1
|
Nasyrova RF, Shnayder NA, Osipova SM, Khasanova AK, Efremov IS, Al-Zamil M, Petrova MM, Narodova EA, Garganeeva NP, Shipulin GA. Genetic Predictors of Antipsychotic Efflux Impairment via Blood-Brain Barrier: Role of Transport Proteins. Genes (Basel) 2023; 14:genes14051085. [PMID: 37239445 DOI: 10.3390/genes14051085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Antipsychotic (AP)-induced adverse drug reactions (ADRs) are a current problem of biological and clinical psychiatry. Despite the development of new generations of APs, the problem of AP-induced ADRs has not been solved and continues to be actively studied. One of the important mechanisms for the development of AP-induced ADRs is a genetically-determined impairment of AP efflux across the blood-brain barrier (BBB). We present a narrative review of publications in databases (PubMed, Springer, Scopus, Web of Science E-Library) and online resources: The Human Protein Atlas; GeneCards: The Human Gene Database; US National Library of Medicine; SNPedia; OMIM Online Mendelian Inheritance in Man; The PharmGKB. The role of 15 transport proteins involved in the efflux of drugs and other xenobiotics across cell membranes (P-gp, TAP1, TAP2, MDR3, BSEP, MRP1, MRP2, MRP3, MRP4, MRP5, MRP6, MRP7, MRP8, MRP9, BCRP) was analyzed. The important role of three transporter proteins (P-gp, BCRP, MRP1) in the efflux of APs through the BBB was shown, as well as the association of the functional activity and expression of these transport proteins with low-functional and non-functional single nucleotide variants (SNVs)/polymorphisms of the ABCB1, ABCG2, ABCC1 genes, encoding these transport proteins, respectively, in patients with schizophrenia spectrum disorders (SSDs). The authors propose a new pharmacogenetic panel "Transporter protein (PT)-Antipsychotic (AP) Pharmacogenetic test (PGx)" (PTAP-PGx), which allows the evaluation of the cumulative contribution of the studied genetic biomarkers of the impairment of AP efflux through the BBB. The authors also propose a riskometer for PTAP-PGx and a decision-making algorithm for psychiatrists. Conclusions: Understanding the role of the transportation of impaired APs across the BBB and the use of genetic biomarkers for its disruption may make it possible to reduce the frequency and severity of AP-induced ADRs, since this risk can be partially modified by the personalized selection of APs and their dosing rates, taking into account the genetic predisposition of the patient with SSD.
Collapse
Affiliation(s)
- Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, Saint-Petersburg 192019, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, Samara 443016, Russia
| | - Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, Saint-Petersburg 192019, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Sofia M Osipova
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, Saint-Petersburg 192019, Russia
| | - Aiperi K Khasanova
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, Moscow 125993, Russia
| | - Ilya S Efremov
- Department of Psychiatry and Addiction, Bashkir State Medical University, Ufa 450008, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, Moscow 117198, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Natalia P Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, Tomsk 634050, Russia
| | - German A Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks Management, Moscow 119121, Russia
| |
Collapse
|
2
|
Daei M, Khalili H, Heidari Z. Direct oral anticoagulant safety during breastfeeding: a narrative review. Eur J Clin Pharmacol 2021; 77:1465-1471. [PMID: 33963877 DOI: 10.1007/s00228-021-03154-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/02/2021] [Indexed: 01/13/2023]
Abstract
PURPOSE There are limited data regarding the safety of direct oral anticoagulants (DOACs) during breastfeeding. The aim of the present study is to investigate the extent of excretion of DOACs into human milk according to the available clinical and experimental studies. METHODS On 16th January 2021, we systematically searched PubMed, Scopus, Embase, and Web of Science for all studies which investigated DOACs in breastfeeding without any time frame and language limitation. Search keywords were [breastfeeding, breast feeding, breastfed, lactation, milk secretion OR milk] AND [apixaban OR Eliquist OR rivaroxaban OR Xarelto OR edoxaban OR Savaysa OR dabigatran OR Pradaxa OR dabigatran etexilate OR dabigatran etexilate mesylate OR direct oral anticoagulant OR DOAC OR new oral anticoagulant OR NOAC]. Finally, we identified six articles which reported DOAC use during breastfeeding or lactation. RESULTS AND CONCLUSION According to the available limited data, dabigatran has the least excretion in human breast milk. Rivaroxaban and dabigatran both have acceptable milk excretion cutoffs, whereas apixaban milk excretion is greater than the maximum allowed range. Further well-designed studies with larger sample sizes are required to generate consistent comparable data and clarify benefits and risks of each DOAC during breastfeeding.
Collapse
Affiliation(s)
- Maryam Daei
- Faculty of Pharmacy, Alborz University of Medical Sciences, Alborz, Iran
| | - Hossein Khalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zinat Heidari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Nauwelaerts N, Deferm N, Smits A, Bernardini C, Lammens B, Gandia P, Panchaud A, Nordeng H, Bacci ML, Forni M, Ventrella D, Van Calsteren K, DeLise A, Huys I, Bouisset-Leonard M, Allegaert K, Annaert P. A comprehensive review on non-clinical methods to study transfer of medication into breast milk - A contribution from the ConcePTION project. Biomed Pharmacother 2021; 136:111038. [PMID: 33526310 DOI: 10.1016/j.biopha.2020.111038] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022] Open
Abstract
Breastfeeding plays a major role in the health and wellbeing of mother and infant. However, information on the safety of maternal medication during breastfeeding is lacking for most medications. This leads to discontinuation of either breastfeeding or maternal therapy, although many medications are likely to be safe. Since human lactation studies are costly and challenging, validated non-clinical methods would offer an attractive alternative. This review gives an extensive overview of the non-clinical methods (in vitro, in vivo and in silico) to study the transfer of maternal medication into the human breast milk, and subsequent neonatal systemic exposure. Several in vitro models are available, but model characterization, including quantitative medication transport data across the in vitro blood-milk barrier, remains rather limited. Furthermore, animal in vivo models have been used successfully in the past. However, these models don't always mimic human physiology due to species-specific differences. Several efforts have been made to predict medication transfer into the milk based on physicochemical characteristics. However, the role of transporter proteins and several physiological factors (e.g., variable milk lipid content) are not accounted for by these methods. Physiologically-based pharmacokinetic (PBPK) modelling offers a mechanism-oriented strategy with bio-relevance. Recently, lactation PBPK models have been reported for some medications, showing at least the feasibility and value of PBPK modelling to predict transfer of medication into the human milk. However, reliable data as input for PBPK models is often missing. The iterative development of in vitro, animal in vivo and PBPK modelling methods seems to be a promising approach. Human in vitro models will deliver essential data on the transepithelial transport of medication, whereas the combination of animal in vitro and in vivo methods will deliver information to establish accurate in vitro/in vivo extrapolation (IVIVE) algorithms and mechanistic insights. Such a non-clinical platform will be developed and thoroughly evaluated by the Innovative Medicines Initiative ConcePTION.
Collapse
Affiliation(s)
- Nina Nauwelaerts
- KU Leuven Drug Delivery and Disposition Lab, Department of Pharmaceutical and Pharmacological Sciences, O&N II Herestraat, 49 3000, Leuven, Belgium.
| | - Neel Deferm
- KU Leuven Drug Delivery and Disposition Lab, Department of Pharmaceutical and Pharmacological Sciences, O&N II Herestraat, 49 3000, Leuven, Belgium.
| | - Anne Smits
- Neonatal Intensive Care Unit, University Hospitals Leuven, UZ Leuven, Neonatology, Herestraat 49, 3000, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Belgium.
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy.
| | | | - Peggy Gandia
- Laboratoire de Pharmacocinétique et Toxicologie, Centre Hospitalier Universitaire de Toulouse, France.
| | - Alice Panchaud
- Service of Pharmacy Service, Lausanne University Hospital and University of Lausanne, Switzerland; Institute of Primary Health Care (BIHAM), University of Bern, Switzerland
| | - Hedvig Nordeng
- PharmacoEpidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, PB. 1068 Blindern, 0316, Oslo, Norway.
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy.
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy.
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy.
| | | | - Anthony DeLise
- Novartis Pharmaceuticals Corporation, Novartis Institutes for BioMedical Research, One Health Plaza, East Hanover, NJ, 07936, USA.
| | - Isabelle Huys
- KU Leuven, Department of Clinical Pharmacology and Pharmacotherapy, ON II Herestraat 49 - bus, 521 3000, Leuven, Belgium.
| | - Michele Bouisset-Leonard
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, Werk Klybeck Postfach, Basel, CH-4002, Switzerland.
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Belgium; KU Leuven, Department of Clinical Pharmacology and Pharmacotherapy, ON II Herestraat 49 - bus, 521 3000, Leuven, Belgium; Department of Clinical Pharmacy, Erasmus MC, Rotterdam, the Netherlands.
| | - Pieter Annaert
- KU Leuven Drug Delivery and Disposition Lab, Department of Pharmaceutical and Pharmacological Sciences, O&N II Herestraat, 49 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Nicklisch SC, Hamdoun A. Disruption of small molecule transporter systems by Transporter-Interfering Chemicals (TICs). FEBS Lett 2020; 594:4158-4185. [PMID: 33222203 PMCID: PMC8112642 DOI: 10.1002/1873-3468.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.
Collapse
Affiliation(s)
- Sascha C.T. Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202
| |
Collapse
|