050, India.
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|