1
|
Kim HY, Ahn SB, Hong JM, Oh JH, Saeed WK, Kim GS, Kim H, Kang JK, Kang S, Jun DW. BTT-105 ameliorates hepatic fibrosis in non-alcoholic fatty liver animal model. FASEB J 2021; 35:e21979. [PMID: 34694029 DOI: 10.1096/fj.202002656rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 12/29/2022]
Abstract
BTT-105 (1-O-hexyl-2,3,5-trimethylhydroquinone), a hydroquinone derivative, is a potent anti-oxidant that was safe and tolerable in phase I clinical trial. This study examined the anti-fibrotic effect of BTT-105 in a mouse model of non-alcoholic fatty liver disease (NAFLD) along with the underlying mechanisms. In vivo, efficacy of BTT-105 evaluated from three kinds of NAFLD models (methionine/choline deficient diet (MCD), high fat diet (HF) and western diet (WD)). Metabolomics and transcriptomics profiling analysis in liver tissues were conducted. In vitro, anti-fibrotic effect of BTT-105 assessed in human hepatic stellated cells (HSCs) and primary mouse HSCs. BTT-105 improved NAFLD activity score in three kinds of NAFLD animal models (MCD, HF, and WD). BTT-105 also decreased levels of hepatic pro-collagen and collagen fibers deposition in liver tissue. Metabolome and transcriptome analysis revealed that BTT-105 decreased lipid metabolites and increased antioxidants in NAFLD mice. In HepG2 cells, BTT-105 enhanced Nrf2-ARE reporter activity in a dose-dependent manner and increased the levels of antioxidant gene expression. BTT-105 showed inhibition of HSCs activation and migration. Gene expression profiling and protein expression showed that BTT-105 increased Nrf2 activation as well as decreased PI3K-Akt pathway in activated HSCs. BTT-105 attenuated ameliorates steatohepatitis and hepatic fibrosis.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Sang Bong Ahn
- Department of Internal Medicine, Eulji University School of Medicine, Seoul, Republic of Korea
| | | | - Ju Hee Oh
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Waqar Khalid Saeed
- Department of Internal Medicine, Hanyang University School of Medicine, Seoul, Republic of Korea
| | - Gyu Sik Kim
- Biotoxtech Co., Ltd., Cheongju, Republic of Korea
| | - Hyun Kim
- Biotoxtech Co., Ltd., Cheongju, Republic of Korea
| | | | - Sukmo Kang
- Biotoxtech Co., Ltd., Cheongju, Republic of Korea
| | - Dae Won Jun
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea.,Department of Internal Medicine, Hanyang University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
1-O-Hexyl-2,3,5-Trimethylhydroquinone Ameliorates the Development of Preeclampsia through Suppression of Oxidative Stress and Endothelial Cell Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8839394. [PMID: 33542786 PMCID: PMC7840260 DOI: 10.1155/2021/8839394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
1-O-Hexyl-2,3,5-trimethylhydroquinone (HTHQ), a potent nuclear factor-E2-related factor 2 (Nrf2) activator, has potent antioxidant activity by scavenging reactive oxygen species (ROS). However, the role of HTHQ on the development of preeclampsia (PE) and the underlying mechanisms have barely been explored. In the present study, PE model was induced by adenovirus-mediated overexpression of soluble fms-like tyrosine kinase 1 (sFlt-1) in pregnant mice. The results showed that HTHQ treatment significantly relieved the high systolic blood pressure (SBP) and proteinuria and increased the fetal weight and fetal weight/placenta weight in preeclamptic mice. Furthermore, we found that HTHQ treatment significantly decreased soluble endoglin (sEng), endothelin-1 (ET-1), and activin A and restored vascular endothelial growth factor (VEGF) in preeclamptic mice. In addition, HTHQ treatment inhibited oxidative stress and endothelial cell apoptosis by increasing the levels of Nrf2 and its downstream haemoxygenase-1 (HO-1) protein. In line with the data in vivo, we discovered that HTHQ treatment attenuated oxidative stress and cell apoptosis in human umbilical vein endothelial cells (HUVECs) following hypoxia and reperfusion (H/R), and the HTHQ-mediated protection was lost after transfected with siNrf2. In conclusion, these results suggested that HTHQ ameliorates the development of preeclampsia through suppression of oxidative stress and endothelial cell apoptosis.
Collapse
|
3
|
Tang C, Hu Y, Lyu H, Gao J, Jiang J, Qin X, Wu Y, Wang J, Chai X. Neuroprotective effects of 1-O-hexyl-2,3,5-trimethylhydroquinone on ischaemia/reperfusion-induced neuronal injury by activating the Nrf2/HO-1 pathway. J Cell Mol Med 2020; 24:10468-10477. [PMID: 32677362 PMCID: PMC7521305 DOI: 10.1111/jcmm.15659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
1-O-Hexyl-2,3,5-trimethylhydroquinone (HTHQ), a lipophilic phenolic agent, has an antioxidant activity and reactive oxygen species (ROS) scavenging property. However, the role of HTHQ on cerebral ischaemic/reperfusion (I/R) injury and the underlying mechanisms remain poorly understood. In the present study, we demonstrated that HTHQ treatment ameliorated cerebral I/R injury in vivo, as demonstrated by the decreased infarct volume ration, neurological deficits, oxidative stress and neuronal apoptosis. HTHQ treatment increased the levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant protein, haeme oxygenase-1 (HO-1). In addition, HTHQ treatment decreases oxidative stress and neuronal apoptosis of PC12 cells following hypoxia and reperfusion (H/R) in vitro. Moreover, we provided evidence that PC12 cells were more vulnerable to H/R-induced oxidative stress after si-Nrf2 transfection, and the HTHQ-mediated protection was lost in PC12 cells transfected with siNrf2. In conclusion, these results suggested that HTHQ possesses neuroprotective effects against oxidative stress and apoptosis after cerebral I/R injury via activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Chaoliang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yida Hu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haiyan Lyu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Gao
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiazhen Jiang
- Department of Emergency, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xiude Qin
- Department of Neurology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanbo Wu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiawu Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoqing Chai
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Roh YS, Cho A, Cha YS, Oh SH, Lim CW, Kim B. Lactobacillus Aggravate Bile Duct Ligation-Induced Liver Inflammation and Fibrosis in Mice. Toxicol Res 2018; 34:241-247. [PMID: 30057698 PMCID: PMC6057294 DOI: 10.5487/tr.2018.34.3.241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/08/2018] [Accepted: 05/31/2018] [Indexed: 01/07/2023] Open
Abstract
Lactobacillus (LAB) have been reported to exert both harmful and beneficial effects on human and animal health. Recently, it has been reported that dysbiosis and bacterial translocation contribute to liver fibrosis. However, the role of Gram-positive LAB in the situation of chronic liver diseases has not been yet elucidated. Liver injury was induced by bile duct ligation (BDL) in LAB or control-administered mice. Liver fibrosis was enhanced in LAB-administered mice compared with control-treated mice as demonstrated by quantification of Sirius-red positive area, hydroxyproline contents and fibrosis-related genes (Col1α1, Acta2, Timp1, Tgfb1). Moreover, LAB-administered mice were more susceptible to BDL-induced liver injury as shown by increased ALT and AST level of LAB group compared with control group at 5 days post BDL. Consistent with serum level, inflammatory cytokines (TNF-α, IL-6 and IL-1β) were also significantly increased in LAB-treated mice. Of note, LAB-treated liver showed increased lipoteichoic acid (LTA) expression compared with control-treated liver, indicating that LAB-derived LTA may translocate from intestine to liver via portal vein. Indeed, responsible receptor or inflammatory factor (PAFR and iNOS) for LTA were upregulated in LAB-administered group. The present findings demonstrate that administration of LAB increases LTA translocation to liver and induces profibrogenic inflammatory milieu, leading to aggravation of liver fibrosis. The current study provides new cautious information of LAB for liver fibrosis patients to prevent the detrimental effect of LAB supplements.
Collapse
Affiliation(s)
- Yoon Seok Roh
- Department of Pharmacy, Chungbuk National University, College of Pharmacy and Medical Research Center, Cheongju, Korea
| | - Ara Cho
- Biosafety Research Institute and College of Veterinary Medicine (BK21 Plus Program), Chonbuk National University, Iksan, Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Fermented Food Research Center, Chonbuk National University, Jeonju, Korea
| | - Suk-Heung Oh
- Department of Food & Biotechnology, Woosuk University, Jeonju, Korea
| | - Chae Woong Lim
- Biosafety Research Institute and College of Veterinary Medicine (BK21 Plus Program), Chonbuk National University, Iksan, Korea
| | - Bumseok Kim
- Biosafety Research Institute and College of Veterinary Medicine (BK21 Plus Program), Chonbuk National University, Iksan, Korea
| |
Collapse
|
5
|
Kim J, Shin SH, Ko YE, Miki T, Bae HM, Kang JK, Kim JW. HX-1171, a Novel Nrf2 Activator, Induces NQO1 and HMOX1 Expression. J Cell Biochem 2017; 118:3372-3380. [PMID: 28300285 DOI: 10.1002/jcb.25993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/14/2017] [Indexed: 01/18/2023]
Abstract
HX-1171 (1-O-hexyl-2,3,5-trimethylhydroquinone) is a novel synthesized vitamin E derivative, which reportedly has positive effects on various diseases and conditions, such as liver fibrosis, hepatic cirrhosis, and cancer. In this study, we analyzed the transcriptional activity induced by HX-1171. Results from reverse transcription polymerase chain reaction and promoter assays reveal that HX-1171 increased the expression of NQO1 and HMOX1, encoding antioxidant-related enzymes, in A549 human lung epithelial cells. The activity of nuclear factor-E2-related factor (Nrf2), a key transcriptional factor for antioxidative enzymes, was examined in HX-1171-treated cells. Confocal microscopy and Western blotting showed that HX-1171 effectively induced the nuclear translocation and transcriptional activity of Nrf2. We conclude that HX-1171, a novel Nrf2 activator, may be a promising therapeutic agent for oxidative stress-induced diseases. J. Cell. Biochem. 118: 3372-3380, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jimin Kim
- Division of Systems Biology and Bioengineering, Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Su-Hyun Shin
- Division of Systems Biology and Bioengineering, Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Young-Eun Ko
- Division of Systems Biology and Bioengineering, Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | | | - Heung-Mo Bae
- Biotoxtech Co., Ltd, Cheongju, Republic of Korea
| | - Jong-Koo Kang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jae Wha Kim
- Division of Systems Biology and Bioengineering, Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Kim YH, Choi HY, Lee SH, Lim HS, Miki T, Kang JK, Han KG, Bae KS. Single and multiple dose pharmacokinetics and tolerability of HX-1171, a novel antioxidant, in healthy volunteers. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1735-42. [PMID: 25848210 PMCID: PMC4376184 DOI: 10.2147/dddt.s79724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND HX-1171 (1-O-hexyl-2,3,5-trimethylhydroquinone) is a promising antioxidant with therapeutic potential for hepatic fibrosis. The aim of this study was to investigate the tolerability and pharmacokinetics of HX-1171 in healthy volunteers. METHODS A randomized, single-blind, placebo-controlled, dose escalation study was conducted in 83 subjects. In the single ascending dose study, 20, 40, 80, 160, 300, 600, 1,200, 1,500 or 2,000 mg of HX-1171 was administered to 67 subjects. In the multiple ascending dose study, 500 or 1,000 mg was administered to 16 subjects for 14 days. The plasma and urine concentrations of HX-1171 were determined by using a validated liquid chromatography-mass spectrometry method. Pharmacokinetic parameters were obtained by non-compartmental analysis. Tolerability was assessed based on physical examinations, vital signs, clinical laboratory tests, and electrocardiograms. RESULTS Adverse events reported in the study were all mild in intensity and resolved without any sequelae. HX-1171 was rapidly and minimally absorbed with a median time at maximal concentration of 0.63-1.50 hours and slowly eliminated with a terminal half-life of 21.12-40.96 hours. Accumulation index ranged from 2.0 to 2.2 after repeated dosing for 14 days. For both the single and multiple doses administrations, urinary concentrations indicated that less than 0.01% of the HX-1171 administered was excreted in urine. CONCLUSION HX-1171 was well tolerated and minimally absorbed in healthy volunteers. The pharmacokinetic profile of HX-1171 was consistent with once-a-day dosing.
Collapse
Affiliation(s)
- Yo Han Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| | - Hee Youn Choi
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| | - Shi Hyang Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| | - Hyeong-Seok Lim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| | | | - Jong-Koo Kang
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Kyun-Seop Bae
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|