1
|
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022; 15:132. [PMID: 36096856 PMCID: PMC9469622 DOI: 10.1186/s13045-022-01320-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.
Collapse
Affiliation(s)
- Hailong Tian
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tingting Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiayan Shi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Edouard C Nice
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China
| | - Na Xie
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China.
| | - Canhua Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Sharma R, Kannourakis G, Prithviraj P, Ahmed N. Precision Medicine: An Optimal Approach to Patient Care in Renal Cell Carcinoma. Front Med (Lausanne) 2022; 9:766869. [PMID: 35775004 PMCID: PMC9237320 DOI: 10.3389/fmed.2022.766869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
Renal cell cancer (RCC) is a heterogeneous tumor that shows both intra- and inter-heterogeneity. Heterogeneity is displayed not only in different patients but also among RCC cells in the same tumor, which makes treatment difficult because of varying degrees of responses generated in RCC heterogeneous tumor cells even with targeted treatment. In that context, precision medicine (PM), in terms of individualized treatment catered for a specific patient or groups of patients, can shift the paradigm of treatment in the clinical management of RCC. Recent progress in the biochemical, molecular, and histological characteristics of RCC has thrown light on many deregulated pathways involved in the pathogenesis of RCC. As PM-based therapies are rapidly evolving and few are already in current clinical practice in oncology, one can expect that PM will expand its way toward the robust treatment of patients with RCC. This article provides a comprehensive background on recent strategies and breakthroughs of PM in oncology and provides an overview of the potential applicability of PM in RCC. The article also highlights the drawbacks of PM and provides a holistic approach that goes beyond the involvement of clinicians and encompasses appropriate legislative and administrative care imparted by the healthcare system and insurance providers. It is anticipated that combined efforts from all sectors involved will make PM accessible to RCC and other patients with cancer, making a tremendous positive leap on individualized treatment strategies. This will subsequently enhance the quality of life of patients.
Collapse
Affiliation(s)
- Revati Sharma
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat Central, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mt Helen, VIC, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat Central, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mt Helen, VIC, Australia
| | - Prashanth Prithviraj
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat Central, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mt Helen, VIC, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat Central, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mt Helen, VIC, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Fytory M, Arafa KK, El Rouby WMA, Farghali AA, Abdel-Hafiez M, El-Sherbiny IM. Dual-ligated metal organic framework as novel multifunctional nanovehicle for targeted drug delivery for hepatic cancer treatment. Sci Rep 2021; 11:19808. [PMID: 34615960 PMCID: PMC8494812 DOI: 10.1038/s41598-021-99407-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
In the last decade, nanosized metal organic frameworks (NMOFs) have gained an increasing applicability as multifunctional nanocarriers for drug delivery in cancer therapy. However, only a limited number of platforms have been reported that can serve as an effective targeted drug delivery system (DDSs). Herein, we report rational design and construction of doxorubicin (DOX)-loaded nanoscale Zr (IV)-based NMOF (NH2-UiO-66) decorated with active tumor targeting moieties; folic acid (FA), lactobionic acid (LA), glycyrrhetinic acid (GA), and dual ligands of LA and GA, as efficient multifunctional DDSs for hepatocellular carcinoma (HCC) therapy. The success of modification was exhaustively validated by various structural, thermal and microscopic techniques. Biocompatibility studies indicated the safety of pristine NH2-UiO-66 against HSF cells whereas DOX-loaded dual-ligated NMOF was found to possess superior cytotoxicity against HepG2 cells which was further confirmed by flow cytometry. Moreover, fluorescence microscopy was used for monitoring cellular uptake in comparison to the non-ligated and mono-ligated NMOF. Additionally, the newly developed dual-ligated NMOF depicted a pH-responsiveness towards the DOX release. These findings open new avenues in designing various NMOF-based DDSs that actively target hepatic cancer to achieve precise therapy.
Collapse
Affiliation(s)
- Mostafa Fytory
- Nanomedicine Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, 12578, Egypt
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Kholoud K Arafa
- Nanomedicine Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Waleed M A El Rouby
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed A Farghali
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mahmoud Abdel-Hafiez
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden
- Department of Physics, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, 12578, Egypt.
| |
Collapse
|
4
|
Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv Colloid Interface Sci 2021; 296:102509. [PMID: 34455211 DOI: 10.1016/j.cis.2021.102509] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/24/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022]
Abstract
One of the challenges in cancer chemotherapy is the low target to non-target ratio of therapeutic agents which incur severe adverse effect on the healthy tissues. In this regard, nanomaterials have tremendous potential for impacting cancer therapy by altering the toxicity profile of the drug. Some of the striking advantages provided by the nanocarriers mediated targeted drug delivery are relatively high build-up of drug concentration at the tumor site, improved drug content in the formulation and enhanced colloidal stability. Further, nanocarriers with tumor-specific moieties can be targeted to the cancer cell through cell surface receptors, tumor antigens and tumor vasculatures with high affinity and accuracy. Moreover, it overcomes the bottleneck of aimless drug biodistribution, undesired toxicity and heavy dosage of administration. This review discusses the recent developments in active targeting of nanomaterials for anticancer drug delivery through cancer cell surface targeting, organelle specific targeting and tumor microenvironment targeting strategies. Special emphasis has been given towards cancer cell surface and organelle specific targeting as delivery of anticancer drugs through these routes have made paradigm change in cancer management. Further, the current challenges and future prospects of nanocarriers mediated active drug targeting are also demonstrated.
Collapse
|
5
|
Juan A, Cimas FJ, Bravo I, Pandiella A, Ocaña A, Alonso-Moreno C. Antibody Conjugation of Nanoparticles as Therapeutics for Breast Cancer Treatment. Int J Mol Sci 2020; 21:E6018. [PMID: 32825618 PMCID: PMC7504566 DOI: 10.3390/ijms21176018] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the most common invasive tumor in women and the second leading cause of cancer-related death. Nanomedicine raises high expectations for millions of patients as it can provide better, more efficient, and affordable healthcare, and it has the potential to develop novel therapeutics for the treatment of solid tumors. In this regard, targeted therapies can be encapsulated into nanocarriers, and these nanovehicles are guided to the tumors through conjugation with antibodies-the so-called antibody-conjugated nanoparticles (ACNPs). ACNPs can preserve the chemical structure of drugs, deliver them in a controlled manner, and reduce toxicity. As certain breast cancer subtypes and indications have limited therapeutic options, this field provides hope for the future treatment of patients with difficult to treat breast cancers. In this review, we discuss the application of ACNPs for the treatment of this disease. Given the fact that ACNPs have shown clinical activity in this clinical setting, special emphasis on the role of the nanovehicles and their translation to the clinic is placed on the revision.
Collapse
Affiliation(s)
- Alberto Juan
- Oncología Traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
| | - Francisco J. Cimas
- Oncología Traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Centro Regional de Investigaciones Biomédicas, Unidad Oncología Traslacional, 02071 Albacete, Spain
| | - Iván Bravo
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer-CSIC, IBSAL- Salamanca and CIBERONC, 37007 Salamanca, Spain;
| | - Alberto Ocaña
- Oncología Traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Experimental Therapeutics Unit, Hospital clínico San Carlos, IdISSC and CIBERONC, 28040 Madrid, Spain
| | - Carlos Alonso-Moreno
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
- School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
6
|
Williams KL. The Biologics Revolution and Endotoxin Test Concerns. ENDOTOXIN DETECTION AND CONTROL IN PHARMA, LIMULUS, AND MAMMALIAN SYSTEMS 2019. [PMCID: PMC7123716 DOI: 10.1007/978-3-030-17148-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The advent of “at will” production of biologics in lieu of harvesting animal proteins (i.e. insulin) or human cadaver proteins (i.e. growth hormone) has revolutionized the treatment of disease. While the fruits of the biotechnology revolution are widely acknowledged, the realization of the differences in the means of production and changes in the manner of control of potential impurities and contaminants in regard to the new versus the old are less widely appreciated. This chapter is an overview of the biologics revolution in terms of the rigors of manufacturing required to produce them, their mechanism of action, and caveats of endotoxin control. It is a continulation of the previous chapter that established a basic background knowledge of adaptive immune principles necessary to understand the mode of action of both disease causation and biologics therapeutic treatment via immune modulation.
Collapse
|
7
|
Gao XJ, Li AQ, Zhang X, Liu P, Wang JR, Cai X. Thyroid-stimulating hormone (TSH)-armed polymer–lipid nanoparticles for the targeted delivery of cisplatin in thyroid cancers: therapeutic efficacy evaluation. RSC Adv 2015. [DOI: 10.1039/c5ra12588j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thyroid-stimulating hormone (TSH)-conjugated polymer–lipid hybrid nanoparticles (TPLHC) were developed for the targeted delivery of cisplatin (CDDP) in thyroid cancers.
Collapse
Affiliation(s)
- Xue-jun Gao
- Department of Thyroid Surgery
- Affiliated Hospital of Qingdao University
- Qingdao 266000
- China
| | - Ai-qin Li
- Affiliated Hospital of Qingdao University
- Qingdao 266000
- China
| | - Xin Zhang
- Department of Thyroid Surgery
- Affiliated Hospital of Qingdao University
- Qingdao 266000
- China
| | - Ping Liu
- Department of Pharmacy
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan 250021
- China
| | - Jue-Ru Wang
- Department of Thyroid Surgery
- Affiliated Hospital of Qingdao University
- Qingdao 266000
- China
| | - Xia Cai
- Department of Plastic Surgery
- Affiliated Hospital of Qingdao University
- Qingdao 266000
- China
| |
Collapse
|