1
|
Habiballah S, Chambers J, Meek E, Reisfeld B. The in silico identification of novel broad-spectrum antidotes for poisoning by organophosphate anticholinesterases. J Comput Aided Mol Des 2023; 37:755-764. [PMID: 37796381 PMCID: PMC11251483 DOI: 10.1007/s10822-023-00537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Owing to their potential to cause serious adverse health effects, significant efforts have been made to develop antidotes for organophosphate (OP) anticholinesterases, such as nerve agents. To be optimally effective, antidotes must not only reactivate inhibited target enzymes, but also have the ability to cross the blood-brain barrier (BBB). Progress has been made toward brain-penetrating acetylcholinesterase reactivators through the development of a new group of substituted phenoxyalkyl pyridinium oximes. To help in the selection and prioritization of compounds for future synthesis and testing within this class of chemicals, and to identify candidate broad-spectrum molecules, an in silico framework was developed to systematically generate structures and screen them for reactivation efficacy and BBB penetration potential.
Collapse
Affiliation(s)
- Sohaib Habiballah
- Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO, 80523-1370, USA
| | - Janice Chambers
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, MS, 39762-6100, USA
| | - Edward Meek
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, MS, 39762-6100, USA
| | - Brad Reisfeld
- Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO, 80523-1370, USA.
- Colorado School of Public Health, Colorado State University, 1612 Campus Delivery, Fort Collins, CO, 80523-1612, USA.
| |
Collapse
|
2
|
An Appraisal of Antidotes' Effectiveness: Evidence of the Use of Phyto-Antidotes and Biotechnological Advancements. Molecules 2020; 25:molecules25071516. [PMID: 32225103 PMCID: PMC7181008 DOI: 10.3390/molecules25071516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
Poisoning is the greatest source of avoidable death in the world and can result from industrial exhausts, incessant bush burning, drug overdose, accidental toxication or snake envenomation. Since the advent of Albert Calmette’s cobra venom antidote, efforts have been geared towards antidotes development for various poisons to date. While there are resources and facilities to tackle poisoning in urban areas, rural areas and developing countries are challenged with poisoning management due to either the absence of or inadequate facilities and this has paved the way for phyto-antidotes, some of which have been scientifically validated. This review presents the scope of antidotes’ effectiveness in different experimental models and biotechnological advancements in antidote research for future applications. While pockets of evidence of the effectiveness of antidotes exist in vitro and in vivo with ample biotechnological developments, the utilization of analytic assays on existing and newly developed antidotes that have surpassed the proof of concept stage, as well as the inclusion of antidote’s short and long-term risk assessment report, will help in providing the required scientific evidence(s) prior to regulatory authorities’ approval.
Collapse
|
3
|
Cruz PN, Pereira TC, Guindani C, Oliveira DA, Rossi MJ, Ferreira SR. Antioxidant and antibacterial potential of butia (Butia catarinensis) seed extracts obtained by supercritical fluid extraction. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Chambers JE, Meek EC, Bennett JP, Bennett WS, Chambers HW, Leach CA, Pringle RB, Wills RW. Novel substituted phenoxyalkyl pyridinium oximes enhance survival and attenuate seizure-like behavior of rats receiving lethal levels of nerve agent surrogates. Toxicology 2015; 339:51-57. [PMID: 26705700 DOI: 10.1016/j.tox.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/03/2015] [Accepted: 12/11/2015] [Indexed: 11/16/2022]
Abstract
Novel substituted phenoxyalkyl pyridinium oximes, previously shown to reactivate brain cholinesterase in rats treated with high sublethal dosages of surrogates of sarin and VX, were tested for their ability to prevent mortality from lethal doses of these two surrogates. Rats were treated subcutaneously with 0.6mg/kg nitrophenyl isopropyl methylphosphonate (NIMP; sarin surrogate) or 0.65mg/kg nitrophenyl ethyl methylphosphonate (NEMP; VX surrogate), dosages that were lethal within 24h to all tested rats when they received only 0.65mg/kg atropine at the time of initiation of seizure-like behavior (about 30min). If 146mmol/kg 2-PAM (human equivalent dosage) was also administered, 40% and 33% survival was obtained with NIMP and NEMP, respectively, while the novel Oximes 1 and 20 provided 65% and 55% survival for NIMP and 75 and 65% for NEMP, respectively. In addition, both novel oximes resulted in a highly significant decrease in time to cessation of seizure-like behavior compared to 2-PAM during the first 8h of observation. Brain cholinesterase inhibition was slightly less in novel oxime treated rats compared to 2-PAM in the 24h survivors. The lethality data indicate that 24h survival is improved by two of the novel oximes compared to 2-PAM. The cessation of seizure-like behavior data strongly suggest that these novel oximes are able to penetrate the blood-brain barrier and can combat the hypercholinergic activity that results in seizures. Therefore this oxime platform has exceptional promise as therapy that could both prevent nerve agent-induced lethality and attenuate nerve agent-induced seizures.
Collapse
Affiliation(s)
- Janice E Chambers
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Edward C Meek
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Joshua P Bennett
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - W Shane Bennett
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Howard W Chambers
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, P.O. Box 9775, Mississippi State, MS 39762, USA.
| | - C Andrew Leach
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Ronald B Pringle
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Robert W Wills
- Department of Pathobiology/Population Medicine, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, USA.
| |
Collapse
|
5
|
Kuca K, Cabal J, Jun D, Musilek K, Soukup O, Pohanka M, Pejchal J, Oh KA, Yang GY, Jung YS. Reactivation of VX-inhibited AChE by novel oximes having two oxygen atoms in the linker. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 30:85-87. [PMID: 21787634 DOI: 10.1016/j.etap.2010.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 05/31/2023]
Abstract
Two newly developed AChE reactivators possessing two oxime groups in 4-position of the pyridinium rings with linkers CH(2)O(CH(2))(2)OCH(2) and CH(2)O(CH(2))(4)OCH(2) were tested for their potency to reactivate VX-inhibited AChE. Their reactivation potency was compared with currently available oximes such as pralidoxime, obidoxime and HI-6. Appropriate constants (affinity towards the intact and inhibited enzyme, reactivation rate) characterizing the reactivation process were determined. According to the data obtained, a new oxime with CH(2)O(CH(2))(2)OCH(2) linker reached as high reactivation potency as HI-6. The percentage of reactivation of the oxime with CH(2)O(CH(2))(2)OCH(2) linker was comparable to that of obidoxime at a concentration 10(-3)M. Hence, these oximes may be worthy of future development for the treatment of nerve agent intoxications, especially, with lipophilic agents such as soman and cyclosarin.
Collapse
Affiliation(s)
- Kamil Kuca
- Center of Advanced Studies, Hradec Kralove, Czech Republic; Department of Toxicology, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lorke DE, Hasan MY, Nurulain SM, Kuca K, Schmitt A, Petroianu GA. Efficacy of two new asymmetric bispyridinium oximes (K-27 and K-48) in rats exposed to diisopropylfluorophosphate: comparison with pralidoxime, obidoxime, trimedoxime, methoxime, and HI-6. Toxicol Mech Methods 2009; 19:327-33. [PMID: 19778224 DOI: 10.1080/15376510902798695] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction. The new K-oximes, K-27 [1-(4-hydroxyimino-methylpyridinium)-4-(4-carbamoylpyridinium) propane dibromide] and K-48 [1-(4-hydroxyimino-methylpyridinium)-4-(4-carbamoylpyridinium) butane dibromide], show good in vitro efficacy in protecting acetylcholinesterase from inhibition by different organophosphorus compounds (OPCs), including nerve agents. To assess their efficacy in vivo, the extent of oxime-conferred protection from mortality induced by diisopropylfluorophosphate (DFP) was quantified and compared with that of five established oximes. Materials and Methods. Rats received DFP intraperitoneally in a dosage of 6, 8, or 10 micromol/rat and immediately thereafter intraperitoneal injections of K-27, K-48, pralidoxime, obidoxime, trimedoxime, methoxime, or HI-6. The relative risk (RR) of death over time (48 h) was estimated by Cox survival analysis, comparing results with the no-treatment group. Results. Best protection was observed when K-27 was used, reducing the RR of death to 19% of control RR (p < or = 0.005), whereas obidoxime (RR = 26%, p < or = 0.01), K-48 (RR = 29%, p < or = 0.005) and methoxime (RR = 26%, p < or = 0.005) were comparable. The RR of death was reduced only to about 35% of control by HI-6, to 45% by trimedoxime, and to 59% by 2-PAM (p < or = 0.005). Whereas the differences between the best oximes (K-27, obidoxime, methoxime, and K-48) were not statistically significant; these four oximes were significantly more effective than 2-PAM (p < or = 0.05). The efficacy of K-27 was also significantly higher than that of HI-6, trimedoxime, and 2-PAM (p < or = 0.05). Conclusion. Our data provide further evidence that K-27 is a very promising candidate for the treatment of intoxication with a broad spectrum of OPCs.
Collapse
Affiliation(s)
- D E Lorke
- Department of Anatomy, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | | | | | | | | | | |
Collapse
|
7
|
Kuca K, Cabal J, Jun D, Hrabinova M. In VitroEvaluation of Acetylcholinesterase Reactivators as Potential Antidotes Against Tabun Nerve Agent Poisonings. Drug Chem Toxicol 2008; 29:443-9. [PMID: 16931445 DOI: 10.1080/01480540600718565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Searching for new potent acetylcholinesterase (AChE; E.C. 3.1.1.7) reactivators (oximes) is a very time-consuming process. At our department, we are able to synthesize more than 50 new AChE reactivators per year. Owing to this fact, we have to select promising reactivators using our in vitro method (potentiometric titration, pH 8 and temperature 25 degrees C; source of cholinesterases, rat brain homogenate; time of inhibition by nerve agents, 30 min; time of reactivation, 10 min) prior to in vivo experiments. For this purpose, we are using two-phase in vitro evaluation of reactivator potency. In the first phase, reactivation potency of all newly synthesized AChE reactivators is tested at two concentrations: 10(-3) M and 10(-5) M. Afterwards, all reactivators achieving reactivation potency over 15% (especially at the concentration 10(-5) M) are tested. The second phase consists of the measurement of the relationship between concentration of the oxime and its reactivation ability. In most cases, the reactivation bell-shaped curve is obtained. The most potent AChE reactivators are selected and provided for further experiments during our development process.
Collapse
Affiliation(s)
- Kamil Kuca
- Department of Toxicology, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic.
| | | | | | | |
Collapse
|
8
|
Kuca K, Cabal J, Jun D, Hrabinova M. Potency of Five Structurally Different Acetylcholinesterase Reactivators to Reactivate Human Brain Cholinesterases Inhibited by Cyclosarin. Clin Toxicol (Phila) 2008; 45:512-5. [PMID: 17503257 DOI: 10.1080/15563650701354234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Acetylcholinesterase (AChE; EC 3.1.1.7) reactivators are used as a part of the antidotal therapy of organophosphorus pesticide and nerve agent intoxications. Cyclosarin is one member of the nerve agent family. In this article, we compared the reactivation potency of five structurally different AChE reactivators (pralidoxime, trimedoxime, methoxime, HS-6, and BI-6) to reactivate cyclosarin-inhibited cholinesterases of human brain. The results demonstrate that the bisquaternary monooxime reactivator BI-6 seems to be the most potent reactivator of cyclosarin-inhibited cholinesterases. Moreover, according to the results, we can describe basic structural requirements, which are necessary for the efficacious reactivation process.
Collapse
Affiliation(s)
- Kamil Kuca
- Department of Toxicology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove.,Czech Republic.
| | | | | | | |
Collapse
|
9
|
Kuca K, Cabal J, Jun D, Bajgar J, Hrabinova M. Potency of new structurally different oximes to reactivate cyclosarin-inhibited human brain acetylcholinesterases. J Enzyme Inhib Med Chem 2008; 21:663-6. [PMID: 17252938 DOI: 10.1080/14756360600850916] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Antidotes currently used for organophosphorus pesticide and nerve agent intoxications consist of anticholinergics (atropine mainly) and acetylcholinesterase (AChE, EC 3.1.1.7) reactivators called oximes. Owing to the wide-spread of these toxic compounds worldwide, development of antidotes in the case of first aid is needed. To select the most promising AChE reactivators is a very time consuming process, which is necessary before approval of these compounds to be used as human antidotes. Because of ethical reasons, many developing experiments have been conducted on laboratory animals. However, these results often could not be transferred directly to human. Here, we have tested five newly developed AChE reactivators--K027, K033, K048, K074 and K075, which showed promising reactivation activity on rodents, as reactivators of inhibited human brain cholinesterases. For this purpose, cyclosarin was used as member of the nerve agent family. Oxime HI-6 and pralidoxime were used as AChE reactivator standards. Two AChE reactivators, K027 and K033, achieved comparable reactivation potency as HI-6. Moreover, oxime K033 reached its maximal reactivation potency at the lowest concentration which could be attained in humans.
Collapse
Affiliation(s)
- Kamil Kuca
- Department of Toxicology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.
| | | | | | | | | |
Collapse
|
10
|
Hrabinova M, Musilek K, Jun D, Kuca K. New group of xylene linker-containing acetylcholinesterase reactivators as antidotes against the nerve agent cyclosarin. J Enzyme Inhib Med Chem 2008; 21:515-9. [PMID: 17194020 DOI: 10.1080/14756360600741420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Nerve agents such as sarin, cyclosarin and tabun are organophosphorus substances able to inhibit the enzyme acetylcholinesterase (AChE; EC 3.1.1.7). AChE reactivators and anticholinergics are generally used as antidotes in the case of intoxication with these agents. None of the known AChE reactivators is able to reactivate AChE inhibited by all nerve agents used. In this work, reactivation potency of nine newly developed AChE reactivators with an incorporated xylene ring in their structure was measured in vitro. Cyclosarin was chosen as an appropriate member of the nerve agent family. Reactivation potency of the tested AChE reactivators was compared with the gold standard of AChE reactivators--pralidoxime. Two oximes (K107 and K108) surpassed the reactivation potency of pralidoxime. Moreover, from the obtained results it could be deduced that AChE reactivators with a functional oxime group in position-2 are the most potent AChE reactivators in the case of cyclosarin intoxications.
Collapse
Affiliation(s)
- Martina Hrabinova
- Department of Toxicology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | | | | | | |
Collapse
|
11
|
Lorke DE, Hasan MY, Nurulain SM, Sheen R, Kuca K, Petroianu GA. Entry of two new asymmetric bispyridinium oximes (K-27 and K-48) into the rat brain: comparison with obidoxime. J Appl Toxicol 2007; 27:482-90. [PMID: 17309042 DOI: 10.1002/jat.1229] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the search for new oximes with higher reactivation potency and a broader spectrum, K-27 and K-48, have recently been synthesized. To test if their superior efficacy was related to better penetration across the blood-brain barrier, their brain entry was compared with that of obidoxime, when administered either alone or after the organophosphate paraoxon (POX). Rats received 50 micromol obidoxime, K-27 or K-48, either alone or in addition to 1 micromol POX. Oxime concentrations at various points in time in brain and plasma were measured using HPLC. The obidoxime C(max) in brain was 1.3% of the plasma C(max) when injected alone, and 1.5% when injected following POX. The ratio of the area under the curve (AUC) brain to plasma for obidoxime was around 6%, irrespective of whether it was administered alone or after POX. For K-27, C(max) (brain) was 0.6% of C(max) (plasma) when injected alone, and 0.7% when injected after POX (no significant difference). The AUC (brain) was 2% of AUC (plasma) for both K-27 groups. K-48, when injected alone reached 1.4% of C(max) (plasma) in the brain and 1.2% of C(max) (plasma), when injected following POX. The AUC (brain) was 5% of the AUC (plasma), both when K-48 was administered alone and in combination with POX. Entry of all three oximes into the brain is minimal and cannot explain the better therapeutic efficacy of K-27 and K-48. As already observed for pralidoxime, injection of POX before oxime administration had no influence upon penetration across the blood-brain barrier.
Collapse
Affiliation(s)
- D E Lorke
- Department of Anatomy, FMHS, UAE University, Al Ain, United Arab Emirates
| | | | | | | | | | | |
Collapse
|