1
|
Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022; 239:663-693. [PMID: 35072761 PMCID: PMC8785013 DOI: 10.1007/s00213-021-05982-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.
Collapse
|
2
|
Morozova A, Zubkov E, Strekalova T, Kekelidze Z, Storozeva Z, Schroeter CA, Bazhenova N, Lesch KP, Cline BH, Chekhonin V. Ultrasound of alternating frequencies and variable emotional impact evokes depressive syndrome in mice and rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 68:52-63. [PMID: 27036099 DOI: 10.1016/j.pnpbp.2016.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 01/06/2023]
Abstract
Emotional stress is primarily triggered by the cognitive processing of negative input; it is regarded as a serious pathogenetic factor of depression that is challenging to model in animals. While available stress paradigms achieve considerable face and construct validity in modelling depressive disorders, broader use of naturalistic stressors instead of the more prevalent models with artificial challenges inducing physical discomfort or pain may substantially contribute to the development of novel antidepressants. Here, we investigated whether a 3-week exposure of Wistar rats and Balb/c mice to unpredictably alternating frequencies of ultrasound between the ranges of 20-25 and 25-45kHz, which are known to correspond with an emotionally negative and with a neutral emotional state, respectively, for small rodents in nature, can induce behavioural and molecular depressive-like changes. Both rats and mice displayed decreased sucrose preference, elevated "despair" behaviour in a swim test, reduced locomotion and social exploration. Rats showed an increased expression of SERT and 5-HT2A receptor, a decreased expression of 5-HT1A receptor in the prefrontal cortex and hippocampus, diminished BDNF on gene and protein levels in the hippocampus. Fluoxetine, administered to rats at the dose of 10mg/kg, largely precluded behavioural depressive-like changes. Thus, the here applied paradigm of emotional stress is generating an experimental depressive state in rodents, which is not related to any physical stressors or pain. In essence, this ultrasound stress model, besides enhancing animal welfare, is likely to provide improved validity in the modelling of clinical depression and may help advance translational research and drug discovery for this disorder.
Collapse
Affiliation(s)
- Anna Morozova
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Eugene Zubkov
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Zurab Kekelidze
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Zinaida Storozeva
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | | | - Nataliia Bazhenova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Brandon H Cline
- INSERM U1119, FMTS, Université de Strasbourg, Faculté de Médecine, Strasbourg, France.
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia.
| |
Collapse
|
3
|
Macaques exhibit a naturally-occurring depression similar to humans. Sci Rep 2015; 5:9220. [PMID: 25783476 PMCID: PMC4363840 DOI: 10.1038/srep09220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/19/2015] [Indexed: 11/23/2022] Open
Abstract
Rodent models have dominated preclinical investigations into the mechanisms of depression. However, these models-which rely on subjecting individual rodents to physical stressors - do not realistically resemble the etiopathological development of depression, which occurs naturally in a social context. A non-human primate model that better reflects the social ethological aspects of depression would be more advantageous to investigating pathophysiological mechanisms and developing antidepressant therapeutics. Here, we describe and model a naturally-occurring depressive state in a non-human primate species, the cynomolgus monkey (Macaca fascicularis), in a realistic social ethological context and associate the depressed behavioral phenotype with significant serum metabolic perturbations. One to two subjects per stable social colony (17–22 subjects) manifested a depressive phenotype that may be attributed to psychosocial stress. In accordance with rodent and human studies, the serum metabolic phenotype of depressed and healthy subjects significantly differed, supporting the model's face validity. However, application of the fast-acting antidepressant ketamine failed to demonstrate predictive validity. This study proposes a non-human primate depression model in a realistic social ethological context that can better approximate the psychosocial stressors underlying depression.
Collapse
|
5
|
Schmuckermair C, Gaburro S, Sah A, Landgraf R, Sartori SB, Singewald N. Behavioral and neurobiological effects of deep brain stimulation in a mouse model of high anxiety- and depression-like behavior. Neuropsychopharmacology 2013; 38:1234-44. [PMID: 23325324 PMCID: PMC3656366 DOI: 10.1038/npp.2013.21] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increasing evidence suggests that high-frequency deep brain stimulation of the nucleus accumbens (NAcb-DBS) may represent a novel therapeutic strategy for individuals suffering from treatment-resistant depression, although the underlying mechanisms of action remain largely unknown. In this study, using a unique mouse model of enhanced depression- and anxiety-like behavior (HAB), we investigated behavioral and neurobiological effects of NAcb-DBS. HAB mice either underwent chronic treatment with one of three different selective serotonin reuptake inhibitors (SSRIs) or received NAcb-DBS for 1 h per day for 7 consecutive days. Animals were tested in established paradigms revealing depression- and anxiety-related behaviors. The enhanced depression-like behavior of HAB mice was not influenced by chronic SSRI treatment. In contrast, repeated, but not single, NAcb-DBS induced robust antidepressant and anxiolytic responses in HAB animals, while these behaviors remained unaffected in normal depression/anxiety animals (NAB), suggesting a preferential effect of NAcb-DBS on pathophysiologically deranged systems. NAcb-DBS caused a modulation of challenge-induced activity in various stress- and depression-related brain regions, including an increase in c-Fos expression in the dentate gyrus of the hippocampus and enhanced hippocampal neurogenesis in HABs. Taken together, these findings show that the normalization of the pathophysiologically enhanced, SSRI-insensitive depression-like behavior by repeated NAcb-DBS was associated with the reversal of reported aberrant brain activity and impaired adult neurogenesis in HAB mice, indicating that NAcb-DBS affects neuronal activity as well as plasticity in a defined, mood-associated network. Thus, HAB mice may represent a clinically relevant model for elucidating the neurobiological correlates of NAcb-DBS.
Collapse
Affiliation(s)
- Claudia Schmuckermair
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens-University of Innsbruck, Innsbruck, Austria
| | - Stefano Gaburro
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens-University of Innsbruck, Innsbruck, Austria
| | - Anupam Sah
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens-University of Innsbruck, Innsbruck, Austria
| | | | - Simone B Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens-University of Innsbruck, Innsbruck, Austria,Department of Pharmacology and Toxicology, Institute of Pharmacy and Centre for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens-University of Innsbruck, Innrain 80-82, Innsbruck 6020, Austria, Tel: +43 512 507 58803, Fax: +43 512 507 58889, E-mail: or
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens-University of Innsbruck, Innsbruck, Austria,Department of Pharmacology and Toxicology, Institute of Pharmacy and Centre for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens-University of Innsbruck, Innrain 80-82, Innsbruck 6020, Austria, Tel: +43 512 507 58803, Fax: +43 512 507 58889, E-mail: or
| |
Collapse
|
6
|
The differential effects of chronic imipramine or citalopram administration on physiological and behavioral outcomes in naïve mice. Behav Brain Res 2013; 245:101-6. [DOI: 10.1016/j.bbr.2013.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 11/21/2022]
|
7
|
Hendrie C, Pickles A, Stanford SC, Robinson E. The failure of the antidepressant drug discovery process is systemic. J Psychopharmacol 2013; 27:407-13; discussion 413-6. [PMID: 23222042 DOI: 10.1177/0269881112466185] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current antidepressants are crude compared with the ideal and patents on most have expired. There are therefore strong clinical and commercial pressures for new drugs to replace them. The prospects for this are, however, now markedly reduced as several major pharmaceutical companies have abandoned work in this area whilst many others have sharply decreased their research investment. These changes and the lack of progress over such a long period are indicative of a catastrophic systems failure which, it is argued, has been caused in large part by a logical flaw at the animal modelling stage. This tautology has served to lock the current antidepressant drug discovery process into an iterative loop capable only of producing further variations of that which has gone before. Drugs produced by this approach have proved to be only poorly effective in the context of the clinically depressed population as a whole. Hence, the inevitable failure of the current antidepressant drug discovery process has left little behind that can be salvaged. Therefore, it is suggested that this be urgently reformulated on more rational grounds using more appropriate species in new animal models based upon a thorough understanding of the behavioural expressions of depression in the clinic.
Collapse
Affiliation(s)
- Colin Hendrie
- Institute of Psychological Sciences, University of Leeds, Leeds, UK.
| | | | | | | |
Collapse
|