1
|
Murugan AK, Kannan S, Alzahrani AS. TERT promoter mutations in gliomas: Molecular roles in tumorigenesis, metastasis, diagnosis, prognosis, therapeutic targeting, and drug resistance. Biochim Biophys Acta Rev Cancer 2024:189243. [PMID: 39674418 DOI: 10.1016/j.bbcan.2024.189243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Telomerase reverse transcriptase (TERT), a critical player in cellular immortalization, has emerged as a focal point of investigation due to its frequent promoter mutations in various human malignancies. TERT promoter mutations exhibit a significant role in tumorigenesis, fostering unbridled cellular proliferation and survival. This comprehensive review delves into the landscape of TERT promoter mutations and their profound implications in cancer, particularly within the context of gliomas. This article meticulously examines the intricate interplay between TERT promoter mutations and the metastatic cascade, shedding light on their capacity to orchestrate invasive behavior in gliomas. Moreover, this review describes the recent trends in therapeutic targeting of the TERT and dissects the evolving landscape of drug resistance associated with TERT mutations, providing insights into potential therapeutic challenges. In addition, the diagnostic and prognostic implications of TERT promoter mutations in gliomas are scrutinized, unraveling their potential as robust biomarkers. It also discusses the recent advancements in molecular diagnostics, illustrating the promise of TERT mutations as diagnostic tools and prognostic indicators. This review collectively aims to contribute to a deeper understanding of TERT promoter mutations in gliomas, offering a foundation for future research endeavors and paving the way for innovative strategies in glioma management.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.
| | - Siddarth Kannan
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| | - Ali S Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
2
|
Li MP, Long SP, Liu WC, Long K, Gao XH. EMT-related gene classifications predict the prognosis, immune infiltration, and therapeutic response of osteosarcoma. Front Pharmacol 2024; 15:1419040. [PMID: 39170698 PMCID: PMC11335561 DOI: 10.3389/fphar.2024.1419040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Osteosarcoma (OS), a bone tumor with high ability of invasion and metastasis, has seriously affected the health of children and adolescents. Many studies have suggested a connection between OS and the epithelial-mesenchymal transition (EMT). We aimed to integrate EMT-Related genes (EMT-RGs) to predict the prognosis, immune infiltration, and therapeutic response of patients with OS. Methods We used consensus clustering to identify potential EMT-Related OS molecular subtypes. Somatic mutation, tumor immune microenvironment, and functional enrichment analyses were performed for each subtype. We next constructed an EMT-Related risk signature and evaluated it by Kaplan-Meier (K-M) analysis survival and receiver operating characteristic (ROC) curves. Moreover, we constructed a nomogram to more accurately predict OS patients' clinical outcomes. Response effects of immunotherapy in OS patients was analyzed by Tumor Immune Dysfunction and Exclusion (TIDE) analysis, while sensitivity for chemotherapeutic agents was analyzed using oncoPredict. Finally, the expression patterns of hub genes were investigated by single-cell RNA sequencing (scRNA-seq) data analysis. Results A total of 53 EMT-RDGs related to prognosis were identified, separating OS samples into two separate subgroups. The EMT-high subgroup showed favourable overall survival and more active immune response. Significant correlations were found between EMT-Related DEGs and functions as well as pathways linked to the development of OS. Additionally, a risk signature was established and OS patients were divided into two categories based on the risk scores. The signature presented a good predictive performance and could be recognized as an independent predictive factor for OS. Furthermore, patients with higher risk scores exhibited better sensitivity for five drugs, while no significant difference existed in immunotherapy response between the two risk subgroups. scRNA-seq data analysis displayed different expression patterns of the hub genes. Conclusion We developed a novel EMT-Related risk signature that can be considered as an independent predictor for OS, which may help improve clinical outcome prediction and guide personalized treatments for patients with OS.
Collapse
Affiliation(s)
- Meng-Pan Li
- Department of Orthopedics, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Si-Ping Long
- The Fourth Clinical Medical College of Nanchang University, Nanchang, China
| | - Wen-Cai Liu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Long
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Xing-Hua Gao
- Department of Orthopedics, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Abu-Serie MM, Barakat A, Ramadan S, Habashy NH. Superior cuproptotic efficacy of diethyldithiocarbamate-Cu 4O 3 nanoparticles over diethyldithiocarbamate-Cu 2O nanoparticles in metastatic hepatocellular carcinoma. Front Pharmacol 2024; 15:1388038. [PMID: 39076585 PMCID: PMC11284037 DOI: 10.3389/fphar.2024.1388038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/18/2024] [Indexed: 07/31/2024] Open
Abstract
Metastatic hepatocellular carcinoma (HC) is a serious health concern. The stemness of cancer stem cells (CSCs) is a key driver for HC tumorigenesis, apoptotic resistance, and metastasis, and functional mitochondria are critical for its maintenance. Cuproptosis is Cu-dependent non-apoptotic pathway (mitochondrial dysfunction) via inactivating mitochondrial enzymes (pyruvate dehydrogenase "PDH" and succinate dehydrogenase "SDH"). To effectively treat metastatic HC, it is necessary to induce selective cuproptosis (for halting cancer stemness genes) with selective oxidative imbalance (for increasing cell susceptibility to cuproptosis and inducing non-CSCs death). Herein, two types of Cu oxide nanoparticles (Cu4O3 "C(I + II)" NPs and Cu2O "C(I)" NPs) were used in combination with diethyldithiocarbamate (DD, an aldehyde dehydrogenase "ALDH" inhibitor) for comparative anti-HC investigation. DC(I + II) NPs exhibited higher cytotoxicity, mitochondrial membrane potential, and anti-migration impact than DC(I) NPs in the treated human HC cells (HepG2 and/or Huh7). Moreover, DC(I + II) NPs were more effective than DC(I) NPs in the treatment of HC mouse groups. This was mediated via higher selective accumulation of DC(I + II) NPs in only tumor tissues and oxidant activity, causing stronger selective inhibition of mitochondrial enzymes (PDH, SDH, and ALDH2) than DC(I)NPs. This effect resulted in more suppression of tumor and metastasis markers as well as stemness gene expressions in DC(I + II) NPs-treated HC mice. In addition, both nanocomplexes normalized liver function and hematological parameters. The computational analysis found that DC(I + II) showed higher binding affinity to most of the tested enzymes. Accordingly, DC(I + II) NPs represent a highly effective therapeutic formulation compared to DC(I) NPs for metastatic HC.
Collapse
Affiliation(s)
- Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sherif Ramadan
- Chemistry Department, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Benha University, Benha, Egypt
| | - Noha Hassan Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Xu Y, Ding L, Li C, Hua B, Wang S, Zhang J, Liu C, Guo R, Zhang Y. Molecular alterations and prognosis of breast cancer with cutaneous metastasis. Diagn Pathol 2024; 19:93. [PMID: 38970069 PMCID: PMC11225245 DOI: 10.1186/s13000-024-01509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/05/2024] [Indexed: 07/07/2024] Open
Abstract
PURPOSE Cutaneous metastasis (CM) accounts for 5-30% of patients with breast cancer (BC) and presents unfavorable response to treatment and poor prognosis. A better understanding of the molecular alterations involved in metastasis is essential, which would help identify diagnostic and efficacy biomarkers for CM. MATERIALS We retrospectively reviewed a total of 13 patients with histological or cytological diagnosis of breast cancer and CM. Clinical information was extracted from the medical records. The mutational landscape of matched primary tumors with their lymph nodes or CM tissues were analyzed using next-generation sequencing (NGS) of 425 cancer-relevant genes. All tissues were also analyzed by immunohistochemistry (IHC). The association of prognosis with various clinical and molecular factors was also evaluated. RESULTS More than half of the patients were Ki67 low (< 50%, 53.7%). Most patients (12, 92.3%) had other metastasis sites other than skin. The median time from diagnosis to the presentation of CM (T1) was 15 months (range: 0-94 months) and the median time from CM to death (T2) was 13 months (range 1-78). The most frequently altered genes across the three types of tissues were TP53 (69.6%, 16/23), PIK3CA (34.8%, 8/23), and MYC (26.1%). The number of alterations in CM tends to be higher than in primary tumors (median 8 vs. 6, P = 0.077). Copy number loss in STK11, copy number gain in FGFR4, TERT, AR, FLT4 and VEGFA and mutations in ATRX, SRC, AMER1 and RAD51C were significantly enriched in CM (all P < 0.05). Ki67 high group (> 50%) showed significantly shorter T1 than the Ki67 low group (≤ 50%) (median 12.5 vs. 50.0 months, P = 0.036). TP53, PIK3CA mutations, and TERT amplification group were associated with inferior T2 (median 11 vs. 36 months, P = 0.065; 8 vs. 36 months, P = 0.013, 7 vs. 36 months, P = 0.003, respectively). All p values were not adjusted. CONCLUSION We compared the genomic features of primary breast cancer tissues with their corresponding CM tissues and discussed potential genes and pathways that may contribute to the skin metastasis of advanced breast cancers patients. TP53, PIK3CA mutant, and TERT amplification may serve as biomarkers for poor prognosis for CM patients.
Collapse
Affiliation(s)
- Yan Xu
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Li Ding
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Chao Li
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Bin Hua
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Sha Wang
- Geneseeq Research Institute, Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Junli Zhang
- Geneseeq Research Institute, Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Cuicui Liu
- Geneseeq Research Institute, Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Rongyun Guo
- Geneseeq Research Institute, Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - YongQiang Zhang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Nevarez AJ, Mudla A, Diaz SA, Hao N. Using deep learning to decipher the impact of telomerase promoter mutations on the dynamic metastatic morpholome. PLoS Comput Biol 2024; 20:e1012271. [PMID: 39078811 PMCID: PMC11288469 DOI: 10.1371/journal.pcbi.1012271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/22/2024] [Indexed: 08/02/2024] Open
Abstract
Melanoma showcases a complex interplay of genetic alterations and intra- and inter-cellular morphological changes during metastatic transformation. While pivotal, the role of specific mutations in dictating these changes still needs to be fully elucidated. Telomerase promoter mutations (TERTp mutations) significantly influence melanoma's progression, invasiveness, and resistance to various emerging treatments, including chemical inhibitors, telomerase inhibitors, targeted therapy, and immunotherapies. We aim to understand the morphological and phenotypic implications of the two dominant monoallelic TERTp mutations, C228T and C250T, enriched in melanoma metastasis. We developed isogenic clonal cell lines containing the TERTp mutations and utilized dual-color expression reporters steered by the endogenous Telomerase promoter, giving us allelic resolution. This approach allowed us to monitor morpholomic variations induced by these mutations. TERTp mutation-bearing cells exhibited significant morpholome differences from their wild-type counterparts, with increased allele expression patterns, augmented wound-healing rates, and unique spatiotemporal dynamics. Notably, the C250T mutation exerted more pronounced changes in the morpholome than C228T, suggesting a differential role in metastatic potential. Our findings underscore the distinct influence of TERTp mutations on melanoma's cellular architecture and behavior. The C250T mutation may offer a unique morpholomic and systems-driven advantage for metastasis. These insights provide a foundational understanding of how a non-coding mutation in melanoma metastasis affects the system, manifesting in cellular morpholome.
Collapse
Affiliation(s)
- Andres J. Nevarez
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Anusorn Mudla
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Sabrina A. Diaz
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
6
|
Cianciosi D, Forbes-Hernandez T, Armas Diaz Y, Elexpuru-Zabaleta M, Quiles JL, Battino M, Giampieri F. Manuka honey's anti-metastatic impact on colon cancer stem-like cells: unveiling its effects on epithelial-mesenchymal transition, angiogenesis and telomere length. Food Funct 2024; 15:7200-7213. [PMID: 38896046 DOI: 10.1039/d4fo00943f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Colorectal cancer often leads to metastasis, with cancer stem cells (CSCs) playing a pivotal role in this process. Two closely linked mechanisms, epithelial-mesenchymal transition and angiogenesis, contribute to metastasis and recent research has also highlighted the impact of telomere replication on this harmful tumor progression. Standard chemotherapy alone can inadvertently promote drug-resistant CSCs, posing a challenge. Combining chemotherapy with other compounds, including natural ones, shows promise in enhancing effectiveness while minimizing side effects. This study investigated the anti-metastatic potential of Manuka honey, both alone and in combination with 5-fluorouracil, using a 3D model of colonospheres enriched with CSC-like cells. In summary, it was observed that the treatment reduced migration ability by downregulating the transcription factors Slug, Snail, and Twist, which are key players in epithelial-mesenchymal transition. Additionally, Manuka honey downregulated pro-angiogenic factors and shortened CSC telomeres by downregulating c-Myc - demonstrating an effective anti-metastatic potential. This study suggests new research opportunities for studying the impact of natural compounds when combined with pharmaceuticals, with the potential to enhance effectiveness and reduce side effects.
Collapse
Affiliation(s)
- Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, Ancona, 60131, Italy.
| | - Tamara Forbes-Hernandez
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Armilla, 18016, Spain
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, Ancona, 60131, Italy.
| | - Maria Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, Santander, 39011, Spain
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods, Polytechnic University of Marche, Italy, Universidad Europea del Atlántico Spain and Jiangsu University, China
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Armilla, 18016, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, Ancona, 60131, Italy.
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, Santander, 39011, Spain
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods, Polytechnic University of Marche, Italy, Universidad Europea del Atlántico Spain and Jiangsu University, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, 212013, China
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, Ancona, 60131, Italy.
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, Santander, 39011, Spain
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods, Polytechnic University of Marche, Italy, Universidad Europea del Atlántico Spain and Jiangsu University, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
7
|
Zhang Y, He J, Xiang L, Tang X, Wang S, Li A, Wang C, Li L, Zhu B. Molecular Mechanisms of Medicinal Plant Securinega suffruticosa-derived Compound Securinine against Spinal Muscular Atrophy based on Network Pharmacology and Experimental Verification. Curr Pharm Des 2024; 30:1178-1193. [PMID: 38561613 DOI: 10.2174/0113816128288504240321041408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Spinal Muscular Atrophy (SMA) is a severe motor neuronal disorder with high morbidity and mortality. Securinine has shown the potential to treat SMA; however, its anti-SMA role remains unclear. OBJECTIVE This study aims to reveal the anti-SMA mechanisms of securinine. METHODS Securinine-associated targets were acquired from Herbal Ingredients' Targets (HIT), Similarity Ensemble Approach (SEA), and SuperPred. SMA-associated targets were obtained from GeneCards and Dis- GeNET. Protein-protein Interaction (PPI) network was constructed using GeneMANIA, and hug targets were screened using cytoHubba. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using ClusterProfifiler. Molecular docking was conducted using Pymol and Auto- Dock. In vitro assays were used to verify the anti-SMA effects of securinine. RESULTS Twenty-six intersection targets of securinine and SMA were obtained. HDAC1, HDAC2, TOP2A, PIK3R1, PRMT5, JAK2, HSP90AB1, TERT, PTGS2, and PAX8 were the core targets in PPI network. GO analysis demonstrated that the intersecting targets were implicated in the regulation of proteins, steroid hormones, histone deacetylases, and DNA transcription. KEGG analysis, pathway-pathway, and hub target-pathway networks revealed that securinine might treat SMA through TNF, JAK-STAT, Ras, and PI3K-Akt pathways. Securinine had a favorable binding affinity with HDAC1, HSP90AB, JAK2, PRMT5, PTGS2, and TERT. Securinine rescued viability suppression, mitochondria damage, and SMN loss in the SMA cell model. Furthermore, securinine increased HDAC1 and PRMT5 expression, decreased PTGS2 expression, suppressed the JAK2-STAT3 pathway, and promoted the PI3K-Akt pathway. CONCLUSION Securinine might alleviate SMA by elevating HDAC1 and PRMT5 expression and reducing PTGS2 via JAK2-STAT3 suppression and PI3K-Akt activation.
Collapse
Affiliation(s)
- Yinhong Zhang
- NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Jing He
- NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lifeng Xiang
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- NHC Key Laboratory of Periconception Health Birth in Western China, Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Xinhua Tang
- NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Shiyu Wang
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Aoyu Li
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Chaoyan Wang
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Li Li
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Baosheng Zhu
- NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Department of Medical Genetics, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- School of Medical, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
8
|
Kuhn CK, Meister J, Kreft S, Stiller M, Puppel SH, Zaremba A, Scheffler B, Ullrich V, Schöneberg T, Schadendorf D, Horn S. TERT expression is associated with metastasis from thin primaries, exhausted CD4+ T cells in melanoma and with DNA repair across cancer entities. PLoS One 2023; 18:e0281487. [PMID: 37418389 PMCID: PMC10328343 DOI: 10.1371/journal.pone.0281487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) promoter mutations occur frequently in cancer, have been associated with increased TERT expression and cell proliferation, and could potentially influence therapeutic regimens for melanoma. As the role of TERT expression in malignant melanoma and the non-canonical functions of TERT remain understudied, we aimed to extend the current knowledge on the impact of TERT promoter mutations and expression alterations in tumor progression by analyzing several highly annotated melanoma cohorts. Using multivariate models, we found no consistent association for TERT promoter mutations or TERT expression with the survival rate in melanoma cohorts under immune checkpoint inhibition. However, the presence of CD4+ T cells increased with TERT expression and correlated with the expression of exhaustion markers. While the frequency of promoter mutations did not change with Breslow thickness, TERT expression was increased in metastases arising from thinner primaries. As single-cell RNA-sequencing (RNA-seq) showed that TERT expression was associated with genes involved in cell migration and dynamics of the extracellular matrix, this suggests a role of TERT during invasion and metastasis. Co-regulated genes found in several bulk tumors and single-cell RNA-seq cohorts also indicated non-canonical functions of TERT related to mitochondrial DNA stability and nuclear DNA repair. This pattern was also evident in glioblastoma and across other entities. Hence, our study adds to the role of TERT expression in cancer metastasis and potentially also immune resistance.
Collapse
Affiliation(s)
- Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Jaroslawna Meister
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sophia Kreft
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| | - Mathias Stiller
- Institute of Pathology, University of Leipzig Medical Center, Leipzig, Germany
| | - Sven-Holger Puppel
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Anne Zaremba
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| | - Björn Scheffler
- DKFZ-Division Translational Neurooncology at the West German Cancer Center, University Hospital Essen/University of Duisburg-Essen, Essen, Germany
| | - Vivien Ullrich
- DKFZ-Division Translational Neurooncology at the West German Cancer Center, University Hospital Essen/University of Duisburg-Essen, Essen, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
9
|
Moon B, Park M, Cho SH, Kim KM, Seo HR, Kim JH, Kim JA. Synergistic antitumor activity of sorafenib and MG149 in hepatocellular carcinoma cells. BMB Rep 2022; 55. [PMID: 35880431 PMCID: PMC9623241 DOI: 10.5483/bmbrep.2022.55.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Advanced hepatocellular carcinoma (HCC) is among the most challenging cancers to overcome, and there is a need for better therapeutic strategies. Among the different cancer drugs that have been used in clinics, sorafenib is considered the standard first-line drug for advanced HCC. Here, to identify a chemical compound displaying a synergistic effect with sorafenib in HCC, we screened a focused chemical library and found that MG149, a histone acetyltransferase inhibitor targeting the MYST family, exhibited the most synergistic anticancer effect with sorafenib on HCC cells. The combination of sorafenib and MG149 exerted a synergistic anti-proliferation effect on HCC cells by inducing apoptotic cell death. We revealed that cotreatment with sorafenib and MG149 aggravated endoplasmic reticulum (ER) stress to promote the death of HCC cells rather than adaptive cell survival. In addition, combined treatment with sorafenib and MG149 significantly increased the intracellular levels of unfolded proteins and reactive oxygen species, which upregulated ER stress. Collectively, these results suggest that MG149 has the potential to improve the efficacy of sorafenib in advanced HCC via the upregulation of cytotoxic ER stress. [BMB Reports 2022; 55(10): 506-511].
Collapse
Affiliation(s)
- Byul Moon
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea,Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Mijin Park
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea,Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Seung-Hyun Cho
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea,Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Kang Mo Kim
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Haeng Ran Seo
- Advanced Biomedical Research Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Jeong-Hoon Kim
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea,Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea,Corresponding authors. Jeong-Hoon Kim, Tel: +82-42-860-4264; Fax: +82-42-860-4598; E-mail: ; Jung-Ae Kim, Tel: +82-42-879-8129; Fax: +82-42-879-8119; E-mail: jungaekim@ kribb.re.kr
| | - Jung-Ae Kim
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea,Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea,Corresponding authors. Jeong-Hoon Kim, Tel: +82-42-860-4264; Fax: +82-42-860-4598; E-mail: ; Jung-Ae Kim, Tel: +82-42-879-8129; Fax: +82-42-879-8119; E-mail: jungaekim@ kribb.re.kr
| |
Collapse
|
10
|
Li J, Feng Y, Zhao J, Fang Z, Liu H. Telomerase reverse transcriptase promotes angiogenesis in neonatal rats after hypoxic-ischemic brain damage. PeerJ 2022; 10:e14220. [PMID: 36299510 PMCID: PMC9590416 DOI: 10.7717/peerj.14220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
Background Angiogenesis is an endogenous repair mechanism following hypoxic-ischemic brain damage (HIBD). Interestingly, recent studies have shown that angiogenesis can be regulated by telomerase reverse transcriptase (TERT), a critical component of telomerase. As telomerase reverse transcriptase can promote angiogenesis after stroke, we hypothesized that it could also promote angiogenesis after HIBD. To test this hypothesis, we developed in vivo and in vitro HIBD models in neonatal rats. Methods TERT was overexpressed by lentivirus and adenovirus infection, and levels were measured using quantitative real-time polymerase chain reaction. We used a cell counting kit to quantify the proliferation rate of brain microvascular endothelial cells (BMECs), and immunofluorescence staining to measure CD34 expression levels. A microvessel formation assay was used to evaluate angiogenesis. Blood-brain barrier (BBB) integrity was assessed using immunohistochemical staining for ZO-1 and Evans Blue staining. Lastly, the expression level of Notch-1 was measured by western blotting. Results Overexpression of TERT promoted the proliferation of BMECs after hypoxic-ischemic damage in vitro. TERT overexpression increased the formation of microvessels in the neonatal brain after HIBD both in vivo and in vitro. Overexpression of TERT improved BBB integrity in the brains of neonatal rats after HIBD. In addition, the expression level of Notch-1 was increased in BMECs following oxygen glucose deprivation, and overexpression of TERT further increased Notch-1 expression levels in BMECs following oxygen glucose deprivation. Discussion Our results reveal that telomerase reverse transcriptase promotes angiogenesis and maintains the integrity of the blood-brain barrier after neonatal hypoxic-ischemic brain damage. Furthermore, the Notch-1 signaling pathway appears to contribute to the angiogenic function of telomerase reverse transcriptase. This protective effect of telomerase reverse transcriptase opens new horizons for future investigations aimed at uncovering the full potential of telomerase reverse transcriptase as a promising new target for the treatment of hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Jiao Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Feng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jing Zhao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhi Fang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haiting Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Immunotherapy for hepatocellular carcinoma. Clin Exp Med 2022:10.1007/s10238-022-00874-5. [PMID: 36001163 DOI: 10.1007/s10238-022-00874-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 11/03/2022]
Abstract
Hepatocellular carcinoma (HCC), a primary malignancy of the liver, is a threat to the health of all humans as a prevalent malignancy and is the sixth most common cancer worldwide. It is difficult to diagnose because symptoms do not show up until late in the disease, and patients often progress to the point where transplantation, resection, or even local treatment cannot be performed. The progression of HCC is regulated by the immune system, and immunotherapy enables the body's immune system's defenses to target liver cancer cells; therefore, immunotherapy has brought a new hope for the treatment of HCC. Currently, the main types of immunotherapies for liver cancer are: immune checkpoint inhibitors, liver cancer vaccines and cellular therapies. In this review, the progress of immunotherapy for the treatment of HCC is summarized.
Collapse
|
12
|
Natural Product Library Screens Identify Sanguinarine Chloride as a Potent Inhibitor of Telomerase Expression and Activity. Cells 2022; 11:cells11091485. [PMID: 35563795 PMCID: PMC9104802 DOI: 10.3390/cells11091485] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Reverse transcriptase hTERT is essential to telomerase function in stem cells, as well as in 85–90% of human cancers. Its high expression in stem cells or cancer cells has made telomerase/hTERT an attractive therapeutic target for anti-aging and anti-tumor applications. In this study, we screened a natural product library containing 800 compounds using an endogenous hTERT reporter. Eight candidates have been identified, in which sanguinarine chloride (SC) and brazilin (Braz) were selected due to their leading inhibition. SC could induce an acute and strong suppressive effect on the expression of hTERT and telomerase activity in multiple cancer cells, whereas Braz selectively inhibited telomerase in certain types of cancer cells. Remarkably, SC long-term treatment could cause telomere attrition and cell growth retardation, which lead to senescence features in cancer cells, such as the accumulation of senescence-associated β-galactosidase (SA-β-gal)-positive cells, the upregulation of p16/p21/p53 pathways and telomere dysfunction-induced foci (TIFs). Additionally, SC exhibited excellent capabilities of anti-tumorigenesis, both in vitro and in vivo. In the mechanism, the compound down-regulated several active transcription factors including p65, a subunit of NF-κB complex, and reintroducing p65 could alleviate its suppression of the hTERT/telomerase. Moreover, SC could directly bind hTERT and inhibit telomerase activity in vitro. In conclusion, we identified that SC not only down-regulates the hTERT gene’s expression, but also directly affects telomerase/hTERT. The dual function makes this compound an attractive drug candidate for anti-tumor therapy.
Collapse
|
13
|
Trinh NT, Nguyen TMN, Yook JI, Ahn SG, Kim SA. Quercetin and Quercitrin from Agrimonia pilosa Ledeb Inhibit the Migration and Invasion of Colon Cancer Cells through the JNK Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:ph15030364. [PMID: 35337161 PMCID: PMC8951172 DOI: 10.3390/ph15030364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023] Open
Abstract
Considering the high metastatic potential of colorectal cancer (CRC), the inhibition of metastasis is important for anti-CRC therapy. Agrimonia pilosa Ledeb (A. pilosa) is a perennial herbaceous plant that is widely distributed in Asia. The extracts of A. pilosa have shown diverse pharmacological properties, such as antimicrobial, anti-inflammatory, and antitumor activities. In the present study, the antimetastatic activity of A. pilosa was evaluated. Methanol extraction from the roots of A. pilosa was performed by high-performance liquid chromatography (HPLC) and 12 fractions were obtained. Among these, fraction 4 showed the most potent inhibitory effect on the migration of colon cancer cells. Using LC-HR MS analysis, quercetin and quercitrin were identified as flavonoids contained in fraction 4. Like fraction 4, quercetin and quercitrin effectively inhibited the migration and invasion of RKO cells. While the level of E-cadherin was increased, the levels of N-cadherin and vimentin were decreased by the same agents. Although they all activate the p38, JNK, and ERK signaling pathways, only SP600125, an inhibitor of the JNK pathway, specifically inhibited the effect of fraction 4, quercetin, and quercitrin on cell migration. An in vivo experiment also confirmed the antitumor activity of quercetin and quercitrin. Collectively, these results suggest that A. pilosa and its two flavonoids, quercetin and quercitrin, are candidates for the antimetastatic treatment of CRC.
Collapse
Affiliation(s)
- Nguyet-Tran Trinh
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 38066, Korea; (N.-T.T.); (T.M.N.N.)
| | - Thi Minh Ngoc Nguyen
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 38066, Korea; (N.-T.T.); (T.M.N.N.)
| | - Jong-In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Sang-Gun Ahn
- Department of Pathology, Chosun University College of Dentistry, Gwangju 61452, Korea;
| | - Soo-A Kim
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 38066, Korea; (N.-T.T.); (T.M.N.N.)
- Correspondence: ; Tel.: +82-54-770-2836
| |
Collapse
|