1
|
Saleh MM, El-Moselhy T, El-Bastawissy E, Ibrahim MAA, Sayed SRM, Hegazy MEF, Efferth T, Jaragh-Alhadad LA, Sidhom PA. The mystery of titan hunter: Rationalized striking of the MAPK pathway via Newly synthesized 6-Indolylpyridone-3-Carbonitrile derivatives. Eur J Med Chem 2023; 259:115675. [PMID: 37506545 DOI: 10.1016/j.ejmech.2023.115675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
MAPK pathway sparkles with RTK activation, passes through subsequent downstream RAS-RAF-MEK-ERK signaling cascades, with consequent direct and indirect CDK4/6 signaling activation, and ends with cell survival, division, and proliferation. However, the emergence of anomalies such as mutations or overexpression in one or more points of the pathway could lead to cancer development and drug resistance. Therefore, designing small inhibitors to strike multitudinous MAPK pathway steps could be a promising synergistic strategy to confine cancer. In this study, twelve 6-indolylpyridone-3-carbonitrile candidates were synthesized and assessed in vitro for antineoplastic activity using four cancer cell lines. The initial antiproliferative screening revealed that compounds 3g, 3h, and 3i were the most potent candidates (GI% Avg = 70.10, 73.94, 74.33%, respectively) compared to staurosporine (GI% Avg = 70.99%). The subsequent safety and selectivity assessment showed that 3h exhibited sub-micromolar inhibition against lung cancer cells (HOP-92 GI50 = 0.75 μM) and 13.7 times selectivity toward cancerous cells over normal cells. As a result, 3h was nominated for deep mechanistic studies which evidenced that compound 3h impressively blocks multiple keystones of the MAPK pathway with nanomolar potency (EGFRWT IC50 = 281 nM, c-MET IC50 = 205 nM, B-RAFWT IC50 = 112 nM, and CDK4/6 IC50 = 95 and 184 nM, respectively). Surprisingly, 3h showed a remarkable potency against mutated EGFR and B-RAF, being 4 and 1.3 more selective to the mutated enzymes over the wild-type forms (EGFRT790M IC50 = 69 nM and B-RAFV600E IC50 = 83 nM). Ultimately, combined molecular docking and molecular dynamics (MD) calculations were executed to inspect the mode of binding and the complex stability of 3h towards the keystones of the MAPK pathway.
Collapse
Affiliation(s)
- Mohamed M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt.
| | - Tarek El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt
| | - Eman El-Bastawissy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, National Research Center, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | | | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt.
| |
Collapse
|
2
|
El-Adl K, Ibrahim MK, Khedr F, Abulkhair HS, Eissa IH. N-Substituted-4-phenylphthalazin-1-amine-derived VEGFR-2 inhibitors: Design, synthesis, molecular docking, and anticancer evaluation studies. Arch Pharm (Weinheim) 2020; 354:e2000219. [PMID: 33197080 DOI: 10.1002/ardp.202000219] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/04/2020] [Accepted: 10/24/2020] [Indexed: 12/25/2022]
Abstract
In accordance with the significant impetus of the discovery of potent vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitors, herein, we report the design, synthesis, and anticancer evaluation of 12 new N-substituted-4-phenylphthalazin-1-amine derivatives against HepG2, HCT-116, and MCF-7 cells as VEGFR-2 inhibitors. The results of the cytotoxicity investigation indicated that HCT-116 and MCF-7 were the most sensitive cell lines to the influence of the newly synthesized derivatives. In particular, compound 7a was found to be the most potent derivative among all the tested compounds against the three cancer cell lines, HepG2, HCT116, and MCF-7, with IC50 = 13.67 ± 1.2, 5.48 ± 0.4, and 7.34 ± 0.6 µM, respectively, which is nearly equipotent to that of sorafenib (IC50 = 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively). All synthesized derivatives, 4a,b-8a-c, were evaluated for their inhibitory activities against VEGFR-2. The tested compounds displayed high to low inhibitory activity, with IC50 values ranging from 0.14 ± 0.02 to 9.54 ± 0.85 µM. Among them, compound 7a was found to be the most potent derivative that inhibited VEGFR-2 at an IC50 value of 0.14 ± 0.02 µM, which is nearly 72% of that of the sorafenib IC50 value (0.10 ± 0.02 µM). Compounds 7b, 8c, 8b, and 8a exhibited very good activity with IC50 values of 0.18 ± 0.02, 0.21 ± 0.03, 0.24 ± 0.02, and 0.35 ± 0.04 µM, respectively. Molecular modeling studies were carried out for all compounds against the VEGFR-2 active site. The data obtained from biological testing highly correlated with that obtained from molecular modeling studies. However, these modifications led to new phthalazine derivatives with higher VEGFR-2 inhibitory activities than vatalanib and which are nearly equipotent to sorafenib.
Collapse
Affiliation(s)
- Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Mohamed-Kamal Ibrahim
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Fathalla Khedr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
El-Adl K, Sakr H, Nasser M, Alswah M, Shoman FMA. 5-(4-Methoxybenzylidene)thiazolidine-2,4-dione-derived VEGFR-2 inhibitors: Design, synthesis, molecular docking, and anticancer evaluations. Arch Pharm (Weinheim) 2020; 353:e2000079. [PMID: 32515896 DOI: 10.1002/ardp.202000079] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
A novel series of 5-(4-methoxybenzylidene)thiazolidine-2,4-dione derivatives, 5a-g and 7a-f, was designed, synthesized, and evaluated for their anticancer activity against HepG2, HCT116, and MCF-7 cells. HepG2 and HCT116 were the most sensitive cell lines to the influence of the new derivatives. In particular, compounds 7f, 7e, 7d, and 7c were found to be the most potent derivatives of all the tested compounds against the HepG2, HCT116, and MCF-7 cancer cell lines. Compound 7f (IC50 = 6.19 ± 0.5, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively) exhibited a higher activity than sorafenib (IC50 = 9.18 ± 0.6, 8.37 ± 0.7, and 5.10 ± 0.4 µM, respectively) against HepG2 and MCF-7, cells but a lower activity against HCT116 cancer cells, respectively. Also, this compound displayed a higher activity than doxorubicin (IC50 = 7.94 ± 0.6, 8.07 ± 0.8, and 6.75 ± 0.4 µM, respectively) against HepG2 and MCF-7 cells, but nearly the same activity against HCT116 cells, respectively. All derivatives, 5a-g and 7a-f, were evaluated for their inhibitory activities against vascular endothelial growth factor receptor-2 (VEGFR-2). Among them, compound 7f was found to be the most potent derivative that inhibited VEGFR-2 at an IC50 value of 0.12 ± 0.02 µM, which is nearly the same as that of sorafenib (IC50 = 0.10 ± 0.02 µM). Compounds 7e, 7d, 7c, and 7b exhibited the highest activity, with IC50 values of 0.13 ± 0.02, 0.14 ± 0.02, 0.14 ± 0.02, and 0.18 ± 0.03 µM, respectively, which are more than the half of that of sorafenib. Furthermore, molecular docking was performed to investigate their binding mode and affinities toward the VEGFR-2 receptor. The data obtained from the docking studies highly correlated with those obtained from the biological screening.
Collapse
Affiliation(s)
- Khaled El-Adl
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Helmy Sakr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed Nasser
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Fatma M A Shoman
- Department of Clinical Pathology, Blood Bank Specialist, Blood Bank Directorate, Ministry of Health, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
El‐Adl K, El‐Helby AA, Sakr H, El‐Hddad SSA. Design, synthesis, molecular docking, and anticancer evaluations of 1‐benzylquinazoline‐2,4(1
H
,3
H
)‐dione bearing different moieties as VEGFR‐2 inhibitors. Arch Pharm (Weinheim) 2020; 353:e2000068. [DOI: 10.1002/ardp.202000068] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Khaled El‐Adl
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAl‐Azhar University Cairo Egypt
- Department of Pharmaceutical Chemistry, Faculty of PharmacyHeliopolis University for Sustainable Development Cairo Egypt
| | | | - Helmy Sakr
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAl‐Azhar University Cairo Egypt
| | | |
Collapse
|
5
|
Masci D, Hind C, Islam MK, Toscani A, Clifford M, Coluccia A, Conforti I, Touitou M, Memdouh S, Wei X, La Regina G, Silvestri R, Sutton JM, Castagnolo D. Switching on the activity of 1,5-diaryl-pyrrole derivatives against drug-resistant ESKAPE bacteria: Structure-activity relationships and mode of action studies. Eur J Med Chem 2019; 178:500-514. [DOI: 10.1016/j.ejmech.2019.05.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
|
6
|
Protopopov MV, Ostrynska OV, Starosyla SA, Vodolazhenko MA, Sirko SM, Gorobets NY, Bdzhola V, Desenko SM, Yarmoluk SM. Dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-4-ones as a new class of CK2 inhibitors. Mol Divers 2018; 22:991-998. [PMID: 29845490 DOI: 10.1007/s11030-018-9836-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/14/2018] [Indexed: 01/08/2023]
Abstract
Identification of new small molecules inhibiting protein kinase CK2 is highly required for the study of this protein's functions in cell and for the further development of novel pharmaceuticals against a variety of disorders associated with CK2 activity. In this article, a virtual screening of a random small-molecule library was performed and 12 compounds were initially selected for biochemical tests toward CK2. Among them, the most active compound 1 ([Formula: see text]) belonged to dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-4-ones. The complex of this compound with CK2 was analyzed, and key ligand-enzyme interactions were determined. Then, a virtual screening of 231 dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-4-one derivatives was performed and 37 compounds were chosen for in vitro testing. It was found that 32 compounds inhibit CK2 with [Formula: see text] values from 2.5 to 7.5 [Formula: see text]. These results demonstrate that dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-4-one is a novel class of CK2 inhibitors.
Collapse
Affiliation(s)
- Mykola V Protopopov
- Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kiev, 01601, Ukraine.,Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo Street, Kiev, 03143, Ukraine
| | - Olga V Ostrynska
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo Street, Kiev, 03143, Ukraine
| | - Sergiy A Starosyla
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo Street, Kiev, 03143, Ukraine
| | - Maria A Vodolazhenko
- Department of Organic and Bioorganic Chemistry, SSI "Institute for Single Crystals" of NAS of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine.,Department of Medical and Bioorganic Chemistry, Kharkiv National Medical University, 4 Nauky Ave., Kharkiv, 61022, Ukraine
| | - Svetlana M Sirko
- Department of Organic and Bioorganic Chemistry, SSI "Institute for Single Crystals" of NAS of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Nikolay Yu Gorobets
- Department of Organic and Bioorganic Chemistry, SSI "Institute for Single Crystals" of NAS of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine.,Department of Organic Chemistry, V. N. Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv, 61077, Ukraine
| | - Volodymyr Bdzhola
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo Street, Kiev, 03143, Ukraine
| | - Sergey M Desenko
- Department of Organic and Bioorganic Chemistry, SSI "Institute for Single Crystals" of NAS of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine.,Department of Organic Chemistry, V. N. Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv, 61077, Ukraine
| | - Sergiy M Yarmoluk
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo Street, Kiev, 03143, Ukraine.
| |
Collapse
|