1
|
Maia LJ, de Oliveira CH, Silva AB, Souza PAA, Müller NFD, Cardoso JDC, Ribeiro BM, de Abreu FVS, Campos FS. Arbovirus surveillance in mosquitoes: Historical methods, emerging technologies, and challenges ahead. Exp Biol Med (Maywood) 2023; 248:2072-2082. [PMID: 38183286 PMCID: PMC10800135 DOI: 10.1177/15353702231209415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024] Open
Abstract
Arboviruses cause millions of infections each year; however, only limited options are available for treatment and pharmacological prevention. Mosquitoes are among the most important vectors for the transmission of several pathogens to humans. Despite advances, the sampling, viral detection, and control methods for these insects remain ineffective. Challenges arise with the increase in mosquito populations due to climate change, insecticide resistance, and human interference affecting natural habitats, which contribute to the increasing difficulty in controlling the spread of arboviruses. Therefore, prioritizing arbovirus surveillance is essential for effective epidemic preparedness. In this review, we offer a concise historical account of the discovery and monitoring of arboviruses in mosquitoes, from mosquito capture to viral detection. We then analyzed the advantages and limitations of these traditional methods. Furthermore, we investigated the potential of emerging technologies to address these limitations, including the implementation of next-generation sequencing, paper-based devices, spectroscopic detectors, and synthetic biosensors. We also provide perspectives on recurring issues and areas of interest such as insect-specific viruses.
Collapse
Affiliation(s)
- Luis Janssen Maia
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Baculovírus, Universidade de Brasília, Brasília 70910-900, Brasil
| | - Cirilo Henrique de Oliveira
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Salinas 39560-000, Brasil
| | - Arthur Batista Silva
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins, Gurupi 77402-970, Brasil
| | - Pedro Augusto Almeida Souza
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Salinas 39560-000, Brasil
| | - Nicolas Felipe Drumm Müller
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brasil
| | - Jader da Cruz Cardoso
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria Estadual de Saúde do Rio Grande do Sul, Porto Alegre 90610-000, Brasil
| | - Bergmann Morais Ribeiro
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Baculovírus, Universidade de Brasília, Brasília 70910-900, Brasil
| | | | - Fabrício Souza Campos
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins, Gurupi 77402-970, Brasil
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brasil
| |
Collapse
|
2
|
Qi YH, Ye ZX, Zhang CX, Chen JP, Li JM. Diversity of RNA viruses in agricultural insects. Comput Struct Biotechnol J 2023; 21:4312-4321. [PMID: 37711182 PMCID: PMC10497914 DOI: 10.1016/j.csbj.2023.08.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Recent advancements in next-generation sequencing (NGS) technology and bioinformatics tools have revealed a vast array of viral diversity in insects, particularly RNA viruses. However, our current understanding of insect RNA viruses has primarily focused on hematophagous insects due to their medical importance, while research on the viromes of agriculturally relevant insects remains limited. This comprehensive review aims to address the gap by providing an overview of the diversity of RNA viruses in agricultural pests and beneficial insects within the agricultural ecosystem. Based on the NCBI Virus Database, over eight hundred RNA viruses belonging to 39 viral families have been reported in more than three hundred agricultural insect species. These viruses are predominantly found in the insect orders of Hymenoptera, Hemiptera, Thysanoptera, Lepidoptera, Diptera, Coleoptera, and Orthoptera. These findings have significantly enriched our understanding of RNA viral diversity in agricultural insects. While further virome investigations are necessary to expand our knowledge to more insect species, it is crucial to explore the biological roles of these identified RNA viruses within insects in future studies. This review also highlights the limitations and challenges for the effective virus discovery through NGS and their potential solutions, which might facilitate for the development of innovative bioinformatic tools in the future.
Collapse
Affiliation(s)
- Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Abstract
Next-generation sequencing (NGS) was initially developed to aid sequencing of the human genome. This molecular method is cost effective for sequencing and characterizing genomes, not only those of humans or animals but also those of bacteria and other pathogens. However, rather than sequencing a single organism, a targeted NGS method can be used to specifically amplify pathogens of interest in a clinical sample for detection and characterization by sequencing. Targeted NGS is an ideal method for ruminant syndromic testing due to its ability to detect a variety of pathogens in a sample with a single test.
Collapse
Affiliation(s)
- Rebecca P Wilkes
- Department of Comparative Pathobiology and Molecular Section Head, Animal Disease Diagnostic Laboratory, Purdue University College of Veterinary Medicine, 406 South University St., West Lafayette, IN 47907-2065, USA.
| |
Collapse
|
4
|
Andersen P, Barksdale S, Barclay RA, Smith N, Fernandes J, Besse K, Goldfarb D, Barbero R, Dunlap R, Jones-Roe T, Kelly R, Miao S, Ruhunusiri C, Munns A, Mosavi S, Sanson L, Munns D, Sahoo S, Swahn O, Hull K, White D, Kolb K, Noroozi F, Seelam J, Patnaik A, Lepene B. Magnetic hydrogel particles improve nanopore sequencing of SARS-CoV-2 and other respiratory viruses. Sci Rep 2023; 13:2163. [PMID: 36750714 PMCID: PMC9903261 DOI: 10.1038/s41598-023-29206-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Presented here is a magnetic hydrogel particle enabled workflow for capturing and concentrating SARS-CoV-2 from diagnostic remnant swab samples that significantly improves sequencing results using the Oxford Nanopore Technologies MinION sequencing platform. Our approach utilizes a novel affinity-based magnetic hydrogel particle, circumventing low input sample volumes and allowing for both rapid manual and automated high throughput workflows that are compatible with Nanopore sequencing. This approach enhances standard RNA extraction protocols, providing up to 40 × improvements in viral mapped reads, and improves sequencing coverage by 20-80% from lower titer diagnostic remnant samples. Furthermore, we demonstrate that this approach works for contrived influenza virus and respiratory syncytial virus samples, suggesting that it can be used to identify and improve sequencing results of multiple viruses in VTM samples. These methods can be performed manually or on a KingFisher automation platform.
Collapse
Affiliation(s)
- P Andersen
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA.
| | - S Barksdale
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - R A Barclay
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - N Smith
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - J Fernandes
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - K Besse
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - D Goldfarb
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - R Barbero
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - R Dunlap
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - T Jones-Roe
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - R Kelly
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - S Miao
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - C Ruhunusiri
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - A Munns
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - S Mosavi
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - L Sanson
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - D Munns
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - S Sahoo
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - O Swahn
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - K Hull
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - D White
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - K Kolb
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - F Noroozi
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - J Seelam
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - A Patnaik
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA
| | - B Lepene
- Ceres Nanosciences, Inc., Manassas, VA, 20110, USA.
| |
Collapse
|
5
|
La Polla R, Goumaidi A, Daniau M, Legras-Lachuer C, De Saint-Vis B. NGS method by library enrichment for rapid pestivirus purity testing in biologics. Vaccine 2023; 41:855-861. [PMID: 36564275 DOI: 10.1016/j.vaccine.2022.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
NGS sequencing was evaluated to understand its added value for animal health vaccine candidates. We have previously established the proof of concept for its application in purity testing on several Master Seeds. Here we evaluate the NGS method after enrichment to detect pestiviruses. To achieve this, we conducted a spiking study using 6 viruses, consisting of 3 pestiviruses and 3 other RNA-viruses at different concentrations into cell suspension. A deep Illumina random sequencing of all nucleic acids (DNA and RNA) was performed. The bioinformatics analysis including both assembly into contigs and annotation were processed using viral public databases for the spiked viruses' identification. Here we present the results of spiking experiments for the simultaneous spike of 6 viruses at 100-10 and 1 TCID50/ml. Using Illumina sequencing, the 3 pestiviruses were all detected at the highest concentration, and even at the lowest one such as 1 TCID50/ml for CSFV. Regarding the other viruses, they were not detected at all. Overall, the study showed consistent results for specific detection of pestiviruses with an increase of sensitivity after enrichment. The sensitivity of NGS evaluated by virus spiking experiments of cells demonstrated that NGS method is a valuable and sensitive tool for specific agent detection required in purity testing during vaccine development. This NGS method should be considered as an alternative tool of current purity testing for the prospective testing of biological products.
Collapse
Affiliation(s)
- Rémi La Polla
- Boehringer Ingelheim Animal Health, Site Lyon porte des Alpes, 813 cours du 3eme Millénaire, 69800 Saint Priest, France; Laboratoire d'Écologie Microbienne - UMR 5557, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Abdelghafar Goumaidi
- Viroscan3D, Faculté de Médecine et de Pharmacie, 8 avenue Rockefeller, 69373 Lyon, France
| | - Maïlys Daniau
- Viroscan3D, Faculté de Médecine et de Pharmacie, 8 avenue Rockefeller, 69373 Lyon, France
| | - Catherine Legras-Lachuer
- Laboratoire d'Écologie Microbienne - UMR 5557, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Blandine De Saint-Vis
- Boehringer Ingelheim Animal Health, Site Lyon porte des Alpes, 813 cours du 3eme Millénaire, 69800 Saint Priest, France
| |
Collapse
|
6
|
Zuckerman NS, Shulman LM. Next-Generation Sequencing in the Study of Infectious Diseases. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
7
|
Aramini B, Masciale V, Samarelli AV, Tonelli R, Cerri S, Clini E, Stella F, Dominici M. Biological effects of COVID-19 on lung cancer: Can we drive our decisions. Front Oncol 2022; 12:1029830. [PMID: 36300087 PMCID: PMC9589049 DOI: 10.3389/fonc.2022.1029830] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
COVID-19 infection caused by SARS-CoV-2 is considered catastrophic because it affects multiple organs, particularly those of the respiratory tract. Although the consequences of this infection are not fully clear, it causes damage to the lungs, the cardiovascular and nervous systems, and other organs, subsequently inducing organ failure. In particular, the effects of SARS-CoV-2-induced inflammation on cancer cells and the tumor microenvironment need to be investigated. COVID-19 may alter the tumor microenvironment, promoting cancer cell proliferation and dormant cancer cell (DCC) reawakening. DCCs reawakened upon infection with SARS-CoV-2 can populate the premetastatic niche in the lungs and other organs, leading to tumor dissemination. DCC reawakening and consequent neutrophil and monocyte/macrophage activation with an uncontrolled cascade of pro-inflammatory cytokines are the most severe clinical effects of COVID-19. Moreover, neutrophil extracellular traps have been demonstrated to activate the dissemination of premetastatic cells into the lungs. Further studies are warranted to better define the roles of COVID-19 in inflammation as well as in tumor development and tumor cell metastasis; the results of these studies will aid in the development of further targeted therapies, both for cancer prevention and the treatment of patients with COVID-19.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
- *Correspondence: Beatrice Aramini,
| | - Valentina Masciale
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapy, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of Cell Therapy, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Tonelli
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Cerri
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Enrico Clini
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapy, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
8
|
Zoghi S, Masoudi MS, Taheri R. The Evolving Role of Next Generation Sequencing in Pediatric Neurosurgery: a Call for Action for Research, Clinical Practice, and Optimization of Care. World Neurosurg 2022; 168:232-242. [PMID: 36122859 DOI: 10.1016/j.wneu.2022.09.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
NGS (Next-Generation Sequencing) is one of the most promising technologies that have truly revolutionized many aspects of clinical practice in recent years. It has been and is increasingly applied in many disciplines of medicine; however, it appears that pediatric neurosurgery despite its great potential has not truly embraced this new technology and is hesitant to employ it in its routine practice and guidelines. In this review, we briefly summarized the developments that lead to the establishment of NGS technology, reviewed the current applications and potentials of NGS in the disorders treated by pediatric neurosurgeons, and lastly discuss the steps we need to take to better harness NGS in pediatric neurosurgery.
Collapse
Affiliation(s)
- Sina Zoghi
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Taheri
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Cosentino MAC, D’arc M, Moreira FRR, Cavalcante LTDF, Mouta R, Coimbra A, Schiffler FB, Miranda TDS, Medeiros G, Dias CA, Souza AR, Tavares MCH, Tanuri A, Soares MA, dos Santos AFA. Discovery of two novel Torque Teno viruses in Callithrix penicillata provides insights on Anelloviridae diversification dynamics. Front Microbiol 2022; 13:1002963. [PMID: 36160188 PMCID: PMC9493276 DOI: 10.3389/fmicb.2022.1002963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
The development of high-throughput sequencing (HTS) technologies and metagenomics protocols deeply impacted the discovery of viral diversity. Moreover, the characterization of novel viruses in the Neotropical primates (NP) is central for the comprehension of viral evolution dynamics in those hosts, due to their evolutionary proximity to Old World primates, including humans. In the present work, novel anelloviruses were detected and characterized through HTS protocols in the NP Callithrix penicillata, the common black-tufted marmoset. De novo assembly of generated sequences was carried out, and a total of 15 contigs were identified with complete Anelloviridae ORF1 gene, two of them including a flanking GC-rich region, confirming the presence of two whole novel genomes of ~3 kb. The identified viruses were monophyletic within the Epsilontorquevirus genus, a lineage harboring previously reported anelloviruses infecting hosts from the Cebidae family. The genetic divergence found in the new viruses characterized two novel species, named Epsilontorquevirus callithrichensis I and II. The phylogenetic pattern inferred for the Epsilontorquevirus genus was consistent with the topology of their host species tree, echoing a virus-host diversification model observed in other viral groups. This study expands the host span of Anelloviridae and provides insights into their diversification dynamics, highlighting the importance of sampling animal viral genomes to obtain a clearer depiction of their long-term evolutionary processes.
Collapse
Affiliation(s)
- Matheus Augusto Calvano Cosentino
- Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mirela D’arc
- Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Filipe Romero Rebello Moreira
- Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Infectious Diseases Epidemiology, Imperial College London, London, United Kingdom
| | | | - Ricardo Mouta
- Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda Coimbra
- Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francine Bittencourt Schiffler
- Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamiris dos Santos Miranda
- Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Medeiros
- Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecilia A. Dias
- Centro de Primatologia, Universidade de Brasília, Brasília, Brazil
| | | | | | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Alves Soares
- Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - André Felipe Andrade dos Santos
- Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: André Felipe Andrade dos Santos,
| |
Collapse
|
10
|
Jain A, Mittal S, Tripathi LP, Nussinov R, Ahmad S. Host-pathogen protein-nucleic acid interactions: A comprehensive review. Comput Struct Biotechnol J 2022; 20:4415-4436. [PMID: 36051878 PMCID: PMC9420432 DOI: 10.1016/j.csbj.2022.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Recognition of pathogen-derived nucleic acids by host cells is an effective host strategy to detect pathogenic invasion and trigger immune responses. In the context of pathogen-specific pharmacology, there is a growing interest in mapping the interactions between pathogen-derived nucleic acids and host proteins. Insight into the principles of the structural and immunological mechanisms underlying such interactions and their roles in host defense is necessary to guide therapeutic intervention. Here, we discuss the newest advances in studies of molecular interactions involving pathogen nucleic acids and host factors, including their drug design, molecular structure and specific patterns. We observed that two groups of nucleic acid recognizing molecules, Toll-like receptors (TLRs) and the cytoplasmic retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) form the backbone of host responses to pathogen nucleic acids, with additional support provided by absent in melanoma 2 (AIM2) and DNA-dependent activator of Interferons (IFNs)-regulatory factors (DAI) like cytosolic activity. We review the structural, immunological, and other biological aspects of these representative groups of molecules, especially in terms of their target specificity and affinity and challenges in leveraging host-pathogen protein-nucleic acid interactions (HP-PNI) in drug discovery.
Collapse
Affiliation(s)
- Anuja Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Lokesh P. Tripathi
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Riken Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa, Japan
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National, Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
11
|
Ludowyke N, Phumiphanjarphak W, Apiwattanakul N, Manopwisedjaroen S, Pakakasama S, Sensorn I, Pasomsub E, Chantratita W, Hongeng S, Aiewsakun P, Thitithanyanont A. Target Enrichment Metagenomics Reveals Human Pegivirus-1 in Pediatric Hematopoietic Stem Cell Transplantation Recipients. Viruses 2022; 14:796. [PMID: 35458526 PMCID: PMC9025367 DOI: 10.3390/v14040796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Human pegivirus-1 (HPgV-1) is a lymphotropic human virus, typically considered nonpathogenic, but its infection can sometimes cause persistent viremia both in immunocompetent and immunosuppressed individuals. In a viral discovery research program in hematopoietic stem cell transplant (HSCT) pediatric patients, HPgV-1 was detected in 3 out of 14 patients (21.4%) using a target enrichment next-generation sequencing method, and the presence of the viruses was confirmed by agent-specific qRT-PCR assays. For the first time in this patient cohort, complete genomes of HPgV-1 were acquired and characterized. Phylogenetic analyses indicated that two patients had HPgV-1 genotype 2 and one had HPgV-1 genotype 3. Intra-host genomic variations were described and discussed. Our results highlight the necessity to screen HSCT patients and blood and stem cell donors to reduce the potential risk of HPgV-1 transmission.
Collapse
Affiliation(s)
- Natali Ludowyke
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (N.L.); (W.P.); (S.M.)
| | - Worakorn Phumiphanjarphak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (N.L.); (W.P.); (S.M.)
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nopporn Apiwattanakul
- Department of Pediatrics, Division of Hematology and Oncology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.A.); (S.P.); (S.H.)
| | - Suwimon Manopwisedjaroen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (N.L.); (W.P.); (S.M.)
| | - Samart Pakakasama
- Department of Pediatrics, Division of Hematology and Oncology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.A.); (S.P.); (S.H.)
| | - Insee Sensorn
- Center for Medical Genomics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (I.S.); (W.C.)
| | - Ekawat Pasomsub
- Virology and Molecular Microbiology Unit, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (I.S.); (W.C.)
| | - Suradej Hongeng
- Department of Pediatrics, Division of Hematology and Oncology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.A.); (S.P.); (S.H.)
| | - Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (N.L.); (W.P.); (S.M.)
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (N.L.); (W.P.); (S.M.)
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
12
|
Barber RM, Li Q, Levine JM, Ruone SJ, Levine GJ, Kenny P, Tong S, Schatzberg SJ. Screening for Viral Nucleic Acids in the Cerebrospinal Fluid of Dogs With Central Nervous System Inflammation. Front Vet Sci 2022; 9:850510. [PMID: 35400093 PMCID: PMC8987525 DOI: 10.3389/fvets.2022.850510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 01/17/2023] Open
Abstract
Central nervous system (CNS) inflammation is a common cause of neurological dysfunction in dogs. Most dogs with CNS inflammation are diagnosed with presumptive autoimmune disease. A smaller number are diagnosed with an infectious etiology. Additionally, at necropsy, a subset of dogs with CNS inflammation do not fit previously described patterns of autoimmune disease and an infectious cause is not readily identifiable. Because viral infection is a common cause of meningoencephalitis in people, we hypothesize that a subset of dogs presented with CNS inflammation have an occult viral infection either as a direct cause of CNS inflammation or a trigger for autoimmunity. The goal of this research was to screen cerebrospinal fluid from a large number dogs with CNS inflammation for occult viral infection. One hundred seventy-two dogs with neurological dysfunction and cerebrospinal fluid (CSF) pleocytosis were identified. Of these, 42 had meningoencephalitis of unknown origin, six had steroid-responsive meningitis-arteritis, one had eosinophilic meningoencephalitis, five had documented infection, 21 had and undetermined diagnosis, and 97 had a diagnosis not consistent with primary inflammatory disease of the CNS (e.g., neoplasia). CSF samples were subsequently screened with broadly reactive PCR for eight viral groups: adenovirus, bunyavirus, coronavirus, enterovirus, flavivirus, herpesvirus, paramyxovirus, and parechovirus. No viral nucleic acids were detected from 168 cases screened for eight viral groups, which does not support occult viral infection as a cause of CNS inflammation in dogs. La Crosse virus (LACV) nucleic acids were detected from four cases in Georgia. Subclinical infection was supported in two of these cases but LACV could not be ruled-out as a cause of infection in the other two cases, suggesting further research is warranted to determine if LACV is an occult cause of CNS inflammation in dogs.
Collapse
Affiliation(s)
- Renee M. Barber
- Department of Small Animal Medicine and Surgery, University of Georgia College of Veterinary Medicine, Athens, GA, United States
- *Correspondence: Renee M. Barber
| | - Qiang Li
- Becker Animal Hospital, Veterinary Centers of America, San Antonio, TX, United States
| | - Jonathan M. Levine
- Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States
| | - Susan J. Ruone
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Gwendolyn J. Levine
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States
| | - Patrick Kenny
- Department of Veterinary Clinical Sciences, The Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Suxiang Tong
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Scott J. Schatzberg
- Department of Small Animal Medicine and Surgery, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
13
|
Farhangdoust F, Cheng F, Liang W, Liu Y, Wanunu M. Rapid Identification of DNA Fragments through Direct Sequencing with Electro-Optical Zero-Mode Waveguides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108479. [PMID: 34964522 PMCID: PMC8915919 DOI: 10.1002/adma.202108479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/18/2021] [Indexed: 05/20/2023]
Abstract
In contrast to sequence-specific techniques such as polymerase chain reaction, DNA sequencing does not require prior knowledge of the sample for surveying DNA. However, current sequencing technologies demand high inputs for a suitable library preparation, which typically necessitates DNA amplification, even for single-molecule sequencing methods. Here, electro-optical zero-mode waveguides (eZMWs) are presented, which can load DNA into the confinement of zero-mode waveguides with high efficiency and negligible DNA fragment length bias. Using eZMWs, highly efficient voltage-induced loading of DNA fragments of various sizes from ultralow inputs (nanogram-to-picogram levels) is observed. Rapid DNA fragment identification is demonstrated by burst sequencing of short and long DNA molecules (260 and 20 000 bp) loaded from an equimolar picomolar-level concentration mixture in just a few minutes. The device allows further studies in which low-input DNA capture is essential, for example, in epigenetics, where native DNA is required for obtaining modified base information.
Collapse
Affiliation(s)
| | - Feng Cheng
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Wentao Liang
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
| | - Yongmin Liu
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Meni Wanunu
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Nessler JN, Jo WK, Osterhaus ADME, Ludlow M, Tipold A. Canine Meningoencephalitis of Unknown Origin-The Search for Infectious Agents in the Cerebrospinal Fluid via Deep Sequencing. Front Vet Sci 2021; 8:645517. [PMID: 34950723 PMCID: PMC8688736 DOI: 10.3389/fvets.2021.645517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 11/15/2021] [Indexed: 01/02/2023] Open
Abstract
Meningoencephalitis of unknown origin (MUO) describes a group of meningoencephalitides in dogs with a hitherto unknown trigger. An infectious agent has been suggested as one possible trigger of MUO but has not been proven so far. A relatively new method to screen for viral RNA or DNA is next-generation sequencing (NGS) or deep sequencing. In this study, a metagenomics analysis of the virome in a sample is analyzed and scanned for known or unknown viruses. We examined fresh-frozen CSF of 6 dogs with MUO via NGS using a modified sequence-independent, single-primer amplification protocol to detect a possible infectious trigger. Analysis of sequencing reads obtained from the six CSF samples showed no evidence of a virus infection. The inability to detect a viral trigger which could be implicated in the development of MUO in the examined population of European dogs, suggests that the current techniques are not sufficiently sensitive to identify a possible virus infection, that the virus is already eliminated at the time-point of disease outbreak, the trigger might be non-infectious or that there is no external trigger responsible for initiating MUO in dogs.
Collapse
Affiliation(s)
- Jasmin Nicole Nessler
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Wendy Karen Jo
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Martin Ludlow
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| |
Collapse
|
15
|
Rodríguez-Frías F, Quer J, Tabernero D, Cortese MF, Garcia-Garcia S, Rando-Segura A, Pumarola T. Microorganisms as Shapers of Human Civilization, from Pandemics to Even Our Genomes: Villains or Friends? A Historical Approach. Microorganisms 2021; 9:2518. [PMID: 34946123 PMCID: PMC8708650 DOI: 10.3390/microorganisms9122518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Universal history is characterized by continuous evolution, in which civilizations are born and die. This evolution is associated with multiple factors, among which the role of microorganisms is often overlooked. Viruses and bacteria have written or decisively contributed to terrible episodes of history, such as the Black Death in 14th century Europe, the annihilation of pre-Columbian American civilizations, and pandemics such as the 1918 Spanish flu or the current COVID-19 pandemic caused by the coronavirus SARS-CoV-2. Nevertheless, it is clear that we could not live in a world without these tiny beings. Endogenous retroviruses have been key to our evolution and for the regulation of gene expression, and the gut microbiota helps us digest compounds that we could not otherwise process. In addition, we have used microorganisms to preserve or prepare food for millennia and more recently to obtain drugs such as antibiotics or to develop recombinant DNA technologies. Due to the enormous importance of microorganisms for our survival, they have significantly influenced the population genetics of different human groups. This paper will review the role of microorganisms as "villains" who have been responsible for tremendous mortality throughout history but also as "friends" who help us survive and evolve.
Collapse
Affiliation(s)
- Francisco Rodríguez-Frías
- Clinical Biochemistry Research Group, Department of Biochemistry, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.F.C.); (S.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Josep Quer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - David Tabernero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Maria Francesca Cortese
- Clinical Biochemistry Research Group, Department of Biochemistry, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.F.C.); (S.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Selene Garcia-Garcia
- Clinical Biochemistry Research Group, Department of Biochemistry, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (M.F.C.); (S.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Ariadna Rando-Segura
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Department of Microbiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| | - Tomas Pumarola
- Department of Microbiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| |
Collapse
|
16
|
Wang D, Wang JQ, Tao XG. Fatal visceral disseminated varicella-zoster virus infection in a renal transplant recipient: A case report. World J Clin Cases 2021; 9:9168-9173. [PMID: 34786401 PMCID: PMC8567532 DOI: 10.12998/wjcc.v9.i30.9168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Visceral disseminated varicella-zoster virus (VZV) infection is a rare but life-threatening disease. In transplant recipients with VZV infection, visceral dissemination may develop without skin eruptions, which leads to the failure of early diagnosis.
CASE SUMMARY The patient was a 33-year-old male renal recipient who was referred to our hospital with severe upper abdominal pain of 3-d duration. On admission, the patient rapidly developed septic shock and multiple organ dysfunction syndrome with liver dysfunction and acute kidney injury. Next-generation sequencing of peripheral blood yielded 39224 sequence reads of VZV, and real-time polymerase chain reaction for VZV was positive, with 1.2 × 107 copies/mL. The final diagnosis was visceral disseminated VZV infection. Acyclovir and supportive therapy were started, but the patient died of severe visceral organ damage 16 h after admission.
CONCLUSION Visceral disseminated VZV infection is possible in renal transplant recipients presenting abdominal pain and rapidly-evolving organ damage without skin involvement.
Collapse
Affiliation(s)
- Di Wang
- Department of Intensive Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui Province, China
| | - Jin-Quan Wang
- Department of Intensive Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui Province, China
| | - Xiao-Gen Tao
- Department of Intensive Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui Province, China
| |
Collapse
|
17
|
Utilizing the VirIdAl Pipeline to Search for Viruses in the Metagenomic Data of Bat Samples. Viruses 2021; 13:v13102006. [PMID: 34696436 PMCID: PMC8541124 DOI: 10.3390/v13102006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/27/2022] Open
Abstract
According to various estimates, only a small percentage of existing viruses have been discovered, naturally much less being represented in the genomic databases. High-throughput sequencing technologies develop rapidly, empowering large-scale screening of various biological samples for the presence of pathogen-associated nucleotide sequences, but many organisms are yet to be attributed specific loci for identification. This problem particularly impedes viral screening, due to vast heterogeneity in viral genomes. In this paper, we present a new bioinformatic pipeline, VirIdAl, for detecting and identifying viral pathogens in sequencing data. We also demonstrate the utility of the new software by applying it to viral screening of the feces of bats collected in the Moscow region, which revealed a significant variety of viruses associated with bats, insects, plants, and protozoa. The presence of alpha and beta coronavirus reads, including the MERS-like bat virus, deserves a special mention, as it once again indicates that bats are indeed reservoirs for many viral pathogens. In addition, it was shown that alignment-based methods were unable to identify the taxon for a large proportion of reads, and we additionally applied other approaches, showing that they can further reveal the presence of viral agents in sequencing data. However, the incompleteness of viral databases remains a significant problem in the studies of viral diversity, and therefore necessitates the use of combined approaches, including those based on machine learning methods.
Collapse
|
18
|
Kudla M, Gutowska K, Synak J, Weber M, Bohnsack KS, Lukasiak P, Villmann T, Blazewicz J, Szachniuk M. Virxicon: A Lexicon Of Viral Sequences. Bioinformatics 2020; 36:5507-5513. [PMID: 33367605 PMCID: PMC8016492 DOI: 10.1093/bioinformatics/btaa1066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 11/12/2022] Open
Abstract
Motivation Viruses are the most abundant biological entities and constitute a large reservoir of genetic diversity. In recent years, knowledge about them has increased significantly as a result of dynamic development in life sciences and rapid technological progress. This knowledge is scattered across various data repositories, making a comprehensive analysis of viral data difficult. Results In response to the need for gathering a comprehensive knowledge of viruses and viral sequences, we developed Virxicon, a lexicon of all experimentally acquired sequences for RNA and DNA viruses. The ability to quickly obtain data for entire viral groups, searching sequences by levels of taxonomic hierarchy—according to the Baltimore classification and ICTV taxonomy—and tracking the distribution of viral data and its growth over time are unique features of our database compared to the other tools. Availabilityand implementation Virxicon is a publicly available resource, updated weekly. It has an intuitive web interface and can be freely accessed at http://virxicon.cs.put.poznan.pl/.
Collapse
Affiliation(s)
- Mateusz Kudla
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan, 60-965, Poland.,Saxon Institute for Computational Intelligence and Machine Learning, University of Applied Sciences Mittweida, Mittweida, 09648, Germany
| | - Kaja Gutowska
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan, 60-965, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Jaroslaw Synak
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan, 60-965, Poland
| | - Mirko Weber
- Saxon Institute for Computational Intelligence and Machine Learning, University of Applied Sciences Mittweida, Mittweida, 09648, Germany
| | - Katrin Sophie Bohnsack
- Saxon Institute for Computational Intelligence and Machine Learning, University of Applied Sciences Mittweida, Mittweida, 09648, Germany
| | - Piotr Lukasiak
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan, 60-965, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Thomas Villmann
- Saxon Institute for Computational Intelligence and Machine Learning, University of Applied Sciences Mittweida, Mittweida, 09648, Germany
| | - Jacek Blazewicz
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan, 60-965, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Marta Szachniuk
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Poznan, 60-965, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| |
Collapse
|
19
|
Gagnon CA, Lalonde C, Provost C. Porcine reproductive and respiratory syndrome virus whole-genome sequencing efficacy with field clinical samples using a poly(A)-tail viral genome purification method. J Vet Diagn Invest 2020; 33:216-226. [PMID: 32856560 DOI: 10.1177/1040638720952411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The genomic surveillance of porcine reproductive and respiratory syndrome virus (PRRSV) is based on sequencing of the ORF5 gene of the virus, which covers only 4% of the entire viral genome. It is expected that PRRSV whole-genome sequencing (WGS) will improve PRRSV genomic data and allow better understanding of clinical discrepancies observed in the field when using ORF5 sequencing. Our main objective was to implement an efficient method for WGS of PRRSV from clinical samples. The viral genome was purified using a poly(A)-tail viral genome purification method and sequenced using Illumina technology. We tested 149 PRRSV-positive samples: 80 sera, 33 lungs, 33 pools of tissues, 2 oral fluids, and 1 processing fluid (i.e., castration liquid). Overall, WGS of 67.1% of PRRSV-positive cases was successful. The viral load, in particular for tissues, had a major impact on the PRRSV WGS success rate. Serum was the most efficient type of sample to conduct PRRSV WGS poly(A)-tail assays, with a success rate of 76.3%, and this result can be explained by improved sequencing reads dispersion matching throughout the entire viral genome. WGS was unsuccessful for all pools of tissue and lung samples with Cq values > 26.5, whereas it could still be successful with sera at Cq ≤ 34.1. Evaluation of results of highly qualified personnel confirmed that laboratory skills could affect PRRSV WGS efficiency. Oral fluid samples seem very promising and merit further investigation because, with only 2 samples of low viral load (Cq = 28.8, 32.8), PRRSV WGS was successful.
Collapse
Affiliation(s)
- Carl A Gagnon
- Swine and Poultry Infectious Diseases Research Center and Molecular Diagnostic Laboratory of the Service de diagnostic, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Christian Lalonde
- Swine and Poultry Infectious Diseases Research Center, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Chantale Provost
- Swine and Poultry Infectious Diseases Research Center and Molecular Diagnostic Laboratory of the Service de diagnostic, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
20
|
Farraj SA, El-Kafrawy SA, Kumosani TA, Yousef JM, Azhar EI. Evaluation of Extraction Methods for Clinical Metagenomic Assay. Microorganisms 2020; 8:microorganisms8081128. [PMID: 32727010 PMCID: PMC7465710 DOI: 10.3390/microorganisms8081128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 02/02/2023] Open
Abstract
(1) Background: Clinical metagenomics is a promising approach that helps to identify etiological agents in cases of unknown infections. For the efficient detection of an unknown pathogen, the extraction method must be carefully selected for the maximum recovery of nucleic acid from different microorganisms. The aim of this study was to evaluate different extraction methods that have the ability to isolate nucleic acids from different types of pathogens with good quality and quantity for efficient use in clinical metagenomic identification. (2) Methods: A mock sample spiked with five different pathogens was used for the comparative evaluation of different commercial extraction kits. Extracted samples were subjected to library preparation and run on MiSeq. The selected extraction method based on the outcome of the comparative evaluation was used subsequently for the nucleic acid isolation of all infectious agents in clinical respiratory samples with multiple infections. (3) Results: The protocol using the PowerViral® Environmental RNA-DNA Isolation Kit with a 5-min bead beating step achieved the best results with a low starting volume. The analysis of the tested clinical specimens showed the ability to successfully identify different types of pathogens. (4) Conclusions: The optimized extraction protocol in this study is recommended for clinical metagenomics application in specimens with multiple infections from different taxa.
Collapse
Affiliation(s)
- Suha A. Farraj
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (T.A.K.); (J.M.Y.)
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shreif A. El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Taha A. Kumosani
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (T.A.K.); (J.M.Y.)
- Central Laboratory for Food and Nutrition, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jehad M. Yousef
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (T.A.K.); (J.M.Y.)
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Esam I. Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
21
|
Deng ZL, Dhingra A, Fritz A, Götting J, Münch PC, Steinbrück L, Schulz TF, Ganzenmüller T, McHardy AC. Evaluating assembly and variant calling software for strain-resolved analysis of large DNA viruses. Brief Bioinform 2020; 22:5868070. [PMID: 34020538 PMCID: PMC8138829 DOI: 10.1093/bib/bbaa123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
Infection with human cytomegalovirus (HCMV) can cause severe complications in immunocompromised individuals and congenitally infected children. Characterizing heterogeneous viral populations and their evolution by high-throughput sequencing of clinical specimens requires the accurate assembly of individual strains or sequence variants and suitable variant calling methods. However, the performance of most methods has not been assessed for populations composed of low divergent viral strains with large genomes, such as HCMV. In an extensive benchmarking study, we evaluated 15 assemblers and 6 variant callers on 10 lab-generated benchmark data sets created with two different library preparation protocols, to identify best practices and challenges for analyzing such data. Most assemblers, especially metaSPAdes and IVA, performed well across a range of metrics in recovering abundant strains. However, only one, Savage, recovered low abundant strains and in a highly fragmented manner. Two variant callers, LoFreq and VarScan2, excelled across all strain abundances. Both shared a large fraction of false positive variant calls, which were strongly enriched in T to G changes in a 'G.G' context. The magnitude of this context-dependent systematic error is linked to the experimental protocol. We provide all benchmarking data, results and the entire benchmarking workflow named QuasiModo, Quasispecies Metric determination on omics, under the GNU General Public License v3.0 (https://github.com/hzi-bifo/Quasimodo), to enable full reproducibility and further benchmarking on these and other data.
Collapse
Affiliation(s)
- Zhi-Luo Deng
- Department Computational Biology of Infection Research of the Helmholtz Centre for Infection Research
| | | | - Adrian Fritz
- Department Computational Biology of Infection Research of the Helmholtz Centre for Infection Research
| | | | - Philipp C Münch
- Department Computational Biology of Infection Research of the Helmholtz Centre for Infection Research and Max von Pettenkofer Institute in Ludwig Maximilian University of Munich
| | | | | | | | - Alice C McHardy
- Department Computational Biology of Infection Research of the Helmholtz Centre for Infection Research
| |
Collapse
|
22
|
Lu IN, Muller CP, He FQ. Applying next-generation sequencing to unravel the mutational landscape in viral quasispecies. Virus Res 2020; 283:197963. [PMID: 32278821 PMCID: PMC7144618 DOI: 10.1016/j.virusres.2020.197963] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has revolutionized the scale and depth of biomedical sciences. Because of its unique ability for the detection of sub-clonal variants within genetically diverse populations, NGS has been successfully applied to analyze and quantify the exceptionally-high diversity within viral quasispecies, and many low-frequency drug- or vaccine-resistant mutations of therapeutic importance have been discovered. Although many works have intensively discussed the latest NGS approaches and applications in general, none of them has focused on applying NGS in viral quasispecies studies, mostly due to the limited ability of current NGS technologies to accurately detect and quantify rare viral variants. Here, we summarize several error-correction strategies that have been developed to enhance the detection accuracy of minority variants. We also discuss critical considerations for preparing a sequencing library from viral RNAs and for analyzing NGS data to unravel the mutational landscape.
Collapse
Affiliation(s)
- I-Na Lu
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, D-45147 Essen, Germany; Department of Infectious Diseases, Aarhus University Hospital, DK-8200 Aarhus N, Denmark.
| | - Claude P Muller
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-Sur-Alzette, Luxembourg; Laboratoire National de Santé, L-3583 Dudelange, Luxembourg
| | - Feng Q He
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-Sur-Alzette, Luxembourg; Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
23
|
Ledesma J, Williams D, Stanford FA, Hewitt PE, Zuckerman M, Bansal S, Dhawan A, Mbisa JL, Tedder R, Ijaz S. Resolution by deep sequencing of a dual hepatitis E virus infection transmitted via blood components. J Gen Virol 2020; 100:1491-1500. [PMID: 31592753 DOI: 10.1099/jgv.0.001302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic infection, with consumption of processed pork products thought to be the major route of transmission in England. The clinical features of HEV infection range from asymptomatic infection to mild hepatitis to fulminant liver failure. Persistent, chronic hepatitis is increasingly recognized in immunocompromised patients. Infection via HEV-containing blood components and organs has been reported and measures to reduce this transmission risk were introduced into the blood service in England in 2016. We report here the sequence and phylogenetic findings from investigations into a transmission event from an HEV-infected donor to two recipients. Phylogenetic analysis of HEV genome sequence fragments obtained by Sanger sequencing showed that, whilst most of the sequences from both recipients' samples grouped with the sequence from the blood donor sample, the relationship of five sequences from recipient 2 were unresolved. Analysis of Illumina short-read deep sequence data demonstrated the presence of two divergent viral populations in the donor's sample that were also present in samples from both recipients. A clear phylogenetic relationship was established, indicating a probable transmission of both populations from the donor to each of the immunocompromised recipients. This study demonstrates the value of the application of new sequencing technologies combined with bioinformatic data analysis when Sanger sequencing is not able to clarify a proper phylogenetic relationship in the investigation of transmission events.
Collapse
Affiliation(s)
- Juan Ledesma
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections, London, UK.,Antiviral Unit, Virus Reference Department, National Infection Service, Public Health England, London, UK
| | - David Williams
- Bioinformatics, Virus Reference Department, National Infection Service, Public Health England, London, UK
| | - Felicia Adelina Stanford
- Blood Borne Virus Unit, Virus Reference Department, National Infection Service, Public Health England, London, UK
| | | | - Mark Zuckerman
- South London Specialist Virology Centre, King's College Hospital NHS Foundation Trust, London, UK
| | - Sanjay Bansal
- Paediatric Liver, GI and Nutrition Centre and Mowat Labs, King's College Hospital, London, UK
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre and Mowat Labs, King's College Hospital, London, UK
| | - Jean Lutamyo Mbisa
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections, London, UK.,Antiviral Unit, Virus Reference Department, National Infection Service, Public Health England, London, UK
| | - Richard Tedder
- Blood Borne Virus Unit, Virus Reference Department, National Infection Service, Public Health England, London, UK
| | - Samreen Ijaz
- Blood Borne Virus Unit, Virus Reference Department, National Infection Service, Public Health England, London, UK.,National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections, London, UK
| |
Collapse
|
24
|
Kiselev D, Matsvay A, Abramov I, Dedkov V, Shipulin G, Khafizov K. Current Trends in Diagnostics of Viral Infections of Unknown Etiology. Viruses 2020; 12:E211. [PMID: 32074965 PMCID: PMC7077230 DOI: 10.3390/v12020211] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022] Open
Abstract
Viruses are evolving at an alarming rate, spreading and inconspicuously adapting to cutting-edge therapies. Therefore, the search for rapid, informative and reliable diagnostic methods is becoming urgent as ever. Conventional clinical tests (PCR, serology, etc.) are being continually optimized, yet provide very limited data. Could high throughput sequencing (HTS) become the future gold standard in molecular diagnostics of viral infections? Compared to conventional clinical tests, HTS is universal and more precise at profiling pathogens. Nevertheless, it has not yet been widely accepted as a diagnostic tool, owing primarily to its high cost and the complexity of sample preparation and data analysis. Those obstacles must be tackled to integrate HTS into daily clinical practice. For this, three objectives are to be achieved: (1) designing and assessing universal protocols for library preparation, (2) assembling purpose-specific pipelines, and (3) building computational infrastructure to suit the needs and financial abilities of modern healthcare centers. Data harvested with HTS could not only augment diagnostics and help to choose the correct therapy, but also facilitate research in epidemiology, genetics and virology. This information, in turn, could significantly aid clinicians in battling viral infections.
Collapse
Affiliation(s)
- Daniel Kiselev
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
- I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Alina Matsvay
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
- Moscow Institute of Physics and Technology, National Research University, 117303 Moscow, Russia
| | - Ivan Abramov
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
| | - Vladimir Dedkov
- Pasteur Institute, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 197101 Saint-Petersburg, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - German Shipulin
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
| | - Kamil Khafizov
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
- Moscow Institute of Physics and Technology, National Research University, 117303 Moscow, Russia
| |
Collapse
|
25
|
Kaszab E, Doszpoly A, Lanave G, Verma A, Bányai K, Malik YS, Marton S. Metagenomics revealing new virus species in farm and pet animals and aquaculture. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149329 DOI: 10.1016/b978-0-12-816352-8.00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Viral metagenomics is slowly taking over the traditional and widely used molecular techniques for the investigation of pathogenic viruses responsible for illness and inflicting great economic burden on the farm animal industry. Owing to the continued improvements in sequencing technologies and the dramatic reduction of per base costs of sequencing the use of next generation sequencing have been key factors in this progress. Discoveries linked to viral metagenomics are expected to be beneficial to the field of veterinary medicine starting from the development of better diagnostic assays to the design of new subunit vaccines with minimal investments. With these achievements the research has taken a giant leap even toward the better healthcare of animals and, as a result, the animal sector could be growing at an unprecedented pace.
Collapse
|
26
|
A rapid and label-free platform for virus capture and identification from clinical samples. Proc Natl Acad Sci U S A 2019; 117:895-901. [PMID: 31882450 PMCID: PMC6969489 DOI: 10.1073/pnas.1910113117] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Viruses evolve rapidly and unpredictably, challenging the effectiveness of disease diagnostics. To help control outbreaks and understand their origins, the first step is often isolating viruses from infected samples for characterization. We demonstrate that multiple emerging virus strains can be simultaneously enriched and optically detected in only a few minutes without using any labels. A portable platform that captures viruses by their size, coupled to Raman spectroscopy, resulted in successful virus identification with 90% accuracy in real time directly from clinical samples. Furthermore, this viable enrichment process enables further culturing and characterization by electron microscopy and deep sequencing. This microplatform is an effective disease-monitoring system and broadens virus surveillance by enabling real-time virus identification. Emerging and reemerging viruses are responsible for a number of recent epidemic outbreaks. A crucial step in predicting and controlling outbreaks is the timely and accurate characterization of emerging virus strains. We present a portable microfluidic platform containing carbon nanotube arrays with differential filtration porosity for the rapid enrichment and optical identification of viruses. Different emerging strains (or unknown viruses) can be enriched and identified in real time through a multivirus capture component in conjunction with surface-enhanced Raman spectroscopy. More importantly, after viral capture and detection on a chip, viruses remain viable and get purified in a microdevice that permits subsequent in-depth characterizations by various conventional methods. We validated this platform using different subtypes of avian influenza A viruses and human samples with respiratory infections. This technology successfully enriched rhinovirus, influenza virus, and parainfluenza viruses, and maintained the stoichiometric viral proportions when the samples contained more than one type of virus, thus emulating coinfection. Viral capture and detection took only a few minutes with a 70-fold enrichment enhancement; detection could be achieved with as little as 102 EID50/mL (50% egg infective dose per microliter), with a virus specificity of 90%. After enrichment using the device, we demonstrated by sequencing that the abundance of viral-specific reads significantly increased from 4.1 to 31.8% for parainfluenza and from 0.08 to 0.44% for influenza virus. This enrichment method coupled to Raman virus identification constitutes an innovative system that could be used to quickly track and monitor viral outbreaks in real time.
Collapse
|
27
|
Soliman HK, Abouelhoda M, El Rouby MN, Ahmed OS, Esmat G, Hassan ZK, Hafez MM, Mehaney DA, Selvaraju M, Darwish RK, Osman YA, Zekri ARN. Whole-genome sequencing of human Pegivirus variant from an Egyptian patient co-infected with hepatitis C virus: a case report. Virol J 2019; 16:132. [PMID: 31711510 PMCID: PMC6849219 DOI: 10.1186/s12985-019-1242-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/14/2019] [Indexed: 01/02/2023] Open
Abstract
Background Human pegivirus (HPgV) is structurally similar to hepatitis C virus (HCV) and was discovered 20 years ago. Its distribution, natural history and exact rule of this viral group in human hosts remain unclear. Our aim was to determine, by deep next-generation sequencing (NGS), the entire genome sequence of HPgV that was discovered in an Egyptian patient while analyzing HCV sequence from the same patient. We also inspected whether the co-infection of HCV and HPgV will affect the patient response to HCV viral treatment. To the best of our knowledge, this is the first report for a newly isolated HPgV in an Egyptian patient who is co-infected with HCV. Case presentation The deep Next Generation Sequencing (NGS) technique was used to detect HCV sequence in hepatitis C patient’s plasma. The results revealed the presence of HPgV with HCV. This co-infection was confirmed using conventional PCR of the HPgV 5′ untranslated region. The patient was then subjected to direct-acting-antiviral treatment (DAA). At the end of the treatment, the patient showed a good response to the HCV treatment (i.e., no HCV-RNA was detected in the plasma), while the HPgV-RNA was still detected. Sequence alignment and phylogenetic analyses demonstrated that the detected HPgV was a novel isolate and was not previously published. Conclusion We report a new variant of HPgV in a patient suffering from hepatitis C viral infection.
Collapse
Affiliation(s)
- Hany K Soliman
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Mohamed Abouelhoda
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Cairo, 12613, Egypt
| | - Mahmoud N El Rouby
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Ola S Ahmed
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - G Esmat
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Zeinab K Hassan
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Mohammed M Hafez
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Dina Ahmed Mehaney
- Clinical and chemical pathology Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | | | - Rania Kamal Darwish
- Clinical and chemical pathology Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Yehia A Osman
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 33516, Egypt
| | - Abdel-Rahman N Zekri
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt.
| |
Collapse
|
28
|
Näpflin K, O’Connor EA, Becks L, Bensch S, Ellis VA, Hafer-Hahmann N, Harding KC, Lindén SK, Olsen MT, Roved J, Sackton TB, Shultz AJ, Venkatakrishnan V, Videvall E, Westerdahl H, Winternitz JC, Edwards SV. Genomics of host-pathogen interactions: challenges and opportunities across ecological and spatiotemporal scales. PeerJ 2019; 7:e8013. [PMID: 31720122 PMCID: PMC6839515 DOI: 10.7717/peerj.8013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Evolutionary genomics has recently entered a new era in the study of host-pathogen interactions. A variety of novel genomic techniques has transformed the identification, detection and classification of both hosts and pathogens, allowing a greater resolution that helps decipher their underlying dynamics and provides novel insights into their environmental context. Nevertheless, many challenges to a general understanding of host-pathogen interactions remain, in particular in the synthesis and integration of concepts and findings across a variety of systems and different spatiotemporal and ecological scales. In this perspective we aim to highlight some of the commonalities and complexities across diverse studies of host-pathogen interactions, with a focus on ecological, spatiotemporal variation, and the choice of genomic methods used. We performed a quantitative review of recent literature to investigate links, patterns and potential tradeoffs between the complexity of genomic, ecological and spatiotemporal scales undertaken in individual host-pathogen studies. We found that the majority of studies used whole genome resolution to address their research objectives across a broad range of ecological scales, especially when focusing on the pathogen side of the interaction. Nevertheless, genomic studies conducted in a complex spatiotemporal context are currently rare in the literature. Because processes of host-pathogen interactions can be understood at multiple scales, from molecular-, cellular-, and physiological-scales to the levels of populations and ecosystems, we conclude that a major obstacle for synthesis across diverse host-pathogen systems is that data are collected on widely diverging scales with different degrees of resolution. This disparity not only hampers effective infrastructural organization of the data but also data granularity and accessibility. Comprehensive metadata deposited in association with genomic data in easily accessible databases will allow greater inference across systems in the future, especially when combined with open data standards and practices. The standardization and comparability of such data will facilitate early detection of emerging infectious diseases as well as studies of the impact of anthropogenic stressors, such as climate change, on disease dynamics in humans and wildlife.
Collapse
Affiliation(s)
- Kathrin Näpflin
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America
| | - Emily A. O’Connor
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Lutz Becks
- Aquatic Ecology and Evolution, Limnological Institute University Konstanz, Konstanz, Germany
| | - Staffan Bensch
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Vincenzo A. Ellis
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Nina Hafer-Hahmann
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Karin C. Harding
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Sara K. Lindén
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Morten T. Olsen
- Section for Evolutionary Genomics, Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Roved
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Timothy B. Sackton
- Informatics Group, Harvard University, Cambridge, MA, United States of America
| | - Allison J. Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, Los Angeles, CA, United States of America
| | - Vignesh Venkatakrishnan
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elin Videvall
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United States of America
| | - Helena Westerdahl
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Jamie C. Winternitz
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Andrusch A, Dabrowski PW, Klenner J, Tausch SH, Kohl C, Osman AA, Renard BY, Nitsche A. PAIPline: pathogen identification in metagenomic and clinical next generation sequencing samples. Bioinformatics 2019; 34:i715-i721. [PMID: 30423069 PMCID: PMC6129269 DOI: 10.1093/bioinformatics/bty595] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Motivation Next generation sequencing (NGS) has provided researchers with a powerful tool to characterize metagenomic and clinical samples in research and diagnostic settings. NGS allows an open view into samples useful for pathogen detection in an unbiased fashion and without prior hypothesis about possible causative agents. However, NGS datasets for pathogen detection come with different obstacles, such as a very unfavorable ratio of pathogen to host reads. Alongside often appearing false positives and irrelevant organisms, such as contaminants, tools are often challenged by samples with low pathogen loads and might not report organisms present below a certain threshold. Furthermore, some metagenomic profiling tools are only focused on one particular set of pathogens, for example bacteria. Results We present PAIPline, a bioinformatics pipeline specifically designed to address problems associated with detecting pathogens in diagnostic samples. PAIPline particularly focuses on userfriendliness and encapsulates all necessary steps from preprocessing to resolution of ambiguous reads and filtering up to visualization in a single tool. In contrast to existing tools, PAIPline is more specific while maintaining sensitivity. This is shown in a comparative evaluation where PAIPline was benchmarked along other well-known metagenomic profiling tools on previously published well-characterized datasets. Additionally, as part of an international cooperation project, PAIPline was applied to an outbreak sample of hemorrhagic fevers of then unknown etiology. The presented results show that PAIPline can serve as a robust, reliable, user-friendly, adaptable and generalizable stand-alone software for diagnostics from NGS samples and as a stepping stone for further downstream analyses. Availability and implementation PAIPline is freely available under https://gitlab.com/rki_bioinformatics/paipline.
Collapse
Affiliation(s)
- Andreas Andrusch
- Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, Berlin, Germany
| | | | - Jeanette Klenner
- Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, Berlin, Germany
| | - Simon H Tausch
- Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, Berlin, Germany
| | - Claudia Kohl
- Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, Berlin, Germany
| | | | | | - Andreas Nitsche
- Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
30
|
Agboli E, Leggewie M, Altinli M, Schnettler E. Mosquito-Specific Viruses-Transmission and Interaction. Viruses 2019; 11:v11090873. [PMID: 31533367 PMCID: PMC6784079 DOI: 10.3390/v11090873] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Mosquito-specific viruses (MSVs) are a subset of insect-specific viruses that are found to infect mosquitoes or mosquito derived cells. There has been an increase in discoveries of novel MSVs in recent years. This has expanded our understanding of viral diversity and evolution but has also sparked questions concerning the transmission of these viruses and interactions with their hosts and its microbiome. In fact, there is already evidence that MSVs interact with the immune system of their host. This is especially interesting, since mosquitoes can be infected with both MSVs and arthropod-borne (arbo) viruses of public health concern. In this review, we give an update on the different MSVs discovered so far and describe current data on their transmission and interaction with the mosquito immune system as well as the effect MSVs could have on an arboviruses-co-infection. Lastly, we discuss potential uses of these viruses, including vector and transmission control.
Collapse
Affiliation(s)
- Eric Agboli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho PMB 31, Ghana.
| | - Mayke Leggewie
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Mine Altinli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Esther Schnettler
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| |
Collapse
|
31
|
AFLP-AFLP in silico-NGS approach reveals polymorphisms in repetitive elements in the malignant genome. PLoS One 2018; 13:e0206620. [PMID: 30408048 PMCID: PMC6224067 DOI: 10.1371/journal.pone.0206620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022] Open
Abstract
The increasing interest in exploring the human genome and identifying genetic risk factors contributing to the susceptibility to and outcome of diseases has supported the rapid development of genome-wide techniques. However, the large amount of obtained data requires extensive bioinformatics analysis. In this work, we established an approach combining amplified fragment length polymorphism (AFLP), AFLP in silico and next generation sequencing (NGS) methods to map the malignant genome of patients with chronic myeloid leukemia. We compared the unique DNA fingerprints of patients generated by the AFLP technique approach with those of healthy donors to identify AFLP markers associated with the disease and/or the response to treatment with imatinib, a tyrosine kinase inhibitor. Among the statistically significant AFLP markers selected for NGS analysis and virtual fingerprinting, we identified the sequences of three fragments in the region of DNA repeat element OldhAT1, LINE L1M7, LTR MER90, and satellite ALR/Alpha among repetitive elements, which may indicate a role of these non-coding repetitive sequences in hematological malignancy. SNPs leading to the presence/absence of these fragments were confirmed by Sanger sequencing. When evaluating the results of AFLP analysis for some fragments, we faced the frequently discussed size homoplasy, resulting in co-migration of non-identical AFLP fragments that may originate from an insertion/deletion, SNP, somatic mutation anywhere in the genome, or combination thereof. The AFLP–AFLP in silico–NGS procedure represents a smart alternative to microarrays and relatively expensive and bioinformatically challenging whole-genome sequencing to detect the association of variable regions of the human genome with diseases.
Collapse
|
32
|
Gallagher MD, Matejusova I, Nguyen L, Ruane NM, Falk K, Macqueen DJ. Nanopore sequencing for rapid diagnostics of salmonid RNA viruses. Sci Rep 2018; 8:16307. [PMID: 30397226 PMCID: PMC6218516 DOI: 10.1038/s41598-018-34464-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022] Open
Abstract
Analysis of pathogen genome variation is essential for informing disease management and control measures in farmed animals. For farmed fish, the standard approach is to use PCR and Sanger sequencing to study partial regions of pathogen genomes, with second and third-generation sequencing tools yet to be widely applied. Here we demonstrate rapid and accurate sequencing of two disease-causing viruses affecting global salmonid aquaculture, salmonid alphavirus (SAV) and infectious salmon anaemia virus (ISAV), using third-generation nanopore sequencing on the MinION platform (Oxford Nanopore Technologies). Our approach complements PCR from infected material with MinION sequencing to recover genomic information that matches near perfectly to Sanger-verified references. We use this method to present the first SAV subtype-6 genome, which branches as the sister to all other SAV lineages in a genome-wide phylogenetic reconstruction. MinION sequencing offers an effective strategy for fast, genome-wide analysis of fish viruses, with major potential applications for diagnostics and robust investigations into the origins and spread of disease outbreaks.
Collapse
Affiliation(s)
- Michael D Gallagher
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Iveta Matejusova
- Marine Scotland Science, Marine Laboratory, Aberdeen, AB11 9DB, United Kingdom
| | - Lien Nguyen
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
| | - Neil M Ruane
- Fish Health Unit, Marine Institute, Rinville Oranmore, Co, Galway, Ireland
| | - Knut Falk
- Norwegian Veterinary Institute, Ullevålsveien 68, 0454, Oslo, Norway
| | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, United Kingdom.
| |
Collapse
|
33
|
Parreira R. Laboratory Methods in Molecular Epidemiology: Viral Infections. Microbiol Spectr 2018; 6:10.1128/microbiolspec.ame-0003-2018. [PMID: 30387412 PMCID: PMC11633636 DOI: 10.1128/microbiolspec.ame-0003-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 01/05/2023] Open
Abstract
Viruses, which are the most abundant biological entities on the planet, have been regarded as the "dark matter" of biology in the sense that despite their ubiquity and frequent presence in large numbers, their detection and analysis are not always straightforward. The majority of them are very small (falling under the limit of 0.5 μm), and collectively, they are extraordinarily diverse. In fact, the majority of the genetic diversity on the planet is found in the so-called virosphere, or the world of viruses. Furthermore, the most frequent viral agents of disease in humans display an RNA genome, and frequently evolve very fast, due to the fact that most of their polymerases are devoid of proofreading activity. Therefore, their detection, genetic characterization, and epidemiological surveillance are rather challenging. This review (part of the Curated Collection on Advances in Molecular Epidemiology of Infectious Diseases) describes many of the methods that, throughout the last few decades, have been used for viral detection and analysis. Despite the challenge of having to deal with high genetic diversity, the majority of these methods still depend on the amplification of viral genomic sequences, using sequence-specific or sequence-independent approaches, exploring thermal profiles or a single nucleic acid amplification temperature. Furthermore, viral populations, and especially those with RNA genomes, are not usually genetically uniform but encompass swarms of genetically related, though distinct, viral genomes known as viral quasispecies. Therefore, sequence analysis of viral amplicons needs to take this fact into consideration, as it constitutes a potential analytic problem. Possible technical approaches to deal with it are also described here. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Ricardo Parreira
- Unidade de Microbiologia Médica/Global Health and Tropical Medicine (GHTM) Research Centre, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal
| |
Collapse
|
34
|
Current Perspectives on High-Throughput Sequencing (HTS) for Adventitious Virus Detection: Upstream Sample Processing and Library Preparation. Viruses 2018; 10:v10100566. [PMID: 30332784 PMCID: PMC6213814 DOI: 10.3390/v10100566] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 11/17/2022] Open
Abstract
A key step for broad viral detection using high-throughput sequencing (HTS) is optimizing the sample preparation strategy for extracting viral-specific nucleic acids since viral genomes are diverse: They can be single-stranded or double-stranded RNA or DNA, and can vary from a few thousand bases to over millions of bases, which might introduce biases during nucleic acid extraction. In addition, viral particles can be enveloped or non-enveloped with variable resistance to pre-treatment, which may influence their susceptibility to extraction procedures. Since the identity of the potential adventitious agents is unknown prior to their detection, efficient sample preparation should be unbiased toward all different viral types in order to maximize the probability of detecting any potential adventitious viruses using HTS. Furthermore, the quality assessment of each step for sample processing is also a critical but challenging aspect. This paper presents our current perspectives for optimizing upstream sample processing and library preparation as part of the discussion in the Advanced Virus Detection Technologies Interest group (AVDTIG) The topics include: use of nuclease treatment to enrich for encapsidated nucleic acids, techniques for amplifying low amounts of virus nucleic acids, selection of different extraction methods, relevant controls, the use of spike recovery experiments, and quality control measures during library preparation.
Collapse
|
35
|
Conrad TA, Lo CC, Koehler JW, Graham AS, Stefan CP, Hall AT, Douglas CE, Chain PS, Minogue TD. Diagnostic targETEd seQuencing adjudicaTion (DETEQT): Algorithms for Adjudicating Targeted Infectious Disease Next-Generation Sequencing Panels. J Mol Diagn 2018; 21:99-110. [PMID: 30268944 DOI: 10.1016/j.jmoldx.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/23/2018] [Accepted: 08/14/2018] [Indexed: 12/28/2022] Open
Abstract
Next-generation sequencing (NGS) for infectious disease diagnostics is a relatively new and underdeveloped concept. If this technology is to become a regulatory-grade clinical diagnostic, standardization in the form of locked-down assays and firmly established underlying processes is necessary. Targeted sequencing, specifically by amplification of genomic signatures, has the potential to bridge the gap between PCR- and NGS-based diagnostics; however, existing NGS assay panels lack validated analytical techniques to adjudicate high background and error-prone NGS data. Herein, we present the Diagnostic targETEd seQuencing adjudicaTion (DETEQT) software, consisting of an intuitive bioinformatics pipeline entailing a set of algorithms to translate raw sequencing data into positive, negative, and indeterminate diagnostic determinations. After basic read filtering and mapping, the software compares abundance and quality metrics against heuristic and fixed thresholds. A novel generalized quality function provides an amalgamated quality score for the match between sequence reads of an assay and panel targets, rather than considering each component factor independently. When evaluated against numerous assay samples and parameters (mock clinical, human, and nonhuman primate clinical data sets; diverse amplification strategies; downstream applications; and sequence platforms), DETEQT demonstrated improved rejection of false positives and accuracies >95%. Finally, DETEQT was implemented in the user-friendly Empowering the Development of Genomics Expertise (EDGE) bioinformatics platform, providing a complete, end-to-end solution that can be operated by nonexperts in a clinical laboratory setting.
Collapse
Affiliation(s)
- Turner A Conrad
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Chien-Chi Lo
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Jeffrey W Koehler
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Amanda S Graham
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Christopher P Stefan
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Adrienne T Hall
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Christina E Douglas
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Patrick S Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Timothy D Minogue
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland.
| |
Collapse
|
36
|
Insect-specific viruses: from discovery to potential translational applications. Curr Opin Virol 2018; 33:33-41. [PMID: 30048906 DOI: 10.1016/j.coviro.2018.07.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
Abstract
Over the past decade the scientific community has experienced a new age of virus discovery in arthropods in general, and in insects in particular. Next generation sequencing and advanced bioinformatics tools have provided new insights about insect viromes and viral evolution. In this review, we discuss some high-throughput sequencing technologies used to discover viruses in insects and the challenges raised in data interpretations. Additionally, the discovery of these novel viruses that are considered as insect-specific viruses (ISVs) has gained increasing attention in their potential use as biological agents. As example, we show how the ISV Nhumirim virus was used to reduce West Nile virus transmission when co-infecting the mosquito vector. We also discuss new translational opportunities of using ISVs to limit insect vector competence by using them to interfere with pathogen acquisition, to directly target the insect vector or to confer pathogen resistance by the insect vector.
Collapse
|
37
|
Loka TP, Tausch SH, Dabrowski PW, Radonic A, Nitsche A, Renard BY. PriLive: privacy-preserving real-time filtering for next-generation sequencing. Bioinformatics 2018. [PMID: 29522157 DOI: 10.1093/bioinformatics/bty128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Motivation In next-generation sequencing, re-identification of individuals and other privacy-breaching strategies can be applied even for anonymized data. This also holds true for applications in which human DNA is acquired as a by-product, e.g. for viral or metagenomic samples from a human host. Conventional data protection strategies including cryptography and post-hoc filtering are only appropriate for the final and processed sequencing data. This can result in an insufficient level of data protection and a considerable time delay in the further analysis workflow. Results We present PriLive, a novel tool for the automated removal of sensitive data while the sequencing machine is running. Thereby, human sequence information can be detected and removed before being completely produced. This facilitates the compliance with strict data protection regulations. The unique characteristic to cause almost no time delay for further analyses is also a clear benefit for applications other than data protection. Especially if the sequencing data are dominated by known background signals, PriLive considerably accelerates consequent analyses by having only fractions of input data. Besides these conceptual advantages, PriLive achieves filtering results at least as accurate as conventional post-hoc filtering tools. Availability and implementation PriLive is open-source software available at https://gitlab.com/rki_bioinformatics/PriLive. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tobias P Loka
- Bioinformatics Division (MF 1), Department for Methods Development and Research Infrastructure
| | - Simon H Tausch
- Bioinformatics Division (MF 1), Department for Methods Development and Research Infrastructure.,Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1)
| | - Piotr W Dabrowski
- Bioinformatics Division (MF 1), Department for Methods Development and Research Infrastructure
| | - Aleksandar Radonic
- Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1).,Genome Sequencing Unit (MF 2), Department for Methods Development and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1)
| | - Bernhard Y Renard
- Bioinformatics Division (MF 1), Department for Methods Development and Research Infrastructure
| |
Collapse
|
38
|
Bhuvaneshwar K, Song L, Madhavan S, Gusev Y. viGEN: An Open Source Pipeline for the Detection and Quantification of Viral RNA in Human Tumors. Front Microbiol 2018; 9:1172. [PMID: 29922260 PMCID: PMC5996193 DOI: 10.3389/fmicb.2018.01172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/15/2018] [Indexed: 01/05/2023] Open
Abstract
An estimated 17% of cancers worldwide are associated with infectious causes. The extent and biological significance of viral presence/infection in actual tumor samples is generally unknown but could be measured using human transcriptome (RNA-seq) data from tumor samples. We present an open source bioinformatics pipeline viGEN, which allows for not only the detection and quantification of viral RNA, but also variants in the viral transcripts. The pipeline includes 4 major modules: The first module aligns and filter out human RNA sequences; the second module maps and count (remaining un-aligned) reads against reference genomes of all known and sequenced human viruses; the third module quantifies read counts at the individual viral-gene level thus allowing for downstream differential expression analysis of viral genes between case and controls groups. The fourth module calls variants in these viruses. To the best of our knowledge, there are no publicly available pipelines or packages that would provide this type of complete analysis in one open source package. In this paper, we applied the viGEN pipeline to two case studies. We first demonstrate the working of our pipeline on a large public dataset, the TCGA cervical cancer cohort. In the second case study, we performed an in-depth analysis on a small focused study of TCGA liver cancer patients. In the latter cohort, we performed viral-gene quantification, viral-variant extraction and survival analysis. This allowed us to find differentially expressed viral-transcripts and viral-variants between the groups of patients, and connect them to clinical outcome. From our analyses, we show that we were able to successfully detect the human papilloma virus among the TCGA cervical cancer patients. We compared the viGEN pipeline with two metagenomics tools and demonstrate similar sensitivity/specificity. We were also able to quantify viral-transcripts and extract viral-variants using the liver cancer dataset. The results presented corresponded with published literature in terms of rate of detection, and impact of several known variants of HBV genome. This pipeline is generalizable, and can be used to provide novel biological insights into microbial infections in complex diseases and tumorigeneses. Our viral pipeline could be used in conjunction with additional type of immuno-oncology analysis based on RNA-seq data of host RNA for cancer immunology applications. The source code, with example data and tutorial is available at: https://github.com/ICBI/viGEN/.
Collapse
Affiliation(s)
- Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC, United States
| | - Lei Song
- Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC, United States
| | - Subha Madhavan
- Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC, United States
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC, United States
| |
Collapse
|
39
|
Advances in Clinical Diagnosis and Management of Chikungunya Virus Infection. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2018. [DOI: 10.1007/s40506-018-0172-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Escobar-Escamilla N, Ramírez-González JE, Castro-Escarpulli G, Díaz-Quiñonez JA. Utility of high-throughput DNA sequencing in the study of the human papillomaviruses. Virus Genes 2017; 54:17-24. [PMID: 29282656 DOI: 10.1007/s11262-017-1530-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/19/2017] [Indexed: 11/28/2022]
Abstract
The Papillomaviridae family is probably the most diverse group of viruses that affect vertebrates. The study of the relationship between infection by certain types of human papillomavirus (HPV) and the development of neoplastic epithelial lesions is of particular interest because of the high prevalence of HPV-related carcinomas in populations of developing countries. To understand the mechanisms of infection and their association with different clinical manifestations, molecular tools play an important role in the description of new types of HPV, the characterization of effector properties of the viral factors, the specific diagnosis and monitoring of HPV types, and the alteration patterns at genetic level in the host. Technological advances in the field of DNA sequencing have led to the development of different next-generation sequencing systems, allowing obtaining a large amount of data and broadening the applications to study viral diseases. In this review, we summarize the main approaches and their perspectives where the use of massively parallel sequencing has been proved as a useful tool in the research of the HPV infection.
Collapse
Affiliation(s)
- Noé Escobar-Escamilla
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) "Dr. Manuel Martínez Báez", Secretaría de Salud, Mexico City, Mexico
| | - José Ernesto Ramírez-González
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) "Dr. Manuel Martínez Báez", Secretaría de Salud, Mexico City, Mexico
| | | | - José Alberto Díaz-Quiñonez
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) "Dr. Manuel Martínez Báez", Secretaría de Salud, Mexico City, Mexico.,División de Estudios de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
41
|
Zárate S, Taboada B, Yocupicio-Monroy M, Arias CF. Human Virome. Arch Med Res 2017; 48:701-716. [DOI: 10.1016/j.arcmed.2018.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
|
42
|
Galan-Navarro C, Rincon-Restrepo M, Zimmer G, Ollmann Saphire E, Hubbell JA, Hirosue S, Swartz MA, Kunz S. Oxidation-sensitive polymersomes as vaccine nanocarriers enhance humoral responses against Lassa virus envelope glycoprotein. Virology 2017; 512:161-171. [PMID: 28963882 DOI: 10.1016/j.virol.2017.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/01/2022]
Abstract
Lassa virus (LASV) causes severe hemorrhagic fever with high mortality, yet no vaccine currently exists. Antibodies targeting viral attachment proteins are crucial for protection against many viral infections. However, the envelope glycoprotein (GP)-1 of LASV elicits weak antibody responses due to extensive glycan shielding. Here, we explored a novel vaccine strategy to enhance humoral immunity against LASV GP1. Using structural information, we designed a recombinant GP1 immunogen, and then encapsulated it into oxidation-sensitive polymersomes (PS) as nanocarriers that promote intracellular MHCII loading. Mice immunized with adjuvanted PS (LASV GP1) showed superior humoral responses than free LASV GP1, including antibodies with higher binding affinity to virion GP1, increased levels of polyfunctional anti-viral CD4 T cells, and IgG-secreting B cells. PS (LASV GP1) elicited a more diverse epitope repertoire of anti-viral IgG. Together, these data demonstrate the potential of our nanocarrier vaccine platform for generating virus-specific antibodies against weakly immunogenic viral antigens.
Collapse
Affiliation(s)
- Clara Galan-Navarro
- Institute of Microbiology, Lausanne University Hospital. Lausanne, Switzerland; Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering, École Polytechnique Féderal de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marcela Rincon-Restrepo
- Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering, École Polytechnique Féderal de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gert Zimmer
- Division of Virology, Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Jeffrey A Hubbell
- Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering, École Polytechnique Féderal de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institute for Molecular Engineering and Ben May Department of Cancer Research, University of Chicago, IL, United States
| | - Sachiko Hirosue
- Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering, École Polytechnique Féderal de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Melody A Swartz
- Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering, École Polytechnique Féderal de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institute for Molecular Engineering and Ben May Department of Cancer Research, University of Chicago, IL, United States.
| | - Stefan Kunz
- Institute of Microbiology, Lausanne University Hospital. Lausanne, Switzerland.
| |
Collapse
|
43
|
Song L, Huang W, Kang J, Huang Y, Ren H, Ding K. Comparison of error correction algorithms for Ion Torrent PGM data: application to hepatitis B virus. Sci Rep 2017; 7:8106. [PMID: 28808243 PMCID: PMC5556038 DOI: 10.1038/s41598-017-08139-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/05/2017] [Indexed: 01/26/2023] Open
Abstract
Ion Torrent Personal Genome Machine (PGM) technology is a mid-length read, low-cost and high-speed next-generation sequencing platform with a relatively high insertion and deletion (indel) error rate. A full systematic assessment of the effectiveness of various error correction algorithms in PGM viral datasets (e.g., hepatitis B virus (HBV)) has not been performed. We examined 19 quality-trimmed PGM datasets for the HBV reverse transcriptase (RT) region and found a total error rate of 0.48% ± 0.12%. Deletion errors were clearly present at the ends of homopolymer runs. Tests using both real and simulated data showed that the algorithms differed in their abilities to detect and correct errors and that the error rate and sequencing depth significantly affected the performance. Of the algorithms tested, Pollux showed a better overall performance but tended to over-correct 'genuine' substitution variants, whereas Fiona proved to be better at distinguishing these variants from sequencing errors. We found that the combined use of Pollux and Fiona gave the best results when error-correcting Ion Torrent PGM viral data.
Collapse
Affiliation(s)
- Liting Song
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Wenxun Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Juan Kang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Yuan Huang
- Center for Hepatobillary and Pancreatic Diseases, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing, 100044, P.R. China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Keyue Ding
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
44
|
The Human Virome: Implications for Clinical Practice in Transplantation Medicine. J Clin Microbiol 2017; 55:2884-2893. [PMID: 28724557 DOI: 10.1128/jcm.00489-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Advances in DNA sequencing technology have provided an unprecedented opportunity to study the human virome. Transplant recipients and other immunocompromised hosts are at particular risk for developing virus-related pathology; thus, the impact of the virome on health and disease may be even more relevant in this population. Here, we discuss technical considerations in studying the human virome, the current literature on the virome in transplant recipients, and near-future applications of sequence-based findings that can further our understanding of viruses in transplantation medicine.
Collapse
|
45
|
Nkili-Meyong AA, Bigarré L, Labouba I, Vallaeys T, Avarre JC, Berthet N. Contribution of Next-Generation Sequencing to Aquatic and Fish Virology. Intervirology 2017; 59:285-300. [PMID: 28668959 DOI: 10.1159/000477808] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/27/2017] [Indexed: 12/13/2022] Open
Abstract
The recent technological advances in nucleic acid sequencing, called next-generation sequencing (NGS), have revolutionized the field of genomics and have also influenced viral research. Aquatic viruses, and especially those infecting fish, have also greatly benefited from NGS technologies, which provide a huge amount of molecular information at a low cost in a relatively short period of time. Here, we review the use of the current high-throughput sequencing platforms with a special focus on the associated challenges (regarding sample preparation and bioinformatics) in their applications to the field of aquatic virology, especially for: (i) discovering novel viruses that may be associated with fish mortalities, (ii) elucidating the mechanisms of pathogenesis, and finally (iii) studying the molecular epidemiology of these pathogens.
Collapse
Affiliation(s)
- Andriniaina Andy Nkili-Meyong
- Département Zoonoses et Maladies Emergentes, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | | | | | | | | | | |
Collapse
|
46
|
Toohey-Kurth K, Sibley SD, Goldberg TL. Metagenomic assessment of adventitious viruses in commercial bovine sera. Biologicals 2017; 47:64-68. [PMID: 28366627 DOI: 10.1016/j.biologicals.2016.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 11/29/2022] Open
Abstract
Animal serum is an essential supplement for cell culture media. Contamination of animal serum with adventitious viruses has led to major regulatory action and product recalls. We used metagenomic methods to detect and characterize viral contaminants in 26 bovine serum samples from 12 manufacturers. Across samples, we detected sequences with homology to 20 viruses at depths of up to 50,000 viral reads per million. The viruses detected represented nine viral families plus four taxonomically unassigned viruses and had both RNA genomes and DNA genomes. Sequences ranged from 28% to 96% similar at the amino acid level to viruses in the GenBank database. The number of viruses varied from zero to 11 among samples and from one to 11 among suppliers, with only one product from one supplier being entirely "clean." For one common adventitious virus, bovine viral diarrhea virus (BVDV), abundance estimates calculated from metagenomic data (viral reads per million) closely corresponded to Ct values from quantitative real-time reverse transcription polymerase chain reaction (rtq-PCR), with metagenomics being approximately as sensitive as rtq-PCR. Metagenomics is useful for detecting taxonomically and genetically diverse adventitious viruses in commercial serum products, and it provides sensitive and quantitative information.
Collapse
Affiliation(s)
- Kathy Toohey-Kurth
- University of Wisconsin-Madison, Department of Pathobiological Sciences, 1656 Linden Drive, Madison, WI 53706, USA; Wisconsin Veterinary Diagnostic Laboratory, 445 Easterday Lane, Madison, WI 53706, USA
| | - Samuel D Sibley
- University of Wisconsin-Madison, Department of Pathobiological Sciences, 1656 Linden Drive, Madison, WI 53706, USA
| | - Tony L Goldberg
- University of Wisconsin-Madison, Department of Pathobiological Sciences, 1656 Linden Drive, Madison, WI 53706, USA; University of Wisconsin-Madison Global Health Institute, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
47
|
Abstract
Persistent infection with high-risk human papillomavirus (HPV) genotypes is the leading cause of cervical cancer development. To this end several studies have focused on designing molecular assays for HPV genotyping, which are considered as the gold standard for the early diagnosis of HPV infection. Moreover, the tendency of HPV DNA to be integrated into the host chromosome is a determining event for cervical oncogenesis. Thus, the establishment of molecular techniques was promoted in order to investigate the physical status of the HPV DNA and the locus of viral insertion into the host chromosome. The molecular approaches that have been developed recently facilitate the collection of a wide spectrum of valuable information specific to each individual patient and therefore can significantly contribute to the establishment of a personalised prognosis, diagnosis and treatment of HPV-positive patients. The present review focuses on state of the art molecular assays for HPV detection and genotyping for intra-lesion analyses, it examines molecular approaches for the determination of HPV-DNA physical status and it discusses the criteria for selecting the most appropriate regions of viral DNA to be incorporated in HPV genotyping and in the determination of HPV-DNA physical status.
Collapse
|
48
|
Abstract
Accurate diagnosis of viral infections enhances the ability of the clinician to make decisions on appropriate treatment of patients, evaluate disease progression and prevent misuse of antibiotics. Knowledge of the pathogen involved also allow implementation of infection control and monitoring of success of antiviral treatments that may affect the prognosis of patients. Epidemiological data collected through accurate diagnostics play an important role in public health through identification and control of outbreaks, implementation of appropriate diagnostic tests, vaccination programs and treatment but also to recognize common and emerging pathogens in a community. It is key that the clinician have an understanding of appropriate specimens to send to the laboratory and the value of specific nucleic acid and serological testing for different viral pathogens. Molecular techniques have revolutionized viral diagnoses over the past decade and enhanced both the sensitivity and specificity of tests and the speed by which a diagnosis can be made and new tests be developed. The continued use of serology for viruses with a short viremia, or for chronic infections should however complement these tests. This chapter aims to provide an overview of the available tests, the principles of testing and appropriate tests to select for different viruses and syndromes. Also provided is a glimpse of new developments in diagnostics that may further enhance the capacity to make a conclusive diagnosis in the near future.
Collapse
Affiliation(s)
- Robin J. Green
- Department of Paediatrics and Child Health, University of Pretoria, School of Medicine, Pretoria, ZA, South Africa
| |
Collapse
|
49
|
Mitchell AB, Oliver BGG, Glanville AR. Translational Aspects of the Human Respiratory Virome. Am J Respir Crit Care Med 2016; 194:1458-1464. [DOI: 10.1164/rccm.201606-1278ci] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
50
|
Viral Metagenomics on Blood-Feeding Arthropods as a Tool for Human Disease Surveillance. Int J Mol Sci 2016; 17:ijms17101743. [PMID: 27775568 PMCID: PMC5085771 DOI: 10.3390/ijms17101743] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 11/17/2022] Open
Abstract
Surveillance and monitoring of viral pathogens circulating in humans and wildlife, together with the identification of emerging infectious diseases (EIDs), are critical for the prediction of future disease outbreaks and epidemics at an early stage. It is advisable to sample a broad range of vertebrates and invertebrates at different temporospatial levels on a regular basis to detect possible candidate viruses at their natural source. However, virus surveillance systems can be expensive, costly in terms of finances and resources and inadequate for sampling sufficient numbers of different host species over space and time. Recent publications have presented the concept of a new virus surveillance system, coining the terms "flying biological syringes", "xenosurveillance" and "vector-enabled metagenomics". According to these novel and promising surveillance approaches, viral metagenomics on engorged mosquitoes might reflect the viral diversity of numerous mammals, birds and humans, combined in the mosquitoes' blood meal during feeding on the host. In this review article, we summarize the literature on vector-enabled metagenomics (VEM) techniques and its application in disease surveillance in humans. Furthermore, we highlight the combination of VEM and "invertebrate-derived DNA" (iDNA) analysis to identify the host DNA within the mosquito midgut.
Collapse
|