1
|
Kristjansdottir K, Norddahl GL, Ivarsdottir EV, Halldorsson GH, Einarsson G, Bjarnadottir K, Rutsdottir G, Arnthorsson AO, Erikstrup C, Gudmundsdottir S, Gunnarsdottir K, Gunnbjornsdottir MI, Halldorsson BV, Holm H, Ludviksdottir D, Ludviksson BR, Brunak S, Bruun MT, Mikkelsen C, Mikkelsen S, Jensen BA, Sørensen E, Thomsen SF, Ullum H, Olafsson I, Onundarson PT, Ostrowski SR, Saevarsdottir S, Sigurdardottir O, Sigurgeirsson B, Snaebjarnarson AS, Sveinbjornsson G, Thorlacius GE, Thorleifsson G, Tragante V, Vidarsson B, Porsbjerg C, Bjornsdottir US, Sulem P, Gudbjartsson DF, Melsted P, Pedersen OB, Jonsdottir I, Olafsdottir TA, Stefansson K. A partial loss-of-function variant in STAT6 protects against type 2 asthma. J Allergy Clin Immunol 2025; 155:228-235. [PMID: 39423878 DOI: 10.1016/j.jaci.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Signal transducer and activator of transcription 6 (STAT6) is central to type 2 (T2) inflammation, and common noncoding variants at the STAT6 locus associate with various T2 inflammatory traits, including diseases, and its pathway is widely targeted in asthma treatment. OBJECTIVE We sought to test the association of a rare missense variant in STAT6, p.L406P, with T2 inflammatory traits, including the risk of asthma and allergic diseases, and to characterize its functional consequences in cell culture. METHODS The association of p.L406P with plasma protein levels, white blood cell counts, and the risk of asthma and allergic phenotypes was tested. Significant associations in other cohorts were also tested using a burden test. The effects of p.L406P on STAT6 protein function were examined in cell lines and by comparing CD4+ T-cell responses from carriers and noncarriers of the variant. RESULTS p.L406P associated with reduced plasma levels of STAT6 and IgE as well as with lower eosinophil and basophil counts in blood. It also protected against asthma, mostly driven by severe T2-high asthma. p.L406P led to lower IL-4-induced activation in luciferase reporter assays and lower levels of STAT6 in CD4+ T cells. We identified multiple genes with expression that was affected by the p.L406P genotype on IL-4 treatment of CD4+ T cells; the effect was consistent with a weaker IL-4 response in carriers than in noncarriers of p.L406P. CONCLUSIONS A partial loss-of-function variant in STAT6 resulted in dampened IL-4 responses and protection from T2-high asthma, implicating STAT6 as an attractive therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Gisli H Halldorsson
- deCODE genetics/Amgen, Inc, University of Iceland, Reykjavik, Iceland; School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Gudrun Rutsdottir
- deCODE genetics/Amgen, Inc, University of Iceland, Reykjavik, Iceland
| | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | | | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Inc, University of Iceland, Reykjavik, Iceland; School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Inc, University of Iceland, Reykjavik, Iceland
| | - Dora Ludviksdottir
- Allergy Department, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjorn R Ludviksson
- Department of Immunology, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Christina Mikkelsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University, Aarhus, Denmark
| | | | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Simon Francis Thomsen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Pall T Onundarson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland; Department of Clinical Biochemistry, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Saedis Saevarsdottir
- deCODE genetics/Amgen, Inc, University of Iceland, Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Bardur Sigurgeirsson
- Department of Dermatology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | - Vinicius Tragante
- deCODE genetics/Amgen, Inc, University of Iceland, Reykjavik, Iceland
| | - Brynjar Vidarsson
- Icelandic Medical Center (Laeknasetrid) Laboratory in Mjodd (RAM), Reykjavik, Iceland
| | - Celeste Porsbjerg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen, Denmark
| | - Unnur S Bjornsdottir
- Department of Respiratory Medicine and Sleep, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Patrick Sulem
- deCODE genetics/Amgen, Inc, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc, University of Iceland, Reykjavik, Iceland; School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Pall Melsted
- deCODE genetics/Amgen, Inc, University of Iceland, Reykjavik, Iceland; School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Ole Bv Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | | | - Thorunn A Olafsdottir
- deCODE genetics/Amgen, Inc, University of Iceland, Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc, University of Iceland, Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
2
|
Yoon C, Kim HK, Ham YS, Gil WJ, Mun SJ, Cho E, Yuk JM, Yang CS. Toxoplasma gondii macrophage migration inhibitory factor shows anti- Mycobacterium tuberculosis potential via AZIN1/STAT1 interaction. SCIENCE ADVANCES 2024; 10:eadq0101. [PMID: 39453997 PMCID: PMC11506136 DOI: 10.1126/sciadv.adq0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Mycobacterium tuberculosis (MTB) is a pathogenic bacterium, belonging to the family Mycobacteriaceae, that causes tuberculosis (TB). Toxoplasma gondii macrophage migration inhibitory factor (TgMIF), a protein homolog of macrophage migration inhibitory factor, has been explored for its potential to modulate immune responses during MTB infections. We observed that TgMIF that interacts with CD74, antizyme inhibitor 1 (AZIN1), and signal transducer and activator of transcription 1 (STAT1) modulates endocytosis, restoration of mitochondrial function, and macrophage polarization, respectively. These interactions promote therapeutic efficacy in mice infected with MTB, thereby presenting a potential route to host-directed therapy development. Furthermore, TgMIF, in combination with first-line TB drugs, significantly inhibited drug-resistant MTB strains, including multidrug-resistant TB. These results demonstrate that TgMIF is potentially a multifaceted therapeutic agent against TB, acting through immune modulation, enhancement of mitochondrial function, and dependent on STAT1 and AZIN1 pathways.
Collapse
Affiliation(s)
- Chanjin Yoon
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
- Institute of Natural Science & Technology, Hanyang University, Ansan 15588, South Korea
| | - Hyo Keun Kim
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
| | - Yu Seong Ham
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
| | - Woo Jin Gil
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
| | - Seok-Jun Mun
- Department of Bionano Engineering, Hanyang University, Seoul 04673, South Korea
| | - Euni Cho
- Department of Bionano Engineering, Hanyang University, Seoul 04673, South Korea
| | - Jae-Min Yuk
- Department of Infection Biology and Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
- Department of Medicinal and Life Science, Hanyang University, Ansan 15588, South Korea
| |
Collapse
|
3
|
Beckstead J, Mehrotra K, Wilson K, Fingleton B. Asthma is associated with a lower incidence of metastatic colorectal cancer in a US patient cohort. Front Oncol 2023; 13:1253660. [PMID: 37860183 PMCID: PMC10584144 DOI: 10.3389/fonc.2023.1253660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023] Open
Abstract
In previous pre-clinical studies, we examined the contribution of interleukin 4 receptor (IL4R) signaling in the progression and metastasis of colorectal cancer (CRC). Aberrant activation of this receptor can result in atopic diseases such as asthma. We hypothesized that further evidence for the contribution of excessive IL4R being associated with CRC progression could be seen in medical records, and specifically that chronic asthma patients were more likely to be diagnosed with metastatic CRC. To test this hypothesis, we took advantage of the Synthetic Derivative, a resource developed at Vanderbilt University Medical Center that hosts de-identified data taken from the electronic medical record. We developed search protocols that produced retrospective cohorts of invasive CRC patients and cancer-free equivalents. In comparing 787 metastatic CRC patients to 238 non-metastatic patients, we actually found significantly fewer asthmatics went on to develop metastatic CRC (P=0.0381). By comparing these groups together against 1197 cancer-free patients, even fewer asthmatic patients would develop invasive CRC (P<0.0001). While these results are clearly in opposition to our original hypothesis, they still support a link between chronic asthma and metastatic CRC development. One intriguing possibility, that will be examined in the future, is whether treatment for chronic asthma may be responsible for the reduction in metastatic cancer.
Collapse
Affiliation(s)
| | | | | | - Barbara Fingleton
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
4
|
Ma CS. T-helper-2 cells and atopic disease: lessons learnt from inborn errors of immunity. Curr Opin Immunol 2023; 81:102298. [PMID: 36870225 DOI: 10.1016/j.coi.2023.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
Inborn errors of immunity (IEI) are caused by monogenic variants that affect the host response to bacterial, viral, and fungal pathogens. As such, individuals with IEI often present with severe, recurrent, and life-threatening infections. However, the spectrum of disease due to IEI is very broad and extends to include autoimmunity, malignancy, and atopic diseases such as eczema, atopic dermatitis, and food and environmental allergies. Here, I review IEI that affect cytokine signaling pathways that dysregulate CD4+ T-cell differentiation, resulting in increased T-helper-2 (Th2) cell development, function, and pathogenicity. These are elegant examples of how rare IEI can provide unique insights into more common pathologies such as allergic disease that are impacting the general population at increased frequency.
Collapse
Affiliation(s)
- Cindy S Ma
- Garvan Institute of Medical Research, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Australia.
| |
Collapse
|
5
|
Suratannon N, Ittiwut C, Dik WA, Ittiwut R, Meesilpavikkai K, Israsena N, Ingrungruanglert P, Dalm VASH, van Daele PLA, Sanpavat A, Chaijitraruch N, Schrijver B, Buranapraditkun S, Porntaveetus T, Swagemakers SMA, IJspeert H, Palaga T, Suphapeetiporn K, van der Spek PJ, Hirankarn N, Chatchatee P, Martin van Hagen P, Shotelersuk V. A germline STAT6 gain-of-function variant is associated with early-onset allergies. J Allergy Clin Immunol 2023; 151:565-571.e9. [PMID: 36216080 DOI: 10.1016/j.jaci.2022.09.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND The signal transducer and activator of transcription 6 (STAT6) signaling pathway plays a central role in allergic inflammation. To date, however, there have been no descriptions of STAT6 gain-of-function variants leading to allergies in humans. OBJECTIVE We report a STAT6 gain-of-function variant associated with early-onset multiorgan allergies in a family with 3 affected members. METHODS Exome sequencing and immunophenotyping of T-helper cell subsets were conducted. The function of the STAT6 protein was analyzed by Western blot, immunofluorescence, electrophoretic mobility shift assays, and luciferase assays. Gastric organoids obtained from the index patient were used to study downstream effector cytokines. RESULTS We identified a heterozygous missense variant (c.1129G>A;p.Glu377Lys) in the DNA binding domain of STAT6 that was de novo in the index patient's father and was inherited by 2 of his 3 children. Severe atopic dermatitis and food allergy were key presentations. Clinical heterogeneity was observed among the affected individuals. Higher levels of peripheral blood TH2 lymphocytes were detected. The mutant STAT6 displayed a strong preference for nuclear localization, increased DNA binding affinity, and spontaneous transcriptional activity. Moreover, gastric organoids showed constitutive activation of STAT6 downstream signaling molecules. CONCLUSIONS A germline STAT6 gain-of-function variant results in spontaneous activation of the STAT6 signaling pathway and is associated with an early-onset and severe allergic phenotype in humans. These observations enhance our knowledge of the molecular mechanisms underlying allergic diseases and will potentially contribute to novel therapeutic interventions.
Collapse
Affiliation(s)
- Narissara Suratannon
- Center of Excellence for Allergy and Clinical Immunology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Chupong Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Willem A Dik
- Laboratory Medical Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Academic Center for Rare Immunological Diseases (Rare Immunological Disease Center), Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rungnapa Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Kornvalee Meesilpavikkai
- Center of Excellence in Immunology and Immune-mediated Diseases, Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nipan Israsena
- Center of Excellence for Stem Cell and Cell Therapy, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Praewphan Ingrungruanglert
- Center of Excellence for Stem Cell and Cell Therapy, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Virgil A S H Dalm
- Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Academic Center for Rare Immunological Diseases (Rare Immunological Disease Center), Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Paul L A van Daele
- Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Academic Center for Rare Immunological Diseases (Rare Immunological Disease Center), Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Anapat Sanpavat
- Department of Pathology, Faculty of Medicine, Thai Pediatric Gastroenterology, Hepatology and Immunology Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Nataruks Chaijitraruch
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Organ Transplantation, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Benjamin Schrijver
- Laboratory Medical Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Academic Center for Rare Immunological Diseases (Rare Immunological Disease Center), Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Supranee Buranapraditkun
- Cellular Immunology Laboratory Allergy and Clinical Immunology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sigrid M A Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Academic Center for Rare Immunological Diseases (Rare Immunological Disease Center), Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Erasmus Center for Data Analytics, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Hanna IJspeert
- Laboratory Medical Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Academic Center for Rare Immunological Diseases (Rare Immunological Disease Center), Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Tanapat Palaga
- Center of Excellence in Immunology and Immune-mediated Diseases, Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Academic Center for Rare Immunological Diseases (Rare Immunological Disease Center), Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Erasmus Center for Data Analytics, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-mediated Diseases, Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Pantipa Chatchatee
- Center of Excellence for Allergy and Clinical Immunology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
| | - P Martin van Hagen
- Center of Excellence for Allergy and Clinical Immunology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Academic Center for Rare Immunological Diseases (Rare Immunological Disease Center), Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
6
|
Hong J, Gao Q, Xiao X, Cao H, Yuan R, Liu Z, Chen T. T cell epitope of arginine kinase with CpG co-encapsulated nanoparticles attenuates a shrimp allergen-induced Th2-bias food allergy. Biosci Biotechnol Biochem 2019; 84:804-814. [PMID: 31795812 DOI: 10.1080/09168451.2019.1699395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
T cell peptide-based immunotherapy (PIT) is an appealing therapeutic strategy for modulating allergic responses without IgE cross-linking. We propose a novel PIT that combines a T-cell epitope of the shrimp allergen arginine kinase (AKp) with TLR9 agonist CpG-ODN in nanoparticles (CpG-AKp NPs) to attenuate a shrimp allergen-induced food allergy. Treatment with CpG-AKp NPs demonstrated the attenuation of anaphylaxis responses such as the reduced incidence of diarrhea and hypothermia, lower levels of specific IgE and the induction of IgG2a in serum. Th2 cytokines were suppressed and higher Th1 cytokines were detected in the splenocyte culture supernatants. Treatment of CpG-AKp NPs also enhanced the protein expression of Foxp3 and IL-10 in small intestine but decreased the activation of STAT6 and GATA3 expression, which are related to differentiation of Th2. Our data indicated that CpG-AKp NPs may represent a promising PIT against shrimp allergy.
Collapse
Affiliation(s)
- Jingyi Hong
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518055, China.,Department of Allergy, the Third Affiliated Hospital of Shenzhen University, Shenzhen, 518020, China
| | - Qichan Gao
- Department of Histology and Embryology, Gannan medical University, Ganzhou,341000, China.,Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Xiaojun Xiao
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Hui Cao
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Ruyi Yuan
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Zhigang Liu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518055, China.,Department of Allergy, the Third Affiliated Hospital of Shenzhen University, Shenzhen, 518020, China
| | - Tongqiang Chen
- Department of Histology and Embryology, Gannan medical University, Ganzhou,341000, China
| |
Collapse
|
7
|
Association study in African-admixed populations across the Americas recapitulates asthma risk loci in non-African populations. Nat Commun 2019; 10:880. [PMID: 30787307 PMCID: PMC6382865 DOI: 10.1038/s41467-019-08469-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022] Open
Abstract
Asthma is a complex disease with striking disparities across racial and ethnic groups. Despite its relatively high burden, representation of individuals of African ancestry in asthma genome-wide association studies (GWAS) has been inadequate, and true associations in these underrepresented minority groups have been inconclusive. We report the results of a genome-wide meta-analysis from the Consortium on Asthma among African Ancestry Populations (CAAPA; 7009 asthma cases, 7645 controls). We find strong evidence for association at four previously reported asthma loci whose discovery was driven largely by non-African populations, including the chromosome 17q12-q21 locus and the chr12q13 region, a novel (and not previously replicated) asthma locus recently identified by the Trans-National Asthma Genetic Consortium (TAGC). An additional seven loci reported by TAGC show marginal evidence for association in CAAPA. We also identify two novel loci (8p23 and 8q24) that may be specific to asthma risk in African ancestry populations.
Collapse
|
8
|
Saco TV, Breitzig MT, Lockey RF, Kolliputi N. Epigenetics of Mucus Hypersecretion in Chronic Respiratory Diseases. Am J Respir Cell Mol Biol 2018; 58:299-309. [PMID: 29096066 DOI: 10.1165/rcmb.2017-0072tr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Asthma, chronic obstructive pulmonary disease, and cystic fibrosis are three chronic pulmonary diseases that affect an estimated 420 million individuals across the globe. A key factor contributing to each of these conditions is mucus hypersecretion. Although management of these diseases is vastly studied, researchers have only begun to scratch the surface of the mechanisms contributing to mucus hypersecretion. Epigenetic regulation of mucus hypersecretion, other than microRNA post-translational modification, is even more scarcely researched. Detailed study of epigenetic mechanisms, such as DNA methylation and histone modification, could not only help to better the understanding of these respiratory conditions but also reveal new treatments for them. Because mucus hypersecretion is such a complex event, there are innumerable genes involved in the process, which are beyond the scope of a single review. Therefore, the purpose of this review is to narrow the focus and summarize specific epigenetic research that has been conducted on a few aspects of mucus hypersecretion in asthma, chronic obstructive pulmonary disease, cystic fibrosis, and some cancers. Specifically, this review emphasizes the contribution of DNA methylation and histone modification of particular genes involved in mucus hypersecretion to identify possible targets for the development of future therapies for these conditions. Elucidating the role of epigenetics in these respiratory diseases may provide a breath of fresh air to millions of affected individuals around the world.
Collapse
Affiliation(s)
- Tara V Saco
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Mason T Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
9
|
DETECTION OF RS9939609 POLYMORPHISM OF FTO GENE AND RS324011 POLYMORPHISM OF STAT6 GENE AND SEVERITY DEGREE OF BRONCHIAL ASTHMA ASSOCIATED WITH OBESITY. EUREKA: HEALTH SCIENCES 2017. [DOI: 10.21303/2504-5679.2017.00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this research was to analyze the distribution of FTO and STAT6 genes polymorphism in patients with bronchial asthma (BA), associated with obesity (Ob) depending on the main disease severity degree. Materials and methods. The study included 117 patients 18–48 years old, divided in 3 groups. The main group (bronchial asthma, associated with obesity) included 57 patients, two groups of comparison – 30 patients with the diagnosis BA and a normal body weight, and 30 patients with obesity, but without the pathology of the bronchopulmonary system. The general genomic DNA was extracted from blood according to the standard protocol. The genetic typing was realized by the method of allele-specific amplification with the detection of results in the real time regime using TaqMan-probes, complementary to polymorphic parts of DNA. The detection of deletions in FTO and STAT 6 genes was realized by the method of polymerase chain reaction (PCR) using specific primers. Results. In the main group, among patients with BA and Ob, carriers of Т/Т genotype were 36,84 %, Т/А – 45,61 %, А/А – 17,55 % against 40 %, 60 % and 0 % respectively in PHP group by FTO gene. Carriers of С/С genotype in the main group were 38,6 %, С/Т – 35,09 %, Т/Т – 26,31 % against 40 %, 55 % and 5 % respectively in PHP group by STAT6 gene. In the main group the light persisting BA was diagnosed in 20,0 % of cases, middle severity – in 60,0 % and severe – in 20,0 % of patients. In the group of comparison this disease severity was observed in 17,7 %, 66,5 % and 15,8 % of observations, respectively. Conclusions. So, among patients with BA, associated with Ob with the middle and severe course of asthma the percent of heterozygous (Т/А) and mutant carriers (А/А) rs9939609 polymorphism of FTO gene is higher than at the light course. The analogous situation is observed at the study of rs324011 polymorphism of STAT6 (C2892T) gene among this category of patients. So, the determination of FTO and STAT6 genes polymorphism in patients with BA, associated with Ob, can be considered as a marker of the more severe course of asthma.
Collapse
|
10
|
Kim SH, Hong JH, Lee JE, Lee YC. 18β-Glycyrrhetinic acid, the major bioactive component of Glycyrrhizae Radix, attenuates airway inflammation by modulating Th2 cytokines, GATA-3, STAT6, and Foxp3 transcription factors in an asthmatic mouse model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:99-113. [PMID: 28410469 DOI: 10.1016/j.etap.2017.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/03/2017] [Accepted: 03/18/2017] [Indexed: 06/07/2023]
Abstract
18β-Glycyrrhetinic acid (18Gly), the major bioactive component of Glycyrrhizae Radix, possesses anti-ulcerative, anti-inflammatory, and other pharmacological properties. Although 18Gly is associated with immunoregulatory functions of allergic diseases, the pathophysiological mechanisms of 18Gly action in allergic inflammatory lung disease have not been examined. Moreover, there are no in vivo studies on the anti-asthmatic effects of 18Gly in allergic asthma. We investigated its effect and mechanism of action in airway inflammation in a BALB/c mouse model of allergic asthma. Interestingly, 18Gly strongly suppressed airway hyperresponsiveness, accumulation of inflammatory cells, and levels of T helper type 2 (Th2) cytokines (interleukin (IL)-5 and IL-13) in bronchoalveolar lavage fluid (BALF). It also attenuated lung IL-5, IL-13, and IL-4 expression, but it upregulated peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression in lungs. Moreover, it exerted immunomodulatory effects by suppressing Th2 cytokines (IL-5, IL-13) production through upregulation of forkhead box p3 (Foxp3), and downregulation of signal transducer and activator of transcription (STAT6), GATA-binding protein 3 (GATA-3), and retinoic acid-related orphan receptor γ t (RORγt) expression. These results suggest that the anti-asthmatic activity of 18Gly may occur by the suppression of IL-5, IL-13, and OVA-specific Immunoglobulin E (IgE) production through inhibition of the RORγt, STAT6, GATA-3 pathways and upregulation of the Foxp3 transcription pathway. Also, 18Gly treatment was protective against the oxidative stress by inducing significant decrease of reactive oxygen species (ROS) generation in MH-S alveolar macrophage cells. Our results suggest that 18Gly can improve allergic asthma and can be a novel therapeutic component for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Seung-Hyung Kim
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 300-716, Republic of Korea
| | - Jung-Hee Hong
- Department of Herbology, College of Korean Medicine, Sangji University, Wonju 220-702, Republic of Korea
| | - Ji-Eun Lee
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 300-716, Republic of Korea
| | - Young-Cheol Lee
- Department of Herbology, College of Korean Medicine, Sangji University, Wonju 220-702, Republic of Korea.
| |
Collapse
|
11
|
Antczak A, Domańska-Senderowska D, Górski P, Pastuszak-Lewandoska D, Nielepkowicz-Goździńska A, Szewczyk K, Kurmanowska Z, Kiszałkiewicz J, Brzeziańska-Lasota E. Analysis of changes in expression of IL-4/IL-13/STAT6 pathway and correlation with the selected clinical parameters in patients with atopic asthma. Int J Immunopathol Pharmacol 2016; 29:195-204. [PMID: 26781462 PMCID: PMC5806727 DOI: 10.1177/0394632015623794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/17/2015] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Asthma is associated with activation of interleukin-4 (IL-4)/interleukin-13 (IL-13)/signal transducer and activator of transcription factor-6(STAT6) inflammatory response via overexpression of all pathway components: IL-4, IL-13, and STAT6. OBJECTIVES To evaluate the association of IL-4, IL-13, and STAT6 expression and immunoexpression with atopic asthma development. PATIENTS AND METHODS Fifty patients with atopic asthma and 20 healthy controls were enrolled into the study. Relative gene expression was analyzed by qPCR method. Immunoexpression was assessed by ELISA method. RESULTS The expression levels of IL-4, IL-13, and STAT6 were higher in patients compared to the controls, but a statistically significant difference was observed only for IL-13 (P = 0.03). In immunoexpression analysis, a statistically significant difference between patients and controls was found for IgE (P = 0.03). Significant positive correlations in the patient group were found between IL-13 gene expression and total level of serum IgE (rho = 0.230, P = 0.033), STAT6 gene/STAT6 protein and total level of serum IgE (STAT6: rho = 0.077, P = 0.038; STAT6: rho = 0.049, P = 0.042), IL-4, and STAT6 expression (rho = 0.098, P = 0.048). Any significant correlations were found between expression/immunoexpression levels of the studied genes and clinical classification, clinical features, or lung function parameters. CONCLUSIONS Our data support the role of Th2 cytokines (IL-4, IL-13) and STAT6 in Th1/Th2 imbalance and highlight the etiological relationship between IL-4/IL-13/STAT6 signaling and atopy and asthma.
Collapse
Affiliation(s)
- Adam Antczak
- Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland
| | | | - Paweł Górski
- Department of Pneumonology and Allergy, 1st Chair of Internal Diseases, Medical University of Lodz, Lodz, Poland
| | | | | | - Karolina Szewczyk
- Department of Molecular Bases of Medicine, Medical University of Lodz, Lodz, Poland
| | - Zofia Kurmanowska
- Department of Molecular Bases of Medicine, Medical University of Lodz, Lodz, Poland
| | | | | |
Collapse
|
12
|
Jadejaroen J, Kawamoto Y, Hamada Y, Malaivijitnond S. An SNP marker at the STAT6 locus can identify the hybrids between rhesus (Macaca mulatta) and long-tailed macaques (M. fascicularis) in Thailand: a rapid and simple screening method and its application. Primates 2015; 57:93-102. [PMID: 26660683 DOI: 10.1007/s10329-015-0502-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/13/2015] [Indexed: 11/29/2022]
Abstract
A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay was developed to genetically discriminate rhesus (Macaca mulatta) macaques from long-tailed (M. fascicularis) macaques. The 745 bp PCR amplicon of the STAT6 locus that spans a potentially species-diagnostic single nucleotide polymorphism (SNP) marker was digested with ApaI and gel electrophoresed to give (1) two (234 and 511 bp), (2) one (745 bp) and (3) three (234, 511 and 745 bp) band patterns that correspond to the genotypes G/G (long-tailed macaque specific homozygote), A/A (rhesus macaque specific homozygote) and A/G (hybrid specific heterozygote), respectively. The diagnostic robustness and efficiency of this PCR-RFLP assay was tested on wild rhesus and long-tailed macaques inhabiting Thailand and a known hybrid population. The Indochinese and Sundaic long-tailed macaque samples (n = 18) all showed a homozygous G/G pattern, while the Indochinese rhesus macaques (n = 10) all showed a homozygous A/A pattern. The rhesus/long-tailed hybrid population at Khao Khieow Open Zoo, which resulted from an introduced group of rhesus macaques that hybridized with the indigenous long-tailed macaques about 20 years ago, revealed 47% (56/118 samples analyzed) with the heterogenous A/G genotype. In addition, the frequency of the rhesus-specific allele A significantly decreased in the hybrid population during 2006-2014, where a strong association between the STAT6 genotype and the morphology of the individuals was detected. In conclusion, a robust PCR-RFLP assay allows a simple, effective and inexpensive approach, in particular for field studies, to assess hybrid individuals between rhesus and long-tailed macaques. Although this assay cannot conclusively identify all the hybrids over two or more generations, it at least can allow the evaluation of the process of hybridization, and so it is applicable to the assessment of the status of natural or anthropogenic hybridization between the two species across their geographic range.
Collapse
Affiliation(s)
- Janya Jadejaroen
- Zoological Science Program, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yoshi Kawamoto
- Genome Diversity Section, Department of Evolution and Phylogeny, Primate Research Institute, Kyoto University, Kyoto, Japan
| | - Yuzuru Hamada
- Evolutionary Morphology Section, Department of Evolution and Phylogeny, Primate Research Institute, Kyoto University, Kyoto, Japan
| | - Suchinda Malaivijitnond
- Zoological Science Program, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, Thailand.
| |
Collapse
|
13
|
Lockett GA, Patil VK, Soto-Ramírez N, Ziyab AH, Holloway JW, Karmaus W. Epigenomics and allergic disease. Epigenomics 2014; 5:685-99. [PMID: 24283882 DOI: 10.2217/epi.13.68] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Allergic disease development is affected by both genes and the environment, and epigenetic mechanisms are hypothesized to mediate these environmental effects. In this article, we discuss the link between the environment, DNA methylation and allergic disease, as well as questions of causality inherent to analyses of DNA methylation. From the practical side, we describe characteristics of allergic phenotypes and contrast different epidemiologic study designs used in epigenetic research. We examine methodological considerations, how best to conduct preprocessing and analysis of DNA methylation data sets, and the latest methods, technologies and discoveries in this rapidly advancing field. DNA methylation and other epigenetic marks are firmly entwined with allergic disease, a link that may hold the basis for future allergic disease diagnosis and treatment.
Collapse
Affiliation(s)
- Gabrielle A Lockett
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | | | | | | | | |
Collapse
|
14
|
Xu W. Expression data analysis to identify biomarkers associated with asthma in children. Int J Genomics 2014; 2014:165175. [PMID: 24790987 PMCID: PMC3985200 DOI: 10.1155/2014/165175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/23/2014] [Accepted: 02/26/2014] [Indexed: 11/17/2022] Open
Abstract
Asthma is characterized by recurrent episodes of wheezing, shortness of breath, chest tightness, and coughing. It is usually caused by a combination of complex and incompletely understood environmental and genetic interactions. We obtained gene expression data with high-throughput screening and identified biomarkers of children's asthma using bioinformatics tools. Next, we explained the pathogenesis of children's asthma from the perspective of gene regulatory networks: DAVID was applied to perform Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enriching analysis for the top 3000 pairs of relationships in differentially regulatory network. Finally, we found that HAND1, PTK1, NFKB1, ZIC3, STAT6, E2F1, PELP1, USF2, and CBFB may play important roles in children's asthma initiation. On account of regulatory impact factor (RIF) score, HAND1, PTK7, and ZIC3 were the potential asthma-related factors. Our study provided some foundations of a strategy for biomarker discovery despite a poor understanding of the mechanisms underlying children's asthma.
Collapse
Affiliation(s)
- Wen Xu
- Department of Paediatrics, Rizhao City People's Hospital, No. 126 Donggang Area, Tai'an Road, Rizhao City, Shandong 276800, China
| |
Collapse
|