1
|
Jazieh C, Arabi TZ, Asim Z, Sabbah BN, Alsaud AW, Alkattan K, Yaqinuddin A. Unraveling the epigenetic fabric of type 2 diabetes mellitus: pathogenic mechanisms and therapeutic implications. Front Endocrinol (Lausanne) 2024; 15:1295967. [PMID: 38323108 PMCID: PMC10845351 DOI: 10.3389/fendo.2024.1295967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a rapidly escalating global health concern, with its prevalence projected to increase significantly in the near future. This review delves into the intricate role of epigenetic modifications - including DNA methylation, histone acetylation, and micro-ribonucleic acid (miRNA) expression - in the pathogenesis and progression of T2DM. We critically examine how these epigenetic changes contribute to the onset and exacerbation of T2DM by influencing key pathogenic processes such as obesity, insulin resistance, β-cell dysfunction, cellular senescence, and mitochondrial dysfunction. Furthermore, we explore the involvement of epigenetic dysregulation in T2DM-associated complications, including diabetic retinopathy, atherosclerosis, neuropathy, and cardiomyopathy. This review highlights recent studies that underscore the diagnostic and therapeutic potential of targeting epigenetic modifications in T2DM. We also provide an overview of the impact of lifestyle factors such as exercise and diet on the epigenetic landscape of T2DM, underscoring their relevance in disease management. Our synthesis of the current literature aims to illuminate the complex epigenetic underpinnings of T2DM, offering insights into novel preventative and therapeutic strategies that could revolutionize its management.
Collapse
|
2
|
Abstract
CONTEXT The prevalence of diabetic neuropathy is drastically increasing in the world. To halt the progression of diabetic neuropathy, there is an unmet need to have potential biomarkers for the diagnosis and new drug discovery. OBJECTIVE To study various biomarkers involved in the pathogenesis of diabetic neuropathy. METHODS The literature was searched with the help of various scientific databases and resources like PubMed, ProQuest, Scopus, and Google scholar from the year 1976 to 2020. RESULTS Biomarkers of diabetic neuropathy are categorised as inflammatory biomarkers such as MCP-1, VEGF, TRPV1, NF-κB; oxidative biomarkers such as adiponectin, NFE2L2; enzyme biomarkers like NADPH, ceruloplasmin, HO-1, DPP-4, PARP α; miscellaneous biomarkers such as SIRT1, caveolin 1, MALAT1, and microRNA. All biomarkers have a significant role in the pathogenesis of diabetic neuropathy. CONCLUSION These biomarkers have a potential role in the progression of diabetic neuropathy and can be considered as potential targets for new drug discovery.
Collapse
Affiliation(s)
- Kaveri M Adki
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
3
|
Liu W, Luo Z, Zhang L, Wang Y, Yang J, You D, Cao X, Yang W. hsa-mir-(4328, 4422, 548z and -628-5p) in diabetic retinopathy: diagnosis, prediction and linking a new therapeutic target. Acta Diabetol 2023; 60:929-942. [PMID: 37002321 DOI: 10.1007/s00592-023-02077-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
AIMS Growing evidence suggests that microRNAs (miRNAs) are crucial in controlling how diabetic retinopathy (DR) develops. We intend to mine miRNAs with diagnostic and predictive value for DR and to investigate new drug therapeutic targets. METHODS After performing a differential analysis on the miRNA and mRNA datasets for DR and neovascularization (NEO), miRNA-mRNA networks were created. Combine the results of enrichment analysis, Protein-Protein Interaction Networks (PPI), and Cytoscape to identify key miRNAs. DrugBank was used to find drugs that interacted with transcription factors (TF) predicted by TransmiR. Finally, whole blood and clinical data were collected from 58 patients with type 2 diabetes mellitus (T2DM), and RT-qPCR, logistic analysis, and ROC were used to verify the value of key miRNAs. RESULTS Differential analysis indicated the presence of genes and miRNAs that co-regulate DR and NEO. Enrichment analysis showed that key genes are inextricably linked to neovascularization. Combining the results of PPI and Cytoscape identified four key miRNAs, namely hsa-mir-(4328, 4422, 548z and -628-5p). RT-qPCR, logistic, and ROC results showed that decreased expression levels of hsa-mir-(4328, 4422, 548z and -628-5p) signal the risk of evolution to DR in T2DM patients. Finally, we constructed a TF-miRNA network to find the 15 TFs and the 35 drugs that interact with these TFs. CONCLUSION hsa-mir-(4328, 4422, 548z and -628-5p) in whole blood are protective factors for DR as novel biomarkers for diagnosis and prediction. In addition, our research provides new drug directions for the treatment of DR, such as Diosmin, Atorvastatin, and so on.
Collapse
Affiliation(s)
- Weijun Liu
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
- The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Wuhua Districte, Kunming, 650500, Yunnan, China
| | - Zhanqing Luo
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
| | - Lihuan Zhang
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yutao Wang
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jiamei Yang
- School of Rehabilitation, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
| | - Dingyun You
- Department of Epidemiology, School of Public Health, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China.
| | - Xue Cao
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China.
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China.
| |
Collapse
|
4
|
Suárez R, Chapela SP, Álvarez-Córdova L, Bautista-Valarezo E, Sarmiento-Andrade Y, Verde L, Frias-Toral E, Sarno G. Epigenetics in Obesity and Diabetes Mellitus: New Insights. Nutrients 2023; 15:nu15040811. [PMID: 36839169 PMCID: PMC9963127 DOI: 10.3390/nu15040811] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
A long-term complication of obesity is the development of type 2 diabetes (T2D). Patients with T2D have been described as having epigenetic modifications. Epigenetics is the post-transcriptional modification of DNA or associated factors containing genetic information. These environmentally-influenced modifications, maintained during cell division, cause stable changes in gene expression. Epigenetic modifications of T2D are DNA methylation, acetylation, ubiquitylation, SUMOylation, and phosphorylation at the lysine residue at the amino terminus of histones, affecting DNA, histones, and non-coding RNA. DNA methylation has been shown in pancreatic islets, adipose tissue, skeletal muscle, and the liver. Furthermore, epigenetic changes have been observed in chronic complications of T2D, such as diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy. Recently, a new drug has been developed which acts on bromodomains and extraterminal (BET) domain proteins, which operate like epigenetic readers and communicate with chromatin to make DNA accessible for transcription by inhibiting them. This drug (apabetalone) is being studied to prevent major adverse cardiovascular events in people with T2D, low HDL cholesterol, chronic kidney failure, and recent coronary events. This review aims to describe the relationship between obesity, long-term complications such as T2D, and epigenetic modifications and their possible treatments.
Collapse
Affiliation(s)
- Rosario Suárez
- School of Medicine, Universidad Técnica Particular de Loja, Calle París, San Cayetano Alto, Loja 110101, Ecuador
| | - Sebastián P. Chapela
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABE, Argentina
- Hospital Británico de Buenos Aires, Equipo de Soporte Nutricional, Buenos Aires C1280AEB, Argentina
- Correspondence: ; Tel.: +54-91168188308
| | - Ludwig Álvarez-Córdova
- School of Medicine, Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
- Carrera de Nutrición y Dietética, Facultad de Ciencias Médicas, Universidad Católica De Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
| | - Estefanía Bautista-Valarezo
- School of Medicine, Universidad Técnica Particular de Loja, Calle París, San Cayetano Alto, Loja 110101, Ecuador
| | - Yoredy Sarmiento-Andrade
- School of Medicine, Universidad Técnica Particular de Loja, Calle París, San Cayetano Alto, Loja 110101, Ecuador
| | - Ludovica Verde
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
| | - Gerardo Sarno
- “San Giovanni di Dio e Ruggi D’Aragona” University Hospital, Scuola Medica Salernitana, 84131 Salerno, Italy
| |
Collapse
|
5
|
Angelescu MA, Andronic O, Dima SO, Popescu I, Meivar-Levy I, Ferber S, Lixandru D. miRNAs as Biomarkers in Diabetes: Moving towards Precision Medicine. Int J Mol Sci 2022; 23:12843. [PMID: 36361633 PMCID: PMC9655971 DOI: 10.3390/ijms232112843] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 09/08/2023] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease with many specifically related complications. Early diagnosis of this disease could prevent the progression to overt disease and its related complications. There are several limitations to using existing biomarkers, and between 24% and 62% of people with diabetes remain undiagnosed and untreated, suggesting a large gap in current diagnostic practices. Early detection of the percentage of insulin-producing cells preceding loss of function would allow for effective therapeutic interventions that could delay or slow down the onset of diabetes. MicroRNAs (miRNAs) could be used for early diagnosis, as well as for following the progression and the severity of the disease, due to the fact of their pancreatic specific expression and stability in various body fluids. Thus, many studies have focused on the identification and validation of such groups or "signatures of miRNAs" that may prove useful in diagnosing or treating patients. Here, we summarize the findings on miRNAs as biomarkers in diabetes and those associated with direct cellular reprogramming strategies, as well as the relevance of miRNAs that act as a bidirectional switch for cell therapy of damaged pancreatic tissue and the studies that have measured and tracked miRNAs as biomarkers in insulin resistance are addressed.
Collapse
Affiliation(s)
| | - Octavian Andronic
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Irinel Popescu
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Irit Meivar-Levy
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
- Orgenesis Ltd., Ness Ziona 7414002, Israel
| | - Sarah Ferber
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
- Orgenesis Ltd., Ness Ziona 7414002, Israel
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniela Lixandru
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Biochemistry, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
6
|
Khan A, Pasquier J, Ramachandran V, Ponirakis G, Petropoulos IN, Chidiac O, Thomas B, Robay A, Jayyousi A, Al Suwaidi J, Rafii A, Menzies RA, Talal TK, Najafi-Shoushtari SH, Abi Khalil C, Malik RA. Altered Circulating microRNAs in Patients with Diabetic Neuropathy and Corneal Nerve Loss: A Pilot Study. J Clin Med 2022; 11:jcm11061632. [PMID: 35329958 PMCID: PMC8956033 DOI: 10.3390/jcm11061632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023] Open
Abstract
An alteration in circulating miRNAs may have important diagnostic and therapeutic relevance in diabetic neuropathy. Patients with type 2 diabetes mellitus (T2DM) underwent an assessment of neuropathic symptoms using Douleur Neuropathique 4 (DN4), the vibration perception threshold (VPT) using a Neurothesiometer, sudomotor function using the Sudoscan, corneal nerve morphology using corneal confocal microscopy (CCM) and circulating miRNAs using high-throughput miRNA expression profiling. Patients with T2DM, with (n = 9) and without (n = 7) significant corneal nerve loss were comparable in age, gender, diabetes duration, BMI, HbA1c, eGFR, blood pressure, and lipid profile. The VPT was significantly higher (p < 0.05), and electrochemical skin conductance (p < 0.05), corneal nerve fiber density (p = 0.001), corneal nerve branch density (p = 0.013), and corneal nerve fiber length (p < 0.001) were significantly lower in T2DM patients with corneal nerve loss compared to those without corneal nerve loss. Following a q-PCR-based analysis of total plasma microRNAs, we found that miR-92b-3p (p = 0.008) was significantly downregulated, while miR-22-3p (p = 0.0001) was significantly upregulated in T2DM patients with corneal nerve loss. A network analysis revealed that these miRNAs regulate axonal guidance and neuroinflammation genes. These data support the need for more extensive studies to better understand the role of dysregulated miRNAs’ in diabetic neuropathy.
Collapse
Affiliation(s)
- Adnan Khan
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
- Faculty of Health Sciences, Khyber Medical University, Peshawar P.O. Box 25100, Pakistan
| | - Jennifer Pasquier
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Vimal Ramachandran
- MicroRNA Core Laboratory, Research Division, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (V.R.); (S.H.N.-S.)
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Georgios Ponirakis
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
| | - Ioannis N. Petropoulos
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
| | - Omar Chidiac
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Binitha Thomas
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Amal Robay
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Amin Jayyousi
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Jassim Al Suwaidi
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Arash Rafii
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
| | - Robert A. Menzies
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Talal K. Talal
- Hamad Medical Corporation, Doha P.O. Box 24144, Qatar; (A.J.); (J.A.S.); (R.A.M.); (T.K.T.)
| | - Seyed Hani Najafi-Shoushtari
- MicroRNA Core Laboratory, Research Division, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (V.R.); (S.H.N.-S.)
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (J.P.); (O.C.); (B.T.); (A.R.); (A.R.)
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence: (C.A.K.); (R.A.M.); Tel.: +974-4492-8484 (C.A.K.); +974-4492-8256 (R.A.M.)
| | - Rayaz A. Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar; (A.K.); (G.P.); (I.N.P.)
- Correspondence: (C.A.K.); (R.A.M.); Tel.: +974-4492-8484 (C.A.K.); +974-4492-8256 (R.A.M.)
| |
Collapse
|
7
|
Kasimu A, Apizi X, Talifujiang D, Ma X, Fang L, Zhou X. miR-125a-5p in astrocytes attenuates peripheral neuropathy in type 2 diabetic mice through targeting TRAF6. ENDOCRINOL DIAB NUTR 2022; 69:43-51. [PMID: 35232559 DOI: 10.1016/j.endien.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/14/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Elimination or blocking of astrocytes could ameliorate neuropathic pain in animal models. MiR-125a-5p, expressed in astrocyte derived extracellular vesicles, could mediate astrocyte function to regulate neuron communication. However, the role of miR-125a-5p in DPN (diabetic peripheral neuropathy) remains elusive. MATERIALS AND METHODS Type 2 diabetic mouse (db/db) was used as DPN model, which was confirmed by detection of body weight, blood glucose, mechanical allodynia, thermal hyperalgesia, glial fibrillary acidic protein (GFAP) and monocyte chemoattractant protein-1 (MCP-1). Astrocyte was isolated from db/db mouse and then subjected to high glucose treatment. The expression of miR-125a-5p in db/db mice and high glucose-induced astrocytes was examined by qRT-PCR analysis. Downstream target of miR-125a-5p was clarified by luciferase reporter assay. Tail vein injection of miR-125a-5p mimic into db/db mice was then performed to investigate role of miR-125a-5p on DPN. RESULTS Type 2 diabetic mice showed higher body weight and blood glucose than normal db/m mice. Thermal hyperalgesia and mechanical allodynia were decreased in db/db mouse compared with db/m mouse, while GFAP and MCP-1 were increased in db/db mouse. High glucose treatment enhanced the protein expression of GFAP and MCP-1 in astrocytes. Sciatic nerve tissues in db/db mice and high glucose-induced astrocytes exhibited a decrease in miR-125a-5p. Systemic administration of miR-125a-5p mimic increased mechanical allodynia and thermal hyperalgesia, whereas it decreased GFAP and MCP-1. TRAF6 (tumor necrosis factor receptor associated factor 6) was validated as target of miR-125a-5p. CONCLUSION MiR-125a-5p in astrocytes attenuated DPN in db/db mice by up-regulation of TRAF6, which indicated the potential therapeutic effect.
Collapse
Affiliation(s)
- Aziguli Kasimu
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Uygur Autonomous Region 830001, China
| | - Xierenguli Apizi
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Uygur Autonomous Region 830001, China
| | - Dilibaier Talifujiang
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Uygur Autonomous Region 830001, China
| | - Xin Ma
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Uygur Autonomous Region 830001, China
| | - Liping Fang
- Department of Endocrinology, Honghu People's Hospital, Jingzhou City, Hubei Province 433200, China
| | - Xiangling Zhou
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan City, Hubei Province 430081, China.
| |
Collapse
|
8
|
Genetic and Epigenomic Modifiers of Diabetic Neuropathy. Int J Mol Sci 2021; 22:ijms22094887. [PMID: 34063061 PMCID: PMC8124699 DOI: 10.3390/ijms22094887] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetic neuropathy (DN), the most common chronic and progressive complication of diabetes mellitus (DM), strongly affects patients’ quality of life. DN could be present as peripheral, autonomous or, clinically also relevant, uremic neuropathy. The etiopathogenesis of DN is multifactorial, and genetic components play a role both in its occurrence and clinical course. A number of gene polymorphisms in candidate genes have been assessed as susceptibility factors for DN, and most of them are linked to mechanisms such as reactive oxygen species production, neurovascular impairments and modified protein glycosylation, as well as immunomodulation and inflammation. Different epigenomic mechanisms such as DNA methylation, histone modifications and non-coding RNA action have been studied in DN, which also underline the importance of “metabolic memory” in DN appearance and progression. In this review, we summarize most of the relevant data in the field of genetics and epigenomics of DN, hoping they will become significant for diagnosis, therapy and prevention of DN.
Collapse
|
9
|
Kasimu A, Apizi X, Talifujiang D, Ma X, Fang L, Zhou X. miR-125a-5p in astrocytes attenuates peripheral neuropathy in type 2 diabetic mice through targeting TRAF6. ENDOCRINOL DIAB NUTR 2021; 69:S2530-0164(21)00104-X. [PMID: 33958320 DOI: 10.1016/j.endinu.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Elimination or blocking of astrocytes could ameliorate neuropathic pain in animal models. MiR-125a-5p, expressed in astrocyte derived extracellular vesicles, could mediate astrocyte function to regulate neuron communication. However, the role of miR-125a-5p in DPN (diabetic peripheral neuropathy) remains elusive. MATERIALS AND METHODS Type 2 diabetic mouse (db/db) was used as DPN model, which was confirmed by detection of body weight, blood glucose, mechanical allodynia, thermal hyperalgesia, glial fibrillary acidic protein (GFAP) and monocyte chemoattractant protein-1 (MCP-1). Astrocyte was isolated from db/db mouse and then subjected to high glucose treatment. The expression of miR-125a-5p in db/db mice and high glucose-induced astrocytes was examined by qRT-PCR analysis. Downstream target of miR-125a-5p was clarified by luciferase reporter assay. Tail vein injection of miR-125a-5p mimic into db/db mice was then performed to investigate role of miR-125a-5p on DPN. RESULTS Type 2 diabetic mice showed higher body weight and blood glucose than normal db/m mice. Thermal hyperalgesia and mechanical allodynia were decreased in db/db mouse compared with db/m mouse, while GFAP and MCP-1 were increased in db/db mouse. High glucose treatment enhanced the protein expression of GFAP and MCP-1 in astrocytes. Sciatic nerve tissues in db/db mice and high glucose-induced astrocytes exhibited a decrease in miR-125a-5p. Systemic administration of miR-125a-5p mimic increased mechanical allodynia and thermal hyperalgesia, whereas it decreased GFAP and MCP-1. TRAF6 (tumor necrosis factor receptor associated factor 6) was validated as target of miR-125a-5p. CONCLUSION MiR-125a-5p in astrocytes attenuated DPN in db/db mice by up-regulation of TRAF6, which indicated the potential therapeutic effect.
Collapse
Affiliation(s)
- Aziguli Kasimu
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Uygur Autonomous Region 830001, China
| | - Xierenguli Apizi
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Uygur Autonomous Region 830001, China
| | - Dilibaier Talifujiang
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Uygur Autonomous Region 830001, China
| | - Xin Ma
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Uygur Autonomous Region 830001, China
| | - Liping Fang
- Department of Endocrinology, Honghu People's Hospital, Jingzhou City, Hubei Province 433200, China
| | - Xiangling Zhou
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan City, Hubei Province 430081, China.
| |
Collapse
|
10
|
La Sala L, Crestani M, Garavelli S, de Candia P, Pontiroli AE. Does microRNA Perturbation Control the Mechanisms Linking Obesity and Diabetes? Implications for Cardiovascular Risk. Int J Mol Sci 2020; 22:ijms22010143. [PMID: 33375647 PMCID: PMC7795227 DOI: 10.3390/ijms22010143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic disorders such as obesity and type 2 diabetes (T2D) are considered the major risk factors for the development of cardiovascular diseases (CVD). Although the pathological mechanisms underlying the mutual development of obesity and T2D are difficult to define, a better understanding of the molecular aspects is of utmost importance to identify novel therapeutic targets. Recently, a class of non-coding RNAs, called microRNAs (miRNAs), are emerging as key modulators of metabolic abnormalities. There is increasing evidence supporting the role of intra- and extracellular miRNAs as determinants of the crosstalk between adipose tissues, liver, skeletal muscle and other organs, triggering the paracrine communication among different tissues. miRNAs may be considered as risk factors for CVD due to their correlation with cardiovascular events, and in particular, may be related to the most prominent risk factors. In this review, we describe the associations observed between miRNAs expression levels and the most common cardiovascular risk factors. Furthermore, we sought to depict the molecular aspect of the interplay between obesity and diabetes, investigating the role of microRNAs in the interorgan crosstalk. Finally, we discussed the fascinating hypothesis of the loss of protective factors, such as antioxidant defense systems regulated by such miRNAs.
Collapse
Affiliation(s)
- Lucia La Sala
- Laboratory of Cardiovascular and Dysmetabolic Disease, IRCCS MultiMedica, 20138 Milan, Italy;
- Correspondence:
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Silvia Garavelli
- Laboratorio di Immunologia, Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy;
| | - Paola de Candia
- Laboratory of Cardiovascular and Dysmetabolic Disease, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Antonio E. Pontiroli
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy;
| |
Collapse
|
11
|
Fan B, Chopp M, Zhang ZG, Liu XS. Emerging Roles of microRNAs as Biomarkers and Therapeutic Targets for Diabetic Neuropathy. Front Neurol 2020; 11:558758. [PMID: 33192992 PMCID: PMC7642849 DOI: 10.3389/fneur.2020.558758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic neuropathy (DN) is the most prevalent chronic complication of diabetes mellitus. The exact pathophysiological mechanisms of DN are unclear; however, communication network dysfunction among axons, Schwann cells, and the microvascular endothelium likely play an important role in the development of DN. Mounting evidence suggests that microRNAs (miRNAs) act as messengers that facilitate intercellular communication and may contribute to the pathogenesis of DN. Deregulation of miRNAs is among the initial molecular alterations observed in diabetics. As such, miRNAs hold promise as biomarkers and therapeutic targets. In preclinical studies, miRNA-based treatment of DN has shown evidence of therapeutic potential. But this therapy has been hampered by miRNA instability, targeting specificity, and potential toxicities. Recent findings reveal that when packaged within extracellular vesicles, miRNAs are resistant to degradation, and their delivery efficiency and therapeutic potential is markedly enhanced. Here, we review the latest research progress on the roles of miRNAs as biomarkers and as potential clinical therapeutic targets in DN. We also discuss the promise of exosomal miRNAs as therapeutics and provide recommendations for future research on miRNA-based medicine.
Collapse
Affiliation(s)
- Baoyan Fan
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
12
|
Li XF, Zhang SH, Liu GF, Yu SN. miR-363 Alleviates Detrusor Fibrosis via the TGF-β1/Smad Signaling Pathway by Targeting Col1a2 in Rat Models of STZ-Induced T2DM. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1142-1153. [PMID: 33294298 PMCID: PMC7695978 DOI: 10.1016/j.omtn.2020.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/06/2020] [Indexed: 01/13/2023]
Abstract
Dysregulated expression of microRNAs (miRNAs or miRs) has been implicated in the pathophysiology of type 2 diabetes mellitus (T2DM). However, their underlying role in the complication of detrusor fibrosis remains poorly understood. Therefore, this study aimed to examine the potential functional relevance of miR-363 in detrusor fibrosis of rats with streptozotocin (STZ)-induced T2DM through the predicted target gene collagen type I alpha 2 (Col1a2). Immunohistochemical analysis found an increase in the positive expression of collagen type III alpha 1 (Col3a1) and Col1a2 in detrusor tissues, where miR-363 expression was decreased. Next, gain- and loss-of-function experiments were performed to clarify the effects of miR-363 and Col1a2 on the activities of bladder detrusor cells. Of note, binding affinity between miR-363 and Col1a2 was verified by a dual-luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay. Upregulated miR-363 inhibited Col1a2 expression, which led to increased expression of B-cell lymphoma 2 (Bcl-2) and Smad7 and accelerated cell viability, along with decreases in cell apoptosis and Col3a1, Bcl-2-associated X protein (Bax), transforming growth factor (TGF)-β1, and Smad4 expressions. In conclusion, miR-363 upregulation reduces detrusor fibrosis in rats with STZ-induced T2DM through suppression of the TGF-β1/Smad signaling pathway by targeting Col1a2. Therefore, our study provided further insights for the development of new therapeutic targets for T2DM.
Collapse
Affiliation(s)
- Xue-Feng Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Shu-Hua Zhang
- Operation Room, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Gui-Feng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Shao-Nan Yu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| |
Collapse
|
13
|
Ciccacci C, Latini A, Colantuono A, Politi C, D'Amato C, Greco C, Rinaldi ME, Lauro D, Novelli G, Spallone V, Borgiani P. Expression study of candidate miRNAs and evaluation of their potential use as biomarkers of diabetic neuropathy. Epigenomics 2020; 12:575-585. [PMID: 32400192 DOI: 10.2217/epi-2019-0242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To evaluate the expression of candidate miRNAs in relation to diabetic polyneuropathy (DPN) and cardiovascular autonomic neuropathy (CAN). Materials & methods: The expression of six candidate miRNAs has been evaluated in 49 Type 2 diabetes patients with neurological evaluation. Results: A higher expression of miR-128a was seen in patients with DPN compared with those without DPN (p = 0.015). miR-155 and miR-499a seemed to be down-expressed in patients with DPN (p = 0.04 and p = 0.05, respectively). A lower expression of miR-155 (p = 0.05) was observed even in patients with CAN with respect to CAN-negative. A higher expression of miR-155 was associated with the rs767649 polymorphism variant allele compared with the wild-type allele (p = 0.03). Conclusion: miR-128a, miR-155 and miR-499a might be involved in diabetic neuropathies development.
Collapse
Affiliation(s)
- Cinzia Ciccacci
- UniCamillus - Saint Camillus International University of Health Sciences, Rome, Italy.,Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Latini
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Antonella Colantuono
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Cristina Politi
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia D'Amato
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - Carla Greco
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - Maria Elena Rinaldi
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy.,IRCCS NEUROMED, Pozzilli, IS, Italy
| | - Vincenza Spallone
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
14
|
Wang L, Chopp M, Szalad A, Lu X, Zhang Y, Wang X, Cepparulo P, Lu M, Li C, Zhang ZG. Exosomes Derived From Schwann Cells Ameliorate Peripheral Neuropathy in Type 2 Diabetic Mice. Diabetes 2020; 69:749-759. [PMID: 31915154 PMCID: PMC7085247 DOI: 10.2337/db19-0432] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/31/2019] [Indexed: 12/23/2022]
Abstract
Schwann cell-derived exosomes communicate with dorsal root ganglia (DRG) neurons. The current study investigated the therapeutic effect of exosomes derived from healthy Schwann cells (SC-Exos) on diabetic peripheral neuropathy (DPN). We found that intravenous administration of SC-Exos to type 2 diabetic db/db mice with peripheral neuropathy remarkably ameliorated DPN by improving sciatic nerve conduction velocity and increasing thermal and mechanical sensitivity. These functional improvements were associated with the augmentation of epidermal nerve fibers and remyelination of sciatic nerves. Quantitative RT-PCR and Western blot analysis of sciatic nerve tissues showed that SC-Exo treatment reversed diabetes-reduced mature form of miRNA (miR)-21, -27a, and -146a and diabetes-increased semaphorin 6A (SEMA6A); Ras homolog gene family, member A (RhoA); phosphatase and tensin homolog (PTEN); and nuclear factor-κB (NF-κB). In vitro data showed that SC-Exos promoted neurite outgrowth of diabetic DRG neurons and migration of Schwann cells challenged by high glucose. Collectively, these novel data provide evidence that SC-Exos have a therapeutic effect on DPN in mice and suggest that SC-Exo modulation of miRs contributes to this therapy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI
- Department of Physics, Oakland University, Rochester, MI
| | | | - XueRong Lu
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Xinli Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | | | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, MI
| | - Chao Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | | |
Collapse
|
15
|
Abstract
Advances in molecular genetics have identified several species of RNA that fail to translate - hence the non-coding RNAs. The two major groups within this class of nucleic acids are microRNAs (miRNA) and long non-coding RNAs (lncRNA). There is growing body of evidence supporting the view that these molecules have regulatory effect on both DNA and RNA. The objective of this brief review is to explain the molecular genetic of these molecules, to summarize their potential as mediators of disease, and to highlight their value as diagnostic markers and as tools in disease management.
Collapse
Affiliation(s)
- P Waller
- Department of Biomedical Sciences, University of Kingston, London, UK
| | - A D Blann
- Institute of Biomedical Science, London, UK
| |
Collapse
|
16
|
Expression Profile of the Chromosome 14 MicroRNA Cluster (C14MC) Ortholog in Equine Maternal Circulation throughout Pregnancy and Its Potential Implications. Int J Mol Sci 2019; 20:ijms20246285. [PMID: 31847075 PMCID: PMC6941126 DOI: 10.3390/ijms20246285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023] Open
Abstract
Equine chromosome 24 microRNA cluster (C24MC), the ortholog of human C14MC, is a pregnancy-related miRNA cluster. This cluster is believed to be implicated in embryonic, fetal, and placental development. The current study aimed to characterize the expression profile of this cluster in maternal circulation throughout equine gestation. The expression profile of miRNAs belonging to this cluster was analyzed in the serum of non-pregnant (diestrus), pregnant (25 d, 45 d, 4 mo, 6 mo, 10 mo), and postpartum mares. Among the miRNAs examined, 11 miRNAs were differentially expressed across the analyzed time-points. Four of these miRNAs (eca-miR-1247-3p, eca-miR-134-5p, eca-miR-382-5p, and eca-miR-433-3p) were found to be enriched in the serum of pregnant mares at Day 25 relative to non-pregnant mares. To further assess the accuracy of these miRNAs in differentiating pregnant (25 d) from non-pregnant mares, receiver operating characteristic (ROC) analysis was performed for each of these miRNAs, revealing that eca-miR-1247-3p and eca-miR-134-5p had the highest accuracy (AUCROC = 0.92 and 0.91, respectively; p < 0.05). Moreover, eca-miR-1247-3p, eca-miR-134-5p, eca-miR-409-3p, and eca-miR-379-5p were enriched in the serum of Day 45 pregnant mares. Among those miRNAs, eca-miR-1247-3p and eca-miR-409-3p retained the highest accuracy as shown by ROC analysis. GO analysis revealed that these miRNAs are mainly implicated in nervous system development as well as organ development. Using in situ hybridization, we localized eca-miR-409-3p in the developing embryo (25 d) and extra-embryonic membranes (25 and 45 d). In conclusion, the present study is the first to elucidate the circulating maternal profile of C24MC-associated miRNAs throughout pregnancy and to suggest that serum eca-miR-1247-3p, eca-miR-134-5p, and eca-miR-409-3p could be used as pregnancy-specific markers during early gestation (25 and 45 d). Overall, the high abundance of these embryo-derived miRNAs in the maternal circulation suggests an embryo-maternal communication during the equine early pregnancy.
Collapse
|