1
|
Tripathi S, Rani K, Raj VS, Ambasta RK. Drug repurposing: A multi targetted approach to treat cardiac disease from existing classical drugs to modern drug discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:151-192. [PMID: 38942536 DOI: 10.1016/bs.pmbts.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Cardiovascular diseases (CVDs) are characterized by abnormalities in the heart, blood vessels, and blood flow. CVDs comprise a diverse set of health issues. There are several types of CVDs like stroke, endothelial dysfunction, thrombosis, atherosclerosis, plaque instability and heart failure. Identification of a new drug for heart disease takes longer duration and its safety efficacy test takes even longer duration of research and approval. This chapter explores drug repurposing, nano-therapy, and plant-based treatments for managing CVDs from existing drugs which saves time and safety issues with testing new drugs. Existing drugs like statins, ACE inhibitor, warfarin, beta blockers, aspirin and metformin have been found to be useful in treating cardiac disease. For better drug delivery, nano therapy is opening new avenues for cardiac research by targeting interleukin (IL), TNF and other proteins by proteome interactome analysis. Nanoparticles enable precise delivery to atherosclerotic plaques, inflammation areas, and damaged cardiac tissues. Advancements in nano therapeutic agents, such as drug-eluting stents and drug-loaded nanoparticles are transforming CVDs management. Plant-based treatments, containing phytochemicals from Botanical sources, have potential cardiovascular benefits. These phytochemicals can mitigate risk factors associated with CVDs. The integration of these strategies opens new avenues for personalized, effective, and minimally invasive cardiovascular care. Altogether, traditional drugs, phytochemicals along with nanoparticles can revolutionize the future cardiac health care by identifying their signaling pathway, mechanism and interactome analysis.
Collapse
Affiliation(s)
- Shyam Tripathi
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - Kusum Rani
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India.
| | - Rashmi K Ambasta
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India.
| |
Collapse
|
2
|
Onódi Z, Koch S, Rubinstein J, Ferdinandy P, Varga ZV. Drug repurposing for cardiovascular diseases: New targets and indications for probenecid. Br J Pharmacol 2023; 180:685-700. [PMID: 36484549 DOI: 10.1111/bph.16001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/12/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The available pharmacological options in the management of cardiovascular diseases such as ischaemic heart disease and subsequent heart failure are effective in slowing the progression of this condition. However, the long-term prognosis is still poor, raising the demand for new therapeutic strategies. Drug repurposing is a time- and cost-effective drug development strategy that offers approved and abandoned drugs a new chance for new indications. Recently, drugs used for the management of gout-related inflammation such as canakinumab or colchicine have been considered for drug repurposing in cardiovascular indications. The old uricosuric drug, probenecid, has been identified as a novel therapeutic option in the management of specific cardiac diseases as well. Probenecid can modulate myocardial contractility and vascular tone and exerts anti-inflammatory properties. The mechanisms behind these beneficial effects might be related inhibition of inflammasomes, and to modulation purinergic-pannexin-1 signalling and TRPV2 channels, which are recently identified molecular targets of probenecid. In this review, we provide an overview on repurposing probenecid for ischaemic heart disease and subsequent heart failure by summarizing the related experimental and clinical data and propose its potential repurposing to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary.,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Sheryl Koch
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary.,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Jin YJ, An ZY, Sun ZX, Liu XC. NLRP3 Inflammasome as a Therapeutic Target for Atherosclerosis: A Focus on Potassium Outflow. Rev Cardiovasc Med 2022; 23:268. [PMID: 39076616 PMCID: PMC11266955 DOI: 10.31083/j.rcm2308268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 07/31/2024] Open
Abstract
Atherosclerosis is a risk factor for various cardiovascular diseases, and is linked to high rates of morbidity and mortality across the globe. Although numerous complex processes are involved in the development and progression of atherosclerosis, the exact mechanisms behind its pathogenesis remain unclear. Inflammation and endothelial cell damage exert a lasting effect on atherosclerosis, causing lipid and fibrous tissue accumulation in the intima of the artery to form plaques, and subsequently promoting atherosclerosis. Nod-like receptor protein 3 (NLRP3) inflammatory corpuscle is thought to be the link between lipid metabolism and inflammation. Long Potassium outflow is a vital activator of NLRP3, with a simultaneous effect as a start-up and adjustment. The majority of existing drugs for atherosclerosis targeting the NLRP3 signaling pathway target IL-1, whereas drugs targeting the critical link of potassium efflux are relatively new. This review discusses the NLRP3 inflammatory corpuscle as a critical regulator of the immunological inflammatory pathway in atherosclerosis. Moreover, current knowledge on NLRP3 inflammatory corpuscle start and activation pathways were integrated, emphasizing potassium-involved outflow-related proteins. We highlight potential treatment approaches for NLRP3 inflammatory corpuscle pathways, specifically targeting potassium outflow channels of targeted drugs. Collectively, these insights indicate that targeting the NLRP3 inflammatory corpuscle is a vital anti-inflammatory therapy for treating atherosclerosis.
Collapse
Affiliation(s)
- Yi-Jing Jin
- Peking University Health Science Center, 100191 Beijing, China
- Department of Cardiology, Peking University First Hospital, 100034 Beijing, China
| | - Zhuo-Yu An
- Peking University Health Science Center, 100191 Beijing, China
- Peking University Institute of Hematology, Peking University People's Hospital, 100044 Beijing, China
| | - Zhi-Xuan Sun
- Peking University Third Hospital, 100191 Beijing, China
| | - Xin-Chen Liu
- Peking University Third Hospital, 100191 Beijing, China
| |
Collapse
|
4
|
Ren W, Rubini P, Tang Y, Engel T, Illes P. Inherent P2X7 Receptors Regulate Macrophage Functions during Inflammatory Diseases. Int J Mol Sci 2021; 23:ijms23010232. [PMID: 35008658 PMCID: PMC8745241 DOI: 10.3390/ijms23010232] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are mononuclear phagocytes which derive either from blood-borne monocytes or reside as resident macrophages in peripheral (Kupffer cells of the liver, marginal zone macrophages of the spleen, alveolar macrophages of the lung) and central tissue (microglia). They occur as M1 (pro-inflammatory; classic) or M2 (anti-inflammatory; alternatively activated) phenotypes. Macrophages possess P2X7 receptors (Rs) which respond to high concentrations of extracellular ATP under pathological conditions by allowing the non-selective fluxes of cations (Na+, Ca2+, K+). Activation of P2X7Rs by still higher concentrations of ATP, especially after repetitive agonist application, leads to the opening of membrane pores permeable to ~900 Da molecules. For this effect an interaction of the P2X7R with a range of other membrane channels (e.g., P2X4R, transient receptor potential A1 [TRPA1], pannexin-1 hemichannel, ANO6 chloride channel) is required. Macrophage-localized P2X7Rs have to be co-activated with the lipopolysaccharide-sensitive toll-like receptor 4 (TLR4) in order to induce the formation of the inflammasome 3 (NLRP3), which then activates the pro-interleukin-1β (pro-IL-1β)-degrading caspase-1 to lead to IL-1β release. Moreover, inflammatory diseases (e.g., rheumatoid arthritis, Crohn’s disease, sepsis, etc.) are generated downstream of the P2X7R-induced upregulation of intracellular second messengers (e.g., phospholipase A2, p38 mitogen-activated kinase, and rho G proteins). In conclusion, P2X7Rs at macrophages appear to be important targets to preserve immune homeostasis with possible therapeutic consequences.
Collapse
Affiliation(s)
- Wenjing Ren
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of TCM, Chengdu 610075, China; (W.R.); (P.R.); (Y.T.)
- School of Acupunct3ure and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Patrizia Rubini
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of TCM, Chengdu 610075, China; (W.R.); (P.R.); (Y.T.)
- School of Acupunct3ure and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of TCM, Chengdu 610075, China; (W.R.); (P.R.); (Y.T.)
- School of Acupunct3ure and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of TCM, Chengdu 610075, China; (W.R.); (P.R.); (Y.T.)
- School of Acupunct3ure and Tuina, Chengdu University of TCM, Chengdu 610075, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
- Correspondence:
| |
Collapse
|
5
|
Jung BC, Lim J, Kim SH, Kim YS. Caspase-8 Potentiates Triglyceride (TG)-Induced Cell Death of THP-1 Macrophages via a Positive Feedback Loop. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2021. [DOI: 10.15324/kjcls.2021.53.2.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Byung Chul Jung
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, United States
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Korea
| | - Jaewon Lim
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Korea
- Department of Biomedical Laboratory Science, College of Rehabilitation and Health, Daegu Haany University, Gyeongsan, Korea
| | - Sung Hoon Kim
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Korea
- Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan, Korea
| | - Yoon Suk Kim
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Korea
| |
Collapse
|