1
|
Virgous C, Lyons L, Sakwe A, Nayyar T, Goodwin S, Hildreth J, Osteen K, Bruner-Tran K, Alawode O, Bourne P, Hills ER, Archibong AE. Resumption of Spermatogenesis and Fertility Post Withdrawal of Hydroxyurea Treatment. Int J Mol Sci 2023; 24:ijms24119374. [PMID: 37298325 DOI: 10.3390/ijms24119374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Hydroxyurea (HU), a drug for treating cancers of the blood and the management of sickle cell anemia, induces hypogonadism in males. However, the impact of HU on testicular architecture and function, as well as its effects on the resumption of male fertility following treatment withdrawal, remain poorly understood. We used adult male mice to determine whether HU-induced hypogonadism is reversible. Fertility indices of mice treated with HU daily for ~1 sperm cycle (2 months) were compared with those of their control counterparts. All indices of fertility were significantly reduced among mice treated with HU compared to controls. Interestingly, significant improvements in fertility indices were apparent after a 4-month withdrawal from HU treatment (testis weight: month 1 post-HU withdrawal (M1): HU, 0.09 ± 0.01 vs. control, 0.33 ± 0.03; M4: HU, 0.26 ± 0.03 vs. control, 0.37 ± 0.04 g); sperm motility (M1: HU,12 vs. 59; M4: HU, 45 vs. control, 61%; sperm density (M1: HU, 1.3 ± 0.3 vs. control, 15.7 ± 0.9; M4: HU, 8.1 ± 2.5 vs. control, 16.8 ± 1.9 million). Further, circulating testosterone increased in the 4th month following HU withdrawal and was comparable to that of controls. When a mating experiment was conducted, recovering males sired viable offspring with untreated females albeit at a lower rate than control males (p < 0.05); therefore, qualifying HU as a potential candidate for male contraception.
Collapse
Affiliation(s)
- Carlos Virgous
- Animal Care Facility, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37209, USA
| | - Letitia Lyons
- Department of Obstetrics and Gynecology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Amos Sakwe
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Tultul Nayyar
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Shawn Goodwin
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - James Hildreth
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Kevin Osteen
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kaylon Bruner-Tran
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Oluwatobi Alawode
- Department of Obstetrics and Gynecology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Phillip Bourne
- Department of Obstetrics and Gynecology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Edward Richard Hills
- Department of Obstetrics and Gynecology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Anthony E Archibong
- Department of Obstetrics and Gynecology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| |
Collapse
|
2
|
Ahmed U, Ahmed R, Masoud MS, Tariq M, Ashfaq UA, Augustine R, Hasan A. Stem cells based in vitro models: trends and prospects in biomaterials cytotoxicity studies. Biomed Mater 2021; 16:042003. [PMID: 33686970 DOI: 10.1088/1748-605x/abe6d8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Advanced biomaterials are increasingly used for numerous medical applications from the delivery of cancer-targeted therapeutics to the treatment of cardiovascular diseases. The issues of foreign body reactions induced by biomaterials must be controlled for preventing treatment failure. Therefore, it is important to assess the biocompatibility and cytotoxicity of biomaterials on cell culture systems before proceeding to in vivo studies in animal models and subsequent clinical trials. Direct use of biomaterials on animals create technical challenges and ethical issues and therefore, the use of non-animal models such as stem cell cultures could be useful for determination of their safety. However, failure to recapitulate the complex in vivo microenvironment have largely restricted stem cell cultures for testing the cytotoxicity of biomaterials. Nevertheless, properties of stem cells such as their self-renewal and ability to differentiate into various cell lineages make them an ideal candidate for in vitro screening studies. Furthermore, the application of stem cells in biomaterials screening studies may overcome the challenges associated with the inability to develop a complex heterogeneous tissue using primary cells. Currently, embryonic stem cells, adult stem cells, and induced pluripotent stem cells are being used as in vitro preliminary biomaterials testing models with demonstrated advantages over mature primary cell or cell line based in vitro models. This review discusses the status and future directions of in vitro stem cell-based cultures and their derivatives such as spheroids and organoids for the screening of their safety before their application to animal models and human in translational research.
Collapse
Affiliation(s)
- Uzair Ahmed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000 Punjab, Pakistan
| | | | | | | | | | | | | |
Collapse
|
3
|
Park C, Choi SH, Jeong JW, Han MH, Lee H, Hong SH, Kim GY, Moon SK, Kim WJ, Choi YH. Honokiol ameliorates oxidative stress-induced DNA damage and apoptosis of c2c12 myoblasts by ROS generation and mitochondrial pathway. Anim Cells Syst (Seoul) 2019; 24:60-68. [PMID: 32158617 PMCID: PMC7048179 DOI: 10.1080/19768354.2019.1706634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 11/08/2019] [Accepted: 12/12/2019] [Indexed: 01/12/2023] Open
Abstract
Honokiol is one of the main active components of Magnolia officinalis, and has been demonstrated to have multiple pharmacological activities against a variety of diseases. Recently, this phenolic compound is known to have antioxidant activity, but its mechanism of action remains unclear. The purpose of the current study was to evaluate the preventive effects of honokiol against oxidative stress-induced DNA damage and apoptosis in C2C12 myoblasts. The present study found that honokiol inhibited hydrogen peroxide (H2O2)-induced DNA damage and mitochondrial dysfunction, while reducing reactive oxygen species (ROS) formation. The inhibitory effect of honokiol on H2O2-induced apoptosis was associated with the up-regulation of Bcl-2 and down-regulation of Bax, thus reducing the Bax/Bcl-2 ratio that in turn protected the activation of caspase-9 and -3, and inhibition of poly (ADP-ribose) polymerase cleavage, which was associated with the blocking of cytochrome c release to the cytoplasm. Collectively, these results demonstrate that honokiol defends C2C12 myoblasts against H2O2-induced DNA damage and apoptosis, at least in part, by preventing mitochondrial-dependent pathway through scavenging excessive ROS.
Collapse
Affiliation(s)
- Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan, Republic of Korea
| | - Sung Hyun Choi
- Department of System Management, Korea Lift College, Geochang, Republic of Korea
| | - Jin-Woo Jeong
- Freshwater Bioresources Utilization Bureau, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - Min Ho Han
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Hyesook Lee
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea.,Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea.,Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea.,Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
| |
Collapse
|
4
|
Kim TW, Che JH, Yun JW. Use of stem cells as alternative methods to animal experimentation in predictive toxicology. Regul Toxicol Pharmacol 2019; 105:15-29. [DOI: 10.1016/j.yrtph.2019.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
|
5
|
Park C, Kwon DH, Hwang SJ, Han MH, Jeong JW, Hong SH, Cha HJ, Hong SH, Kim GY, Lee HJ, Kim S, Kim HS, Choi YH. Protective Effects of Nargenicin A1 against Tacrolimus-Induced Oxidative Stress in Hirame Natural Embryo Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16061044. [PMID: 30909475 PMCID: PMC6466173 DOI: 10.3390/ijerph16061044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
Abstract
Tacrolimus is widely used as an immunosuppressant to reduce the risk of rejection after organ transplantation, but its cytotoxicity is problematic. Nargenicin A1 is an antibiotic extracted from Nocardia argentinensis and is known to have antioxidant activity, though its mode of action is unknown. The present study was undertaken to evaluate the protective effects of nargenicin A1 on DNA damage and apoptosis induced by tacrolimus in hirame natural embryo (HINAE) cells. We found that reduced HINAE cell survival by tacrolimus was due to the induction of DNA damage and apoptosis, both of which were prevented by co-treating nargenicin A1 or N-acetyl-l-cysteine, a reactive oxygen species (ROS) scavenger, with tacrolimus. In addition, apoptosis induction by tacrolimus was accompanied by increases in ROS generation and decreases in adenosine triphosphate (ATP) levels caused by mitochondrial dysfunction, and these changes were significantly attenuated in the presence of nargenicin A1, which further indicated tacrolimus-induced apoptosis involved an oxidative stress-associated mechanism. Furthermore, nargenicin A1 suppressed tacrolimus-induced B-cell lymphoma-2 (Bcl-2) down-regulation, Bax up-regulation, and caspase-3 activation. Collectively, these results demonstrate that nargenicin A1 protects HINAE cells against tacrolimus-induced DNA damage and apoptosis, at least in part, by scavenging ROS and thus suppressing the mitochondrial-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan 47340, Korea.
| | - Da Hye Kwon
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
| | - Su Jung Hwang
- Department of Pharmacy, College of Pharmacy, Inje University, Gimhae 50834, Korea.
| | - Min Ho Han
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 17104, Korea.
| | - Sang Hoon Hong
- Department of Internal Medicine, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea.
| | - Su-Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea.
| | - Hyo-Jong Lee
- Department of Pharmacy, College of Pharmacy, Inje University, Gimhae 50834, Korea.
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea.
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
| |
Collapse
|
6
|
Protective Effects of Fermented Oyster Extract against RANKL-Induced Osteoclastogenesis through Scavenging ROS Generation in RAW 264.7 Cells. Int J Mol Sci 2019; 20:ijms20061439. [PMID: 30901917 PMCID: PMC6471417 DOI: 10.3390/ijms20061439] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
Excessive bone resorption by osteoclasts causes bone loss-related diseases and reactive oxygen species (ROS) act as second messengers in intercellular signaling pathways during osteoclast differentiation. In this study, we explored the protective effects of fermented oyster extract (FO) against receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation in murine monocyte/macrophage RAW 264.7 cells. Our results showed that FO markedly inhibited RANKL-induced activation of tartrate-resistant acid phosphatase and formation of F-actin ring structure. Mechanistically, FO has been shown to down-regulate RANKL-induced expression of osteoclast-specific markers by blocking the nuclear translocation of NF-κB and the transcriptional activation of nuclear factor of activated T cells c1 (NFATc1) and c-Fos. Furthermore, FO markedly diminished ROS production by RANKL stimulation, which was associated with blocking the expression of nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1) and its regulatory subunit Rac-1. However, a small interfering RNA (siRNA) targeting NOX1 suppressed RANKL-induced expression of osteoclast-specific markers and production of ROS and attenuated osteoclast differentiation as in the FO treatment group. Collectively, our findings suggest that FO has anti-osteoclastogenic potential by inactivating the NF-κB-mediated NFATc1 and c-Fos signaling pathways and inhibiting ROS generation, followed by suppression of osteoclast-specific genes. Although further studies are needed to demonstrate efficacy in in vivo animal models, FO may be used as an effective alternative agent for the prevention and treatment of osteoclastogenic bone diseases.
Collapse
|
7
|
Han X, Kang KA, Piao MJ, Zhen AX, Hyun YJ, Kim HM, Ryu YS, Hyun JW. Shikonin Exerts Cytotoxic Effects in Human Colon Cancers by Inducing Apoptotic Cell Death via the Endoplasmic Reticulum and Mitochondria-Mediated Pathways. Biomol Ther (Seoul) 2019; 27:41-47. [PMID: 29925224 PMCID: PMC6319547 DOI: 10.4062/biomolther.2018.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/29/2018] [Accepted: 05/03/2018] [Indexed: 12/14/2022] Open
Abstract
The apoptotic effects of shikonin (5,8-dihydroxy-2-[(1R)-1-hydroxy-4-methylpent-3-enyl]naphthalene-1,4-dione) on the human colon cancer cell line SNU-407 were investigated in this study. Shikonin showed dose-dependent cytotoxic activity against SNU-407 cells, with an estimated IC50 value of 3 µM after 48 h of treatment. Shikonin induced apoptosis, as evidenced by apoptotic body formation, sub-G1 phase cells, and DNA fragmentation. Shikonin induced apoptotic cell death by activating mitogen-activated protein kinase family members, and the apoptotic process was mediated by the activation of endoplasmic reticulum (ER) stress, leading to activation of the PERK/elF2α/CHOP apoptotic pathway, and mitochondrial Ca2+ accumulation. Shikonin increased mitochondrial membrane depolarization and altered the levels of apoptosis-related proteins, with a decrease in B cell lymphoma (Bcl)-2 and an increase in Bcl-2-associated X protein, and subsequently, increased expression of cleaved forms of caspase-9 and -3. Taken together, we suggest that these mechanisms, including MAPK signaling and the ER-and mitochondria-mediated pathways, may underlie shikonin-induced apoptosis related to its anticancer effect.
Collapse
Affiliation(s)
- Xia Han
- Jeju National University School of Medicine, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- Jeju National University School of Medicine, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- Jeju National University School of Medicine, Jeju 63243, Republic of Korea
| | - Ao Xuan Zhen
- Jeju National University School of Medicine, Jeju 63243, Republic of Korea
| | - Yu Jae Hyun
- Jeju National University School of Medicine, Jeju 63243, Republic of Korea
| | - Hyun Min Kim
- Jeju National University School of Medicine, Jeju 63243, Republic of Korea
| | - Yea Seong Ryu
- Jeju National University School of Medicine, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Jeju National University School of Medicine, Jeju 63243, Republic of Korea
| |
Collapse
|
8
|
Jeong JY, Cha HJ, Choi EO, Kim CH, Kim GY, Yoo YH, Hwang HJ, Park HT, Yoon HM, Choi YH. Activation of the Nrf2/HO-1 signaling pathway contributes to the protective effects of baicalein against oxidative stress-induced DNA damage and apoptosis in HEI193 Schwann cells. Int J Med Sci 2019; 16:145-155. [PMID: 30662338 PMCID: PMC6332480 DOI: 10.7150/ijms.27005] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/30/2018] [Indexed: 12/15/2022] Open
Abstract
Baicalein, a flavonoid extracted from the roots of Scutellaria baicalensis Georgi., has various pharmacological effects due to its high antioxidant activity. However, no study has yet been conducted on the protective efficacy of baicalein against oxidative stress in Schwann cells. In this study, we evaluated the protective effect of baicalein on DNA damage and apoptosis induced by hydrogen peroxide (H2O2) in HEI193 Schwann cells. For this purpose, HEI193 cells exposed to H2O2 in the presence or absence of baicalein were applied to cell viability assay, immunoblotting, Nrf2-specific small interfering RNA (siRNA) transfection, comet assay, and flow cytometry analyses. Our results showed that baicalein effectively inhibited H2O2-induced cytotoxicity and DNA damage associated with the inhibition of reactive oxygen species (ROS) accumulation. Baicalein also weakened H2O2-induced mitochondrial dysfunction, increased the Bax/Bcl-2 ratio, activated caspase-9 and -3, and degraded poly(ADP-ribose) polymerase. In addition, baicalein increased not only the expression but also the phosphorylation of nuclear factor-erythroid 2 related factor 2 (Nrf2) and promoted the expression of heme oxygenase-1 (HO-1), a critical target enzyme of Nrf2, although the expression of kelch-like ECH-associated protein-1 was decreased. However, the inhibition of Nrf2 expression by transfection with Nrf2-siRNA transfection abolished the expression of HO-1 and antioxidant potential of baicalein. These results demonstrate that baicalein attenuated H2O2-induced apoptosis through the conservation of mitochondrial function while eliminating ROS in HEI193 Schwann cells, and the antioxidant efficacy of baicalein implies at least a Nrf2/HO-1 signaling pathway-dependent mechanism. Therefore, it is suggested that baicalein may have a beneficial effect on the prevention and treatment of peripheral neuropathy induced by oxidative stress.
Collapse
Affiliation(s)
- Jae Yeob Jeong
- Department of Acupuncture and Moxibution, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Eun Ok Choi
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Cheol Hong Kim
- Department of Acupuncture and Moxibution, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan 49201, Republic of Korea
| | - Hye-Jin Hwang
- Department of Food and Nutrition, College of Nursing, Healthcare Sciences & Human Ecology, Dongeui University, Busan 47340, Republic of Korea
| | - Hwan Tae Park
- Department of Physiology, Peripheral Neuropathy Research Center, College of Medicine, Dong-A University, Busan 49201, Republic of Korea
| | - Hyun Min Yoon
- Department of Acupuncture and Moxibution, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
9
|
Park C, Jeong JW, Lee DS, Yim MJ, Lee JM, Han MH, Kim S, Kim HS, Kim GY, Park EK, Jeon YJ, Cha HJ, Choi YH. Sargassum serratifolium Extract Attenuates Interleukin-1β-Induced Oxidative Stress and Inflammatory Response in Chondrocytes by Suppressing the Activation of NF-κB, p38 MAPK, and PI3K/Akt. Int J Mol Sci 2018; 19:E2308. [PMID: 30087236 PMCID: PMC6121501 DOI: 10.3390/ijms19082308] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 01/09/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that is characterized by irreversible articular cartilage destruction by inflammatory reaction. Among inflammatory stimuli, interleukin-1β (IL-1β) is known to play a crucial role in OA pathogenesis by stimulating several mediators that contribute to cartilage degradation. Recently, the marine brown alga Sargassum serratifolium has been reported to exhibit antioxidant and anti-inflammatory effects in microglial and human umbilical vein endothelial cell models using lipopolysaccharide and tumor necrosis factor-α, but its beneficial effects on OA have not been investigated. This study aimed to evaluate the anti-osteoarthritic effects of ethanol extract of S. serratifolium (EESS) in SW1353 human chondrocytes and, in parallel, primary rat articular chondrocytes. Our results showed that EESS effectively blocked the generation of reactive oxygen species in IL-1β-treated SW1353 and rat primary chondrocytes, indicating that EESS has a potent antioxidant activity. EESS also attenuated IL-1β-induced production of nitric oxide (NO) and prostaglandin E₂, major inflammatory mediators in these cells, which was associated with the inhibition of inducible NO synthase and cyclooxygenase-2 expression. Moreover, EESS downregulated the level of gene expression of matrix metalloproteinase (MMP)-1, -3 and -13 in SW1353 chondrocytes treated with IL-1β, resulting in their extracellular secretion reduction. In addition, the IL-1β-induced activation of nuclear factor-kappa B (NF-κB) was restored by EESS. Furthermore, EESS reduced the activation of p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathways upon IL-1β stimulation. These results indicate that EESS has the potential to exhibit antioxidant and anti-inflammatory effects through inactivation of the NF-κB, p38 MAPK, and PI3K/Akt signaling pathways. Collectively, these findings demonstrate that EESS may have the potential for chondroprotection, and extracts of S. serratifolium could potentially be used in the prevention and treatment of OA.
Collapse
Affiliation(s)
- Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan 47340, Korea.
| | - Jin-Woo Jeong
- Freshwater Bioresources Utilization Bureau, Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea.
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Mi-Jin Yim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Jeong Min Lee
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Min Ho Han
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea.
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea.
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu 41940, Korea.
| | - You-Jin Jeon
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea.
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49267, Korea.
| | - Yung Hyun Choi
- Anti-Aging Research Center and Blue-Bio Industry RIC, Dong-eui University, Busan 47227, Korea.
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea.
| |
Collapse
|
10
|
Oyeyipo IP, van der Linde M, du Plessis SS. Environmental Exposure of Sperm Sex-Chromosomes: A Gender Selection Technique. Toxicol Res 2015; 33:315-323. [PMID: 29071016 PMCID: PMC5654200 DOI: 10.5487/tr.2017.33.4.315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/06/2017] [Accepted: 07/17/2017] [Indexed: 11/20/2022] Open
Abstract
Preconceptual sex selection is still a highly debatable process whereby X- and Y-chromosome-bearing spermatozoa are isolated prior to fertilization of the oocyte. Although various separation techniques are available, none can guarantee 100% accuracy. The aim of this study was to separate X- and Y-chromosome-bearing spermatozoa using methods based on the viability difference between the X- and Y-chromosome-bearing spermatozoa. A total of 18 experimental semen samples were used, written consent was obtained from all donors and results were analysed in a blinded fashion. Spermatozoa were exposed to different pH values (5.5, 6.5, 7.5, 8.5, and 9.5), increased temperatures (37°C, 41°C, and 45°C) and ROS level (50 μM, 750 μM, and 1,000 μM). The live and dead cell separation was done through a modified swim-up technique. Changes in the sex-chromosome ratio of samples were established by double-label fluorescent in situ hybridization (FISH) before and after processing. The results indicated successful enrichment of Xchromosome-bearing spermatozoa upon incubation in acidic media, increased temperatures, and elevated H2O2. This study demonstrated the potential role for exploring the physiological differences between X-and Y-chromosome-bearing spermatozoa in the development of preconceptual gender selection.
Collapse
Affiliation(s)
- Ibukun P Oyeyipo
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.,Department of Physiology, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria
| | - Michelle van der Linde
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Stefan S du Plessis
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|