1
|
Wu H, Li D, Zhang T, Zhao G. Novel Mechanisms of Perioperative Neurocognitive Disorders: Ferroptosis and Pyroptosis. Neurochem Res 2023; 48:2969-2982. [PMID: 37289349 DOI: 10.1007/s11064-023-03963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Perioperative neurocognitive disorders (PNDs) are some of the most common postoperative complications among the elderly and susceptible individuals, which significantly worsens the clinical outcome of patients. However, the prevention and treatment strategies of PNDs are difficult to determine and implement since the pathogenesis of PNDs is not well understood. The development of living organisms is associated with active and organized cell death, which is essential for maintaining the homeostasis of life. Ferroptosis is a programmed cell death (different from apoptosis and necrosis) mainly caused by an imbalance in the generation and degradation of intracellular lipid peroxides due to iron overload. Pyroptosis is an inflammatory cell death characterized by the creation of membrane holes mediated by the gasdermin (GSDM) family, followed by cell lysis and the release of pro-inflammatory cytokines. Ferroptosis and pyroptosis are involved in the pathogenesis of various central nervous system (CNS) diseases. Furthermore, ferroptosis and pyroptosis are closely associated with the occurrence and development of PNDs. This review summarizes the main regulatory mechanisms of ferroptosis and pyroptosis and the latest related to PNDs. Based on the available evidence, potential intervention strategies that can alleviate PNDs by inhibiting ferroptosis and pyroptosis have also been provided.
Collapse
Affiliation(s)
- Hang Wu
- Department of Anaesthesiology, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, Jilin, China
| | - Dongmei Li
- Department of Anaesthesiology, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, Jilin, China
| | - Te Zhang
- Department of Anaesthesiology, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, Jilin, China
| | - Guoqing Zhao
- Department of Anaesthesiology, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, Jilin, China.
- Jilin University, 2699 Forward Avenue, Changchun, Jilin, China.
| |
Collapse
|
2
|
Hadziselimovic F, Verkauskas G, Stadler MB. Epigenetics, cryptorchidism, and infertility. Basic Clin Androl 2023; 33:24. [PMID: 37730534 PMCID: PMC10512650 DOI: 10.1186/s12610-023-00199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/02/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Cryptorchid boys with defective mini-puberty and impaired differentiation of Ad spermatogonia (high infertility risk) have altered expression of several genes encoding histone methyltransferases compared to patients with intact differentiation of gonocytes into Ad spermatogonia (low infertility risk). RESULTS High infertility risk cryptorchid boys display hypogonadotropic hypogonadism, which, together with the diminished expression of histone deacetylases and increased expression of HDAC8 decrotonylase, indicates altered histone marks and, thus, a perturbed histone code. Curative GnRHa treatment induces normalization of histone methyltransferase, chromatin remodeling, and histone deacetylase gene expression. As a result, histone changes induce differentiation of Ad spermatogonia from their precursors and, thus, fertility. In this short report, we describe key functions of histone lysine methyltransferases, chromatin remodeling proteins, and long-noncoding RNAs, and discuss their potential roles in processes leading to infertility. CONCLUSION Our findings suggest that epigenetic mechanisms are critical to better understanding the root causes underlying male infertility related to cryptorchidism and its possible transgenerational transmission.
Collapse
Affiliation(s)
- Faruk Hadziselimovic
- Cryptorchidism Research Institute, Children’s Day Care Center, 4410 Liestal, Switzerland
| | - Gilvydas Verkauskas
- Children’s Surgery Centre, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
| | - Michael B. Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
3
|
Kim H, Park SY, Lee SY, Kwon JH, Byun S, Kim MJ, Yu S, Yoo JY, Yoon HG. Therapeutic effects of selective p300 histone acetyl-transferase inhibitor on liver fibrosis. BMB Rep 2023; 56:114-119. [PMID: 36593107 PMCID: PMC9978366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/04/2023] Open
Abstract
Liver fibrosis is caused by chronic liver damage and results in the aberrant accumulation of extracellular matrix during disease progression. Despite the identification of the HAT enzyme p300 as a major factor for liver fibrosis, the development of therapeutic agents targeting the regulation of p300 has not been reported. We validated a novel p300 inhibitor (A6) on the improvement of liver fibrosis using two mouse models, mice on a choline-deficient high-fat diet and thioacetamide-treated mice. We demonstrated that pathological hall-marks of liver fibrosis were significantly diminished by A6 treatment through Masson's trichrome and Sirius red staining on liver tissue and found that A6 treatment reduced the expression of matricellular protein genes. We further showed that A6 treatment improved liver fibrosis by reducing the stability of p300 protein via disruption of p300 binding to AKT. Our findings suggest that targeting p300 through the specific inhibitor A6 has potential as a major therapeutic avenue for treating liver fibrosis. [BMB Reports 2023; 56(2): 114-119].
Collapse
Affiliation(s)
- Hyunsik Kim
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo-Yeon Park
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Yeon Lee
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Hwan Kwon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seunghee Byun
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Mi Jeong Kim
- Department of Food and Biotechnology, College of Science and Technology Institute of Natural Sciences Korea University, Sejong 30019, Korea
| | - Sungryul Yu
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea
| | - Jung-Yoon Yoo
- Department of Biomedical Laboratory Science, Yonsei University MIRAE Campus, Wonju 26493, Korea,Corresponding authors. Jung-Yoon Yoo, Tel: +82-33-760-2861; Fax: +82-33-760-2861; E-mail: ; Ho-Geun Yoon, Tel: +82-2-2228-0835; Fax: +82-2-312-5041; E-mail:
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea,Corresponding authors. Jung-Yoon Yoo, Tel: +82-33-760-2861; Fax: +82-33-760-2861; E-mail: ; Ho-Geun Yoon, Tel: +82-2-2228-0835; Fax: +82-2-312-5041; E-mail:
| |
Collapse
|
4
|
Kim H, Park SY, Lee SY, Kwon JH, Byun S, Kim MJ, Yu S, Yoo JY, Yoon HG. Therapeutic effects of selective p300 histone acetyl-transferase inhibitor on liver fibrosis. BMB Rep 2023; 56:114-119. [PMID: 36593107 PMCID: PMC9978366 DOI: 10.5483/bmbrep.2022-0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/27/2022] [Indexed: 08/13/2023] Open
Abstract
Liver fibrosis is caused by chronic liver damage and results in the aberrant accumulation of extracellular matrix during disease progression. Despite the identification of the HAT enzyme p300 as a major factor for liver fibrosis, the development of therapeutic agents targeting the regulation of p300 has not been reported. We validated a novel p300 inhibitor (A6) on the improvement of liver fibrosis using two mouse models, mice on a choline-deficient high-fat diet and thioacetamide-treated mice. We demonstrated that pathological hall-marks of liver fibrosis were significantly diminished by A6 treatment through Masson's trichrome and Sirius red staining on liver tissue and found that A6 treatment reduced the expression of matricellular protein genes. We further showed that A6 treatment improved liver fibrosis by reducing the stability of p300 protein via disruption of p300 binding to AKT. Our findings suggest that targeting p300 through the specific inhibitor A6 has potential as a major therapeutic avenue for treating liver fibrosis. [BMB Reports 2023; 56(2): 114-119].
Collapse
Affiliation(s)
- Hyunsik Kim
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo-Yeon Park
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Yeon Lee
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Hwan Kwon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seunghee Byun
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Mi Jeong Kim
- Department of Food and Biotechnology, College of Science and Technology Institute of Natural Sciences Korea University, Sejong 30019, Korea
| | - Sungryul Yu
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea
| | - Jung-Yoon Yoo
- Department of Biomedical Laboratory Science, Yonsei University MIRAE Campus, Wonju 26493, Korea
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|