1
|
Hu JC, Tzeng HT, Lee WC, Li JR, Chuang YC. Promising Experimental Treatment in Animal Models and Human Studies of Interstitial Cystitis/Bladder Pain Syndrome. Int J Mol Sci 2024; 25:8015. [PMID: 39125584 PMCID: PMC11312208 DOI: 10.3390/ijms25158015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Interstitial cystitis/bladder pain Syndrome (IC/BPS) remains a mysterious and intricate urological disorder, presenting significant challenges to healthcare providers. Traditional guidelines for IC/BPS follow a hierarchical model based on symptom severity, advocating for conservative interventions as the initial step, followed by oral pharmacotherapy, intravesical treatments, and, in refractory cases, invasive surgical procedures. This approach embraces a multi-tiered strategy. However, the evolving understanding that IC/BPS represents a paroxysmal chronic pain syndrome, often involving extravesical manifestations and different subtypes, calls for a departure from this uniform approach. This review provides insights into recent advancements in experimental strategies in animal models and human studies. The identified therapeutic approaches fall into four categories: (i) anti-inflammation and anti-angiogenesis using monoclonal antibodies or immune modulation, (ii) regenerative medicine, including stem cell therapy, platelet-rich plasma, and low-intensity extracorporeal shock wave therapy, (iii) drug delivery systems leveraging nanotechnology, and (iv) drug delivery systems assisted by energy devices. Future investigations will require a broader range of animal models, studies on human bladder tissues, and well-designed clinical trials to establish the efficacy and safety of these therapeutic interventions.
Collapse
Affiliation(s)
- Ju-Chuan Hu
- Department of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan; (J.-C.H.); (J.-R.L.)
| | - Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Jian-Ri Li
- Department of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan; (J.-C.H.); (J.-R.L.)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- College of Nursing, Hungkuang University, Taichung 433, Taiwan
| | - Yao-Chi Chuang
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| |
Collapse
|
2
|
Ashraf S, Clarkson T, Malykhina AP. Therapeutic Approaches for Urologic Chronic Pelvic Pain Syndrome; Management: Research Advances, Experimental Targets, and Future Directions. J Pharmacol Exp Ther 2024; 390:222-232. [PMID: 38565309 PMCID: PMC11264256 DOI: 10.1124/jpet.123.002081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Urologic chronic pelvic pain syndrome (UCPPS) is a painful chronic condition with persistent pain originating from the pelvis that often leads to detrimental lifestyle changes in the affected patients. The syndrome develops in both sexes, with an estimated prevalence of 5.7% to 26.6% worldwide. This narrative review summarizes currently recommended therapies for UCPPS, followed by the latest animal model findings and clinical research advances in the field. The diagnosis of UCPPS by clinicians has room for improvement despite the changes in the past decade aiming to decrease the time to treatment. Therapeutic approaches targeting growth factors (i.e., nerve growth factor, vascular endothelial growth factor), amniotic bladder therapy, and stem cell treatments gain more attention as experimental treatment options for UCPPS. The development of novel diagnostic tests based on the latest advances in urinary biomarkers would be beneficial to assist with the clinical diagnosis of UCPPS. Future research directions should address the role of chronic psychologic stress and the mechanisms of pain refractory to conventional management strategies in UCPPS etiology. Testing the applicability of cognitive behavioral therapy in this cohort of UCPPS patients might be promising to increase their quality of life. The search for novel lead compounds and innovative drug delivery systems requires clinically relevant translational animal models. The role of autoimmune responses triggered by environmental factors is another promising research direction to clarify the impact of the immune system in UCPPS pathophysiology. SIGNIFICANCE STATEMENT: This minireview provides an up-to-date summary of the therapeutic approaches for UCPPS with a focus on recent advancements in the clinical diagnosis and treatments of the disease, pathophysiological mechanisms of UCPPS, signaling pathways, and molecular targets involved in pelvic nociception.
Collapse
Affiliation(s)
- Salman Ashraf
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Taylor Clarkson
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anna P Malykhina
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
3
|
Zanolla I, Trentini M, Tiengo E, Zanotti F, Pusceddu T, Rubini A, Rubini G, Brugnoli F, Licastro D, Debortoli M, Delogu LG, Ferroni L, Lovatti L, Zavan B. Adipose-derived stem cell exosomes act as delivery vehicles of microRNAs in a dog model of chronic hepatitis. Nanotheranostics 2024; 8:298-311. [PMID: 38577321 PMCID: PMC10988209 DOI: 10.7150/ntno.93064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
Exosomes are nanosized extracellular vesicles secreted by all cell types, including canine adipose-derived stem cells (cADSCs). By mediating intercellular communication, exosomes modulate the biology of adjacent and distant cells by transferring their cargo. In the present work after isolation and characterization of exosomes derived from canine adipose tissue, we treated the same canine donors affected by hepatopathies with the previously isolated exosomes. We hypothesize that cADSC-sourced miRNAs are among the factors responsible for a regenerative and anti-inflammatory effect in the treatment of hepatopathies in dogs, providing the clinical veterinary field with an effective and innovative cell-free therapy. Exosomes were isolated and characterized for size, distribution, surface markers, and for their miRNomic cargo by microRNA sequencing. 295 dogs affected with hepatopathies were treated and followed up for 6 months to keep track of their biochemical marker levels. Results confirmed that exosomes derived from cADSCs exhibited an average diameter of 91 nm, and positivity to 8 known exosome markers. The administration of exosomes to dogs affected by liver-associated inflammatory pathologies resulted in the recovery of the animal alongside the normalization of biochemical parameters of kidney function. In conclusion, cADSCs-derived exosomes are a promising therapeutic tool for treating inflammatory disorders in animal companions.
Collapse
Affiliation(s)
- Ilaria Zanolla
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Elena Tiengo
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Tommaso Pusceddu
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | | | - Giuseppe Rubini
- Ultravet Diagnostic, 40017, San Giovanni in Persiceto, Italy
| | | | | | | | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, 35122, Padua, Italy
| | - Letizia Ferroni
- Department of Biomedical Sciences, University of Padua, 35122, Padua, Italy
| | - Luca Lovatti
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
4
|
Cui X, Bi X, Zhang X, Zhang Z, Yan Q, Wang Y, Huang X, Wu X, Jing X, Wang H. MiR-9-enriched mesenchymal stem cells derived exosomes prevent cystitis-induced bladder pain via suppressing TLR4/NLRP3 pathway in interstitial cystitis mice. Immun Inflamm Dis 2024; 12:e1140. [PMID: 38415918 PMCID: PMC10836038 DOI: 10.1002/iid3.1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Inflammatory response of central nervous system is an important component mechanism in the bladder pain of interstitial cystitis/bladder pain syndrome (IC/BPS). Exosomes transfer with microRNAs (miRNA) from mesenchymal stem cell (MSCs) might inhibit inflammatory injury of the central nervous system. Herein, the purpose of our study was to explore the therapeutic effects by which extracellular vesicles (EVs) derived from miR-9-edreched MSCs in IC/BPS and further investigate the potential mechanism to attenuate neuroinflammation. METHODS On the basis of IC/BPS model, we used various techniques including bioinformatics, cell and molecular biology, and experimental zoology, to elucidate the role and molecular mechanism of TLR4 in regulating the activation of NLRP3 inflammasome in bladder pain of IC/BPS, and investigate the mechanism and feasibility of MSC-EVs enriched with miR-9 in the treatment of bladder pain of IC/BPS. RESULTS The inflammatory responses in systemic and central derived by TLR4 activation were closely related to the cystitis-induced pelvic/bladder nociception in IC/BPS model. Intrathecal injection of miR-9-enreched MSCs derived exosomes were effective in the treatment of cystitis-induced pelvic/bladder nociception by inhibiting TLR4/NF-κb/NLRP3 signal pathway in central nervous system of IC/BPS mice. CONCLUSIONS This study demonstrated that miR-9-enreched MSCs derived exosomes alleviate neuroinflammaiton and cystitis-induced bladder pain by inhibiting TLR4/NF-κb/NLRP3 signal pathway in interstitial cystitis mice, which is a promising strategy against cystitis-induced bladder pain.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, The affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Shanxi Maternal and Child Health Hospital, Taiyuan, China
| | - Xingyu Bi
- Reproductive Medicine Center, The affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Shanxi Maternal and Child Health Hospital, Taiyuan, China
| | - Xiuping Zhang
- Reproductive Medicine Center, The affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Shanxi Maternal and Child Health Hospital, Taiyuan, China
| | - Zhiping Zhang
- Reproductive Medicine Center, The affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Shanxi Maternal and Child Health Hospital, Taiyuan, China
| | - Qin Yan
- Reproductive Medicine Center, The affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Shanxi Maternal and Child Health Hospital, Taiyuan, China
| | - Yanni Wang
- Clinical Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Xia Huang
- Clinical Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Xueqing Wu
- Reproductive Medicine Center, The affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Shanxi Maternal and Child Health Hospital, Taiyuan, China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Li J, Yi X, Ai J. Broaden Horizons: The Advancement of Interstitial Cystitis/Bladder Pain Syndrome. Int J Mol Sci 2022; 23:14594. [PMID: 36498919 PMCID: PMC9736130 DOI: 10.3390/ijms232314594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating disease that induces mental stress, lower urinary symptoms, and pelvic pain, therefore resulting in a decline in quality of life. The present diagnoses and treatments still lead to unsatisfactory outcomes, and novel diagnostic and therapeutic modalities are needed. Although our understanding of the etiology and pathophysiology of IC/BPS is growing, the altered permeability of the impaired urothelium, the sensitized nerves on the bladder wall, and the chronic or intermittent sensory pain with inaccurate location, as well as pathologic angiogenesis, fibrosis, and Hunner lesions, all act as barriers to better diagnoses and treatments. This study aimed to summarize the comprehensive information on IC/BPS research, thereby promoting the progress of IC/BPS in the aspects of diagnosis, treatment, and prognosis. According to diverse international guidelines, the etiology of IC/BPS is associated with multiple factors, while the presence of Hunner lesions could largely distinguish the pathology, diagnosis, and treatment of non-Hunner lesions in IC/BPS patients. On the basis of the diagnosis of exclusion, the diverse present diagnostic and therapeutic procedures are undergoing a transition from a single approach to multimodal strategies targeting different potential phenotypes recommended by different guidelines. Investigations into the mechanisms involved in urinary symptoms, pain sensation, and bladder fibrosis indicate the pathophysiology of IC/BPS for further potential strategies, both in diagnosis and treatment. An overview of IC/BPS in terms of epidemiology, etiology, pathology, diagnosis, treatment, and fundamental research is provided with the latest evidence. On the basis of shared decision-making, a multimodal strategy of diagnosis and treatment targeting potential phenotypes for individual patients with IC/BPS would be of great benefit for the entire process of management. The complexity and emerging evidence on IC/BPS elicit more relevant studies and research and could optimize the management of IC/BPS patients.
Collapse
Affiliation(s)
- Jin Li
- West China School of Medicine, Sichuan University, Chengdu 610041, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu 610041, China
| | - Xianyanling Yi
- West China School of Medicine, Sichuan University, Chengdu 610041, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Song K, Dayem AA, Lee S, Choi Y, Lim KM, Kim S, An J, Shin Y, Park H, Jeon TI, Jang SB, Bong H, Lee JI, Kang GH, Kim S, Kim A, Cho SG. Superior therapeutic activity of TGF-β-induced extracellular vesicles against interstitial cystitis. J Control Release 2022; 348:924-937. [PMID: 35772569 DOI: 10.1016/j.jconrel.2022.06.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic disease characterized by incapacitating pelvic pain. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are considered key mediators of the paracrine action of MSCs and show better biological activities than the parent MSCs, especially in the bladder tissue, which may be unfavorable for MSC survival. Here, we produced MSC-EVs using advanced three-dimensional (a3D) culture with exogenous transforming growth factor-β3 (TGF-β3) (T-a3D-EVs). Treatment with T-a3D-EVs led to significantly enhanced wound healing and anti-inflammatory capacities. Moreover, submucosal layer injection of T-a3D-EVs in chronic IC/BPS animal model resulted in restoration of bladder function, superior anti-inflammatory activity, and recovery of damaged urothelium compared to MSCs. Interestingly, we detected increased TGF-β1 level in T-a3D-EVs, which might be involved in the anti-inflammatory activity of these EVs. Taken together, we demonstrate the excellent immune-modulatory and regenerative abilities of T-a3D-EVs as observed by recovery from urothelial denudation and dysfunction, which could be a promising therapeutic strategy for IC/BPS.
Collapse
Affiliation(s)
- Kwonwoo Song
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soobin Lee
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yujin Choi
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sehee Kim
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jongyub An
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeokyung Shin
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyojin Park
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Tak-Il Jeon
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soo Bin Jang
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hanbit Bong
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jeong Ik Lee
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, and Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Geun-Ho Kang
- R&D Team, StemExOne Co., Ltd., 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sejong Kim
- R&D Team, StemExOne Co., Ltd., 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|