1
|
Ashrafi Dehkordi K, Asadi-Samani M, Shojaeian A, Mahmoudian-Sani MR. Decreased cell proliferation and induced apoptosis in human B-chronic lymphocytic leukemia following miR-221 inhibition through modulation of p27 expression. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
This study aimed to investigate the effects of the miR-221 inhibition on the human B-chronic lymphocytic leukemia (B-CLL) cell viability and the p27 gene expression, to introduce a new treatment approach for this type of cancer. In this context, the cyclin-dependent kinase (Cdk) inhibitor 1B (p27Kip1) is considered as an enzyme inhibitor that encodes a protein belonging to the Cip/Kip family of the Cdk inhibitor proteins.
Methods
The affected miR-221 inhibition in the B-CLL cell viability was initially assessed. The inhibition of miR-221 in the B-CLL cell line (183-E95) was thus performed using locked nucleic acid (LNA) as an antagomir. After the LNA-anti-miR-221 transfection, the miR-221 quantification, cell viability, and apoptosis assays were evaluated at different intervals by the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and flow cytometry (FC), respectively. The qRT-PCR was also completed for the p27 gene. The data were subsequently analyzed by independent-samples t-test and one-way analysis of variance (ANOVA).
Results
A gradual reduction was observed in the B-CLL cell viability, and consequently the transfected LNA-anti-miR cell viability reached below 55% of the untreated cells after 72 h of transfection. A statistically significant difference was found in the cell viability between the LNA-anti-miR-treated and control groups (p-value ≤ 0.043). The downregulation of miR-221 in the B-CLL (183-E95) cells was further conducted by LNA-anti-miR-221.
Conclusion
The miR-221 inhibition significantly decreases cell viability through augmenting the p27 gene expression and inducing apoptosis. Moreover, the findings demonstrated that the inhibition of miR-221 might be a new treatment approach for B-CLL, although more confirmation is needed by investigating appropriate animal models.
Collapse
|
2
|
Herault S, Naser J, Carassiti D, Chooi KY, Nikolopoulou R, Font ML, Patel M, Pedrigi R, Krams R. Mechanosensitive pathways are regulated by mechanosensitive miRNA clusters in endothelial cells. Biophys Rev 2021; 13:787-796. [PMID: 34777618 PMCID: PMC8555030 DOI: 10.1007/s12551-021-00839-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Shear stress is known to affect many processes in (patho-) physiology through a complex, multi-molecular mechanism, termed mechanotransduction. The sheer complexity of the process has raised questions how mechanotransduction is regulated. Here, we comprehensively evaluate the literature about the role of small non-coding miRNA in the regulation of mechanotransduction. Regulation of mRNA by miRNA is rather complex, depending not only on the concentration of mRNA to miRNA, but also on the amount of mRNA competing for a single mRNA. The only mechanism to counteract the latter factor is through overarching structures of miRNA. Indeed, two overarching structures are present miRNA families and miRNA clusters, and both will be discussed in details, regarding the latest literature and a previous conducted study focussed on mechanotransduction. Both the literature and our own data support a new hypothesis that miRNA-clusters predominantly regulate mechanotransduction, affecting 65% of signalling pathways. In conclusion, a new and important mode of regulation of mechanotransduction is proposed, based on miRNA clusters. This finding implicates new avenues for treatment of mechanotransduction and atherosclerosis.
Collapse
Affiliation(s)
- Sean Herault
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| | | | - Daniele Carassiti
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| | - K. Yean Chooi
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| | | | - Marti Llopart Font
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| | | | - Ryan Pedrigi
- College of Engineering, Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rob Krams
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| |
Collapse
|
3
|
Fan Y, Hao J, Cen X, Song K, Yang C, Xiao S, Cheng S. Downregulation of miR-487a-3p suppresses the progression of non-small cell lung cancer via targeting Smad7. Drug Dev Res 2021; 83:564. [PMID: 34523739 DOI: 10.1002/ddr.21876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most prevalent type of lung cancer; however, the treatment efficacy of advanced NSCLC remains poor. MicroRNAs (miRNAs) are closely associated with the pathogenesis of lung cancer, while the detailed function of miR-487a-3p in NSCLC remains unclear. Bioinformatic analysis was performed to identify differentially expressed miRNAs (DEmiRNAs) between NSCLC and normal tissues. The effects of miR-487a-3p antagomir on the proliferation and invasion of NSCLC cells were explored with CCK-8 and Transwell assays. A total of 48 overlapping miRNAs were identified, including 9 commonly downregulated and 39 commonly upregulated miRNAs. MiR-487a-3p was found to be associated with poor survival rate of patients with NSCLC. MiR-487a-3p level was notably upregulated in NSCLC cells compared with that in human bronchial epithelial cells. Downregulation of miR-487a-3p inhibited the proliferation of NCI-H1299 and A549 cells via inducing apoptosis. In addition, miR-487a-3p antagomir significantly decreased the migration and invasion ability of NCI-H1299 cells. The results of the dual-luciferase reporter assay and western blotting indicated that miR-487a-3p antagomir exerted antitumor effects via targeting Smad7. The findings of the present study revealed that downregulation of miR-487a-3p suppressed the progression of NSCLC via inhibiting the Smads pathway, and it may serve as a novel promising target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Youqiang Fan
- Department of Thoracic Surgery, Ningbo Zhenhai People's Hospital, Ningbo, Zhejiang, China
| | - Jingduo Hao
- Department of Oncology, Ningbo Zhenhai People's Hospital, Ningbo, Zhejiang, China
| | - Xueying Cen
- Department of Oncology, Ningbo Zhenhai People's Hospital, Ningbo, Zhejiang, China
| | - Kun Song
- Department of Oncology, Ningbo Zhenhai People's Hospital, Ningbo, Zhejiang, China
| | - Chunbo Yang
- Department of Thoracic Surgery, Ningbo Zhenhai People's Hospital, Ningbo, Zhejiang, China
| | - Shengwen Xiao
- Department of Thoracic Surgery, Ningbo Zhenhai People's Hospital, Ningbo, Zhejiang, China
| | - Siming Cheng
- Department of Thoracic Surgery, Ningbo Zhenhai People's Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Ma X, Wu K, Xu A, Jiao P, Li H, Xing L. The sesquiterpene lactone eupatolide induces apoptosis in non-small cell lung cancer cells by suppressing STAT3 signaling. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103513. [PMID: 33091599 DOI: 10.1016/j.etap.2020.103513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/23/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
We aimed to evaluate the role of a natural sesquiterpene lactone, eupatolide, in non-small-cell lung cancer (NSCLC) and further explore its underlying mechanism on regulating the activation of signal transducer and activator of transcription 3 (STAT3), which is thought to have carcinogenic function in a variety of malignancies including lung cancer. Cell survival was measured by Cell Counting Kit-8 assay. in vivo experiments were performed by inoculating NSCLC cells into nude mice. Western blot and qRT-PCR were applied to detect the activation level of STAT3 and the mRNA levels of anti-apoptotic markers. The cell apoptosis was measured by Annexin V-FITC/PI Apoptosis Detection Kit. Our results showed that eupatolide suppressed the survival of NSCLC cells in a dose and time dependent manner. Furthermore, eupatolide increased the anti-tumor activity of the chemotherapeutic drugs cisplatin and 5-Fluoracil (5-FU). The xenograft study revealed that eupatolide suppressed tumor growth of NSCLC cells in vivo. Furthermore, eupatolide induced apoptosis by suppressing the activation of STAT3 in NSCLC cells. Sustained activation or knockdown of STAT3 suppressed and enhanced the activity of eupatolide, respectively. This paper is the first to report that eupatolide could effectively inhibit NSCLC progression, suggesting that eupatolide might be utilized as a novel STAT3 inhibitor for treating NSCLC.
Collapse
Affiliation(s)
- Xiaoxu Ma
- Department of Respiration, the FirstAffiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Kai Wu
- Department of Thoracic Surgery, the FirstAffiliatedHospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Aiguo Xu
- Department of Respiration, the FirstAffiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Pengfei Jiao
- Department of Respiration, the FirstAffiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Huiling Li
- Department of Respiration, the FirstAffiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lihua Xing
- Department of Respiration, the FirstAffiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
5
|
Therapeutically Significant MicroRNAs in Primary and Metastatic Brain Malignancies. Cancers (Basel) 2020; 12:cancers12092534. [PMID: 32906592 PMCID: PMC7564168 DOI: 10.3390/cancers12092534] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The overall survival of brain cancer patients remains grim, with conventional therapies such as chemotherapy and radiotherapy only providing marginal benefits to patient survival. Cancers are complex, with multiple pathways being dysregulated simultaneously. Non-coding RNAs such as microRNA (miRNAs) are gaining importance due to their potential in regulating a variety of targets implicated in the pathology of cancers. This could be leveraged for the development of targeted and personalized therapies for cancers. Since miRNAs can upregulate and/or downregulate proteins, this review aims to understand the role of these miRNAs in primary and metastatic brain cancers. Here, we discuss the regulatory mechanisms of ten miRNAs that are highly dysregulated in glioblastoma and metastatic brain tumors. This will enable researchers to develop miRNA-based targeted cancer therapies and identify potential prognostic biomarkers. Abstract Brain cancer is one among the rare cancers with high mortality rate that affects both children and adults. The most aggressive form of primary brain tumor is glioblastoma. Secondary brain tumors most commonly metastasize from primary cancers of lung, breast, or melanoma. The five-year survival of primary and secondary brain tumors is 34% and 2.4%, respectively. Owing to poor prognosis, tumor heterogeneity, increased tumor relapse, and resistance to therapies, brain cancers have high mortality and poor survival rates compared to other cancers. Early diagnosis, effective targeted treatments, and improved prognosis have the potential to increase the survival rate of patients with primary and secondary brain malignancies. MicroRNAs (miRNAs) are short noncoding RNAs of approximately 18–22 nucleotides that play a significant role in the regulation of multiple genes. With growing interest in the development of miRNA-based therapeutics, it is crucial to understand the differential role of these miRNAs in the given cancer scenario. This review focuses on the differential expression of ten miRNAs (miR-145, miR-31, miR-451, miR-19a, miR-143, miR-125b, miR-328, miR-210, miR-146a, and miR-126) in glioblastoma and brain metastasis. These miRNAs are highly dysregulated in both primary and metastatic brain tumors, which necessitates a better understanding of their role in these cancers. In the context of the tumor microenvironment and the expression of different genes, these miRNAs possess both oncogenic and/or tumor-suppressive roles within the same cancer.
Collapse
|
6
|
Dang D, Jiang C, Xie MR. Efficacy of weekly amrubicin for refractory or relapsed non-small cell lung cancer: A protocol of systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e20454. [PMID: 32569168 PMCID: PMC7310864 DOI: 10.1097/md.0000000000020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The aim of this study is to examine the efficacy of weekly amrubicin (WA) for treating refractory or relapsed non-small cell lung cancer (RRNSCLC). METHODS The literature search will be performed using the Cochrane Library, MEDLINE, EMBASE, CINAHL, PsycINFO, Scopus, Chinese Biomedical Literature Database, WANGFANG, VIP database, and China National Knowledge Infrastructure from inception onwards up to the March 1, 2020. No language limitation will be implemented. Randomized controlled trials that examined the efficacy and safety of WA for the treatment of RRNSCLC will be included. Literature selection, data extraction, and methodological quality assessment will be handled by 2 independent authors. We will invite a third author to disentangle any divergences between 2 authors. We will carry out statistical analysis using RevMan 5.3 software. RESULTS This study will summarize current evidence to assess the efficacy and safety of WA for the treatment of RRNSCLC. CONCLUSIONS The findings of this study will provide helpful evidence for the clinician, and will promote further studies, as well as clarify the direction of research on WA for the management of RRNSCLC.Study registration number: INPLASY202040168.
Collapse
Affiliation(s)
- Dong Dang
- Department of Oncology, Yulin Hospital of Traditional Chinese Medicine, Yulin
| | - Chao Jiang
- The Third Department of Neurology, The Second Affiliated Hospital of Xi’an Medical University, Xi’an
- Department of Emergency, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai
| | - Ming-rui Xie
- Department of Oncology, Yulin No.2 Hospital, Yulin, China
| |
Collapse
|
7
|
Liao M, Peng L. MiR-206 may suppress non-small lung cancer metastasis by targeting CORO1C. Cell Mol Biol Lett 2020; 25:22. [PMID: 32206066 PMCID: PMC7079403 DOI: 10.1186/s11658-020-00216-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
Object Non-small lung cancer (NSCLC), with a poor 5-year survival rate (16%), is the major type of lung cancer. Metastasis has been identified as the main factor that leads to NSCLC therapy failure. MiR-206 is a metastasis suppressor in many cancers, including colorectal cancer, renal cell carcinoma and breast cancer. However, the role of miR-206 in NSCLC metastasis and the underlying mechanism are still obscure. Methods Quantitative reverse-transcription PCR (q-RT-PCR) assay was used to detect miR-206 mRNA of NSCLC tissues and lung cancer lines. The MTT assay, scratch wound healing assay, transwell migration assay and transwell invasion assay were conducted to illuminate the effect of miR-206 on A549 cells’ proliferation, migration and invasion. Gaussia luciferase reporter assay, q-RT-PCR and western blotting assay were used to explore the underlying mechanism. Also, the A549 xenograft model was conducted to evaluate the anti-tumor effect of miR-206 in vivo. Results The results showed that miR-206 expression was decreased in NSCLC tissues and lung cancer cells. Further research demonstrated that miR-206 inhibited the proliferation, migration and invasion of A549 cells via negatively regulating Coronin-1C (CORO1C), and CORO1C deletion significantly rescues the miR-206 mediated inhibitory effect on A549 cells. Moreover, miR-206 exhibited a perfect anti-tumor effect in the A549 xenograft model. Conclusion Our study reveals that miR-206 functions as a tumor metastasis suppressor and sheds new light on the clinical significance of miR-206 in NSCLC therapy.
Collapse
Affiliation(s)
- Ming Liao
- Thoracic Surgery Department, General Hospital of Southern Theater Command, PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou, 510010 China
| | - Lijun Peng
- Thoracic Surgery Department, General Hospital of Southern Theater Command, PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou, 510010 China
| |
Collapse
|
8
|
Huang X, Zhang TZ, Li GH, Liu L, Xu GQ. Prevalence and correlation of anxiety and depression on the prognosis of postoperative non-small-cell lung cancer patients in North China. Medicine (Baltimore) 2020; 99:e19087. [PMID: 32176035 PMCID: PMC7440182 DOI: 10.1097/md.0000000000019087] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Identify the prevalence of postoperative anxiety and depression as well as their correlations with clinical features and survival profiles in non-small-cell lung cancer (NSCLC) patients who underwent resection.Four hundred NSCLC patients who underwent resection were recruited, and their anxiety and depression were assessed by hospital anxiety and depression scale (HADS) at discharge after surgery. Besides, 480 healthy controls (HCs) were also enrolled and assessed by HADS.The HADS-Anxiety score of NSCLC patients (7.8 ± 3.9) was greatly higher than that of HCs (4.8 ± 2.7), and the anxiety prevalence of NSCLC patients (49.6%) were dramatically increased compared with HCs (13.8%). Furthermore, the HADS-Depression score (7.2 ± 3.6) of NSCLC patients was considerably increased compared with HCs (4.2 ± 2.6), and the depression prevalence of NSCLC patients (38.3%) was significantly raised compared with HCs (10.0%). Besides, anxiety correlated with gender, marital status, hypertension, diabetes, pathological differentiation, tumor size, lymph node metastasis, TNM stage and carcinoembryonic antigen level, meanwhile, depression correlated with marital status, employment status before surgery, diabetes, pathological differentiation, and TNM stage in NSCLC patients. Additionally, the anxiety and depression predicted shorter disease-free survival in NSCLC patients. And the anxiety predicted worse overall survival (OS), while no association of depression with OS was observed in NSCLC patients.Post-operative anxiety and depression are highly prevalent and implicated in the ongoing care and prognosis prediction in NSCLC patients who underwent resection.
Collapse
|
9
|
Fan JM, Zheng ZR, Zeng YM, Chen XY. MiR-323-3p Targeting Transmembrane Protein with EGF-Like and 2 Follistatin Domain (TMEFF2) Inhibits Human Lung Cancer A549 Cell Apoptosis by Regulation of AKT and ERK Signaling Pathways. Med Sci Monit 2020; 26:e919454. [PMID: 32009129 PMCID: PMC7011573 DOI: 10.12659/msm.919454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Non-small-cell lung cancer (NSCLC) is predominant and has low 5-year relative survival rate. Therefore, the mechanisms of NSCLC tumorigenesis must be comprehensively elucidated. MicroRNA-323-3p (miR-323-3p) has been widely explored and found to exert functions in tumorigenesis of several cancer types. However, the expression pattern and biological function of miR-323-3p and the molecular mechanism underlying NSCLC development and progression remain unclear. Material/Methods Quantitative reverse-transcription polymerase chain reaction was used to detect the expression of miR-323-3p and TMEFF2 in NSCLC cell lines (A549, NCI-H3255, and H1299) and normal cell line (BEAS-2B). Methylthiazolyl tetrazolium, colony formation, and flow cytometry assays were performed to evaluate the effects of miR-323-3p and TMEFF2 on cell proliferation. Transwell assay was conducted to determine the effects of TMEFF2 on cell migration and invasion. Dual-luciferase reporter assay was used to verify whether TMEFF2 is a target of miR-323-3p. Western blot analysis was performed to analyze protein expression. Results The expression of miR-323-3p increased in the 3 NSCLC cell lines (A549, NCI-H3255, and H1299). miR-323-3p regulated cellular progression by directly suppressing TMEFF2 expression and indirectly prohibited the activation of AKT and ERK pathways in NSCLC. Conclusions Overall, miR-323-3p was considered a lung cancer oncogene and could be a valuable target for NSCLC therapy.
Collapse
Affiliation(s)
- Ji-Min Fan
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian, China (mainland)
| | - Zheng-Rong Zheng
- Department of Surgical Oncology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Yi-Ming Zeng
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian, China (mainland)
| | - Xiao-Yang Chen
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian, China (mainland)
| |
Collapse
|
10
|
Luo J, Pan J, Jin Y, Li M, Chen M. MiR-195-5p Inhibits Proliferation and Induces Apoptosis of Non-Small Cell Lung Cancer Cells by Targeting CEP55. Onco Targets Ther 2019; 12:11465-11474. [PMID: 31920335 PMCID: PMC6935316 DOI: 10.2147/ott.s226921] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Objective This study aims to explore whether miR-195-5p can inhibit proliferation and induce apoptosis of non-small cell lung cancer (NSCLC) cells by targeting CEP55. Methods qRT-PCR was used to measure the expression of miR-195-5p in NSCLC cells. MTT assay, colony formation assay, and flow cytometry were used to detect the role of miR-195-5p in NSCLC cells. Western blot was used to measure the protein expression of CEP55, Bax and Bcl-2 in cells. Dual-Luciferase assay was performed to verify the relationship between miR-195-5p and CEP55. Results The expression of miR-195-5p was higher in human normal lung cell lines than in NSCLC cells. MiR-195-5p overexpression inhibited cell proliferation, which could block the cell cycle of A549 cell line in the G0/G1 phase. Moreover, overexpression of miR-195-5p increased cell apoptotic rate of A549 cell lines, with the expression of pro-apoptotic protein Bax up-regulated and that of the anti-apoptotic protein Bcl-2 down-regulated. The Dual-Luciferase assay showed that miR-195-5p could specifically target CEP55. Furthermore, CEP55 was down-regulated in NSCLC cells. Overexpression of CEP55 enhanced the proliferation and colony formation ability of A549 cell line. Overexpression of CEP55 can reverse the inhibitory effect of miR-195-5p. Conclusion MiR-195-5p inhibits proliferation and induces apoptosis of NSCLC cells by negatively regulating CEP55.
Collapse
Affiliation(s)
- Jianhua Luo
- Respiratory Department, Taizhou Municipal Hospital, Taizhou, Zhejiang, People's Republic of China
| | - Junsu Pan
- Respiratory Department, Taizhou Municipal Hospital, Taizhou, Zhejiang, People's Republic of China
| | - Yan Jin
- Respiratory Department, Taizhou Municipal Hospital, Taizhou, Zhejiang, People's Republic of China
| | - Mengyuan Li
- Respiratory Department, Taizhou Municipal Hospital, Taizhou, Zhejiang, People's Republic of China
| | - Miao Chen
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, People's Republic of China
| |
Collapse
|
11
|
Cai Y, Hao Y, Ren H, Dang Z, Xu H, Xue X, Gao Y. miR-1305 Inhibits The Progression Of Non-Small Cell Lung Cancer By Regulating MDM2. Cancer Manag Res 2019; 11:9529-9540. [PMID: 31807077 PMCID: PMC6857736 DOI: 10.2147/cmar.s220568] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Increasing evidence has suggested the critical implication of microRNAs (miRNAs) in the initiation and progression of non-small cell lung cancer (NSCLC). Previous studies have shown the tumor-suppressive function of miR-1305 in cancer; however, the role of miR-1305 in NSCLC has not been fully understood. Methods The expression of miR-1305 in NSCLC was detected by RT-qPCR. The influence of miR-1305 on the growth of NSCLC cells was determined via Cell Counting Kit 8 (CCK-8), colony formation and FACS analysis. The targets of miR-1305 were predicted with the miRDB database. Luciferase reporter assay was performed to investigate the binding between miR-1305 and 3ʹ-UTR of MDM2. Western blot was applied to check the expression of MDM2 with miR-1305. Results Here, we found that miR-1305 was down-regulated in NSCLC tissues and cell lines. Decreased miR-1305 was significantly correlated with the metastasis and poor prognostics of NSCLC patients. Overexpression of miR-1305 inhibited the proliferation and migration and promoted the apoptosis of NSCLC cells. Bioinformatics and luciferase assay uncovered that the mouse/murine double minute 2 (MDM2) was a target of miR-1305. miR-1305 bound the 3ʹ-untranslated region (UTR) of MDM2 and decreased the expression of MDM2 in NSCLC cells. As MDM2 was a negative regulator of p53, decreased MDM2 by miR-1305 up-regulated the abundance of p53 in NSCLC cells. Restoration of MDM2 markedly attenuated the suppressive role of miR-1305 in the proliferation and migration of NSCLC cells. Conclusion The findings provided novel mechanism of miR-1305/MDM2 signaling in regulating the progression of NSCLC, suggesting miR-1305 as a promising target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yuxing Cai
- Department of Respiratory Medicine, Baoji Central Hospital, Baoji, 721008, People's Republic of China
| | - Yi Hao
- Department of Pediatric Surgery, Baoji Maternal and Child Health Hospital, Baoji, 721008, People's Republic of China
| | - HaiFeng Ren
- Department of Respiratory Medicine, People Hospital BaoJi City, Baoji, 721001, People's Republic of China
| | - ZhiGuo Dang
- Department of Respiratory Medicine, People Hospital BaoJi City, Baoji, 721001, People's Republic of China
| | - Hui Xu
- Department of Respiratory Medicine, Baoji Central Hospital, Baoji, 721008, People's Republic of China
| | - Xiangfei Xue
- Department of Respiratory Medicine, Baoji Central Hospital, Baoji, 721008, People's Republic of China
| | - Yan Gao
- Department of Respiratory Medicine, People Hospital BaoJi City, Baoji, 721001, People's Republic of China
| |
Collapse
|
12
|
Sun B, Hua J, Cui H, Liu H, Zhang K, Zhou H. MicroRNA-1197 downregulation inhibits proliferation and migration in human non- small cell lung cancer cells by upregulating HOXC11. Biomed Pharmacother 2019; 117:109041. [DOI: 10.1016/j.biopha.2019.109041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/04/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
|
13
|
Li Y, Zhao L, Qi Y, Yang X. MicroRNA‑214 upregulates HIF‑1α and VEGF by targeting ING4 in lung cancer cells. Mol Med Rep 2019; 19:4935-4945. [PMID: 31059086 DOI: 10.3892/mmr.2019.10170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/17/2018] [Indexed: 11/06/2022] Open
Abstract
Previous reports have indicated a potential link between microRNA (miR)‑214 and hypoxia. In the present study, the biological functions and potential mechanisms of miR‑214 were determined, as well as its correlation with HIF‑1α signaling in non‑small cell lung cancer (NSCLC) cells. Quantitative polymerase chain reaction revealed that miR‑214 expression was upregulated in lung cancer tissues compared with adjacent normal tissues. miR‑214 mimics were transfected into A549 cells, and MTT, colony formation, invasion and wound healing assays were performed. It was demonstrated that miR‑214 mimic transfection promoted the invasion, proliferation and migration of A549 cells. Furthermore, miR‑214 inhibitor transfection decreased H1299 cell invasion, proliferation and migration. Next, the association between miR‑214 expression and the HIF‑1α signaling cascade was examined. It was demonstrated that miR‑214 mimics upregulated the expression of hypoxia‑inducible factor (HIF)‑1α, vascular endothelial growth factor (VEGF), adenylate kinase 3 and matrix metalloproteinase (MMP)2, whereas miR‑214 inhibitor downregulated the expression of these factors. Using prediction software, it was demonstrated that tumor suppressor ING4 was a target of miR‑214. A luciferase reporter assay confirmed that ING4 was a direct target of miR‑214. There was a negative correlation between ING4 and miR‑214 expression in lung cancer tissues. In addition, ING4 siRNA and plasmid was transfected into cells in order to validate its effect on HIF‑1α, MMP2 and VEGF expression. ING4 overexpression downregulated HIF‑1α and its targets MMP2 and VEGF, while ING4 siRNA upregulated HIF‑1α, MMP2 and VEGF. In conclusion, it was demonstrated that miR‑214 targeted ING4 in lung cancer cells, and upregulated the HIF‑1α cascade, leading to MMP2 and VEGF upregulation. This approach may help to clarify the role of miRNA in non‑small lung cancer and may be a new therapeutic target for non‑small lung cancer.
Collapse
Affiliation(s)
- Yue Li
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Long Zhao
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yafei Qi
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
14
|
MicroRNA in Lung Cancer Metastasis. Cancers (Basel) 2019; 11:cancers11020265. [PMID: 30813457 PMCID: PMC6406837 DOI: 10.3390/cancers11020265] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a hallmark of cancer, with distant metastasis frequently developing in lung cancer, even at initial diagnosis, resulting in poor prognosis and high mortality. However, available biomarkers cannot reliably predict cancer spreading sites. The metastatic cascade involves highly complicated processes including invasion, migration, angiogenesis, and epithelial-to-mesenchymal transition that are tightly controlled by various genetic expression modalities along with interaction between cancer cells and the extracellular matrix. In particular, microRNAs (miRNAs), a group of small non-coding RNAs, can influence the transcriptional and post-transcriptional processes, with dysregulation of miRNA expression contributing to the regulation of cancer metastasis. Nevertheless, although miRNA-targeted therapy is widely studied in vitro and in vivo, this strategy currently affords limited feasibility and a few miRNA-targeted therapies for lung cancer have entered into clinical trials to date. Advances in understanding the molecular mechanism of metastasis will thus provide additional potential targets for lung cancer treatment. This review discusses the current research related to the role of miRNAs in lung cancer invasion and metastasis, with a particular focus on the different metastatic lesions and potential miRNA-targeted treatments for lung cancer with the expectation that further exploration of miRNA-targeted therapy may establish a new spectrum of lung cancer treatments.
Collapse
|
15
|
Wang T, Chen Y, Nie H, Huang Y, Zhao Y, Yang J. IL-27 inhibits non-small-cell lung cancer cell metastasis by miR-935 in vitro. Onco Targets Ther 2019; 12:1447-1454. [PMID: 30863112 PMCID: PMC6391126 DOI: 10.2147/ott.s173207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction Non-small-cell lung cancer (NSCLC) accounts for more than half of all lung cancer cases. Cytokines play an important role in NSCLC, including IL-27. IL-27 inhibits NSCLC progression; however, the mechanism is not clear. The purpose of this study is to investigate the effects of IL-27 on NSCLC cell proliferation and metastasis. Materials and methods NSCLC cells were treated with IL-27 or transfected with miR-935, and the cell proliferation was assayed by Cell Counting Kit-8 (CCK-8) and colony formation. Cell metastasis was analyzed by Transwell chamber system and wound healing assay. IL-27 protein in the medium was analyzed by ELISA. IL-27 mRNA expression was measured by quantitative reverse transcriptase-PCR. Results We found that IL-27 played an inhibiting role in NSCLC cell proliferation and metastasis. The molecular mechanism of the suppressing role of IL-27 in NSCLC was regulated by miR-935. IL-27 expression was negatively associated with miR-935 in the clinical NSCLC samples. Conclusion The study revealed that IL-27 decreased lung cancer cell proliferation and metastasis via miR-935.
Collapse
Affiliation(s)
- Tao Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,
| | - Yifei Chen
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yi Huang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiong Yang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,
| |
Collapse
|
16
|
Lung Cancer Radiogenomics: The Increasing Value of Imaging in Personalized Management of Lung Cancer Patients. J Thorac Imaging 2018; 33:17-25. [PMID: 29252899 DOI: 10.1097/rti.0000000000000312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radiogenomics provide a large-scale data analytical framework that aims to understand the broad multiscale relationships between the complex information encoded in medical images (including computational, quantitative, and semantic image features) and their underlying clinical, therapeutic, and biological associations. As such it is a powerful and increasingly important tool for both clinicians and researchers involved in the imaging, evaluation, understanding, and management of lung cancers. Herein we provide an overview of the growing field of lung cancer radiogenomics and its applications.
Collapse
|
17
|
Zhao Y, Ma K, Yang S, Zhang X, Wang F, Zhang X, Liu H, Fan Q. MicroRNA-125a-5p enhances the sensitivity of esophageal squamous cell carcinoma cells to cisplatin by suppressing the activation of the STAT3 signaling pathway. Int J Oncol 2018; 53:644-658. [PMID: 29767234 PMCID: PMC6017156 DOI: 10.3892/ijo.2018.4409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence has demonstrated that microRNAs (miRNAs or miRs) play a variety of roles in tumor development, progression and chemosensitivity in a wide range of tumors. In this study, we found that miR-125a-5p exhibited a low expression in esophageal squamous cell carcinoma (ESCC) tissues and cells, and that its low expression was associated with higher tumor staging and shorter a survival time of patients with ESCC. Moreover, miR-125a-5p overexpression contributed to the suppression of cell proliferation, cell cycle arrest, cell apoptosis and a decrease in cell migratory and invasive abilities, whereas the downregulation of miR-125a-5p promoted cell proliferation, accelerated cell cycle progression, suppressed apoptosis and enhanced the migratory and invasive abilities of ESCC EC1 and TE1 cells, which may be tightly associated with the epithelial-mesenchymal transition (EMT) process in ESCC. Importantly, miR-125a-5p enhanced the cytotoxic effects of cisplatin on EC1 and TE1 cells, and co-treatment with miR-125a-5p and cisplatin significantly induced cell apoptosis and reduced the cell migratory and invasive abilities of EC1 and TE1 cells, coupled with an increase in the E-cadherin level and a decrease in the N-cadherin and Vimentin levels. Most notably, signal transducer and activator of transcription-3 (STAT3) was found to be a direct target of miR-125a-5p in ESCC cells, and miR-125a-5p overexpression significantly reduced the protein levels of t-STAT3, p-STAT3 and vascular endothelial growth factor (VEGF) in EC1 and TE1 cells. Furthermore, the combination of miR-125a-5p and cisplatin markedly inactivated the STAT3 signaling pathway; however, interleukin (IL)-6, a widely reported activator of the STAT3 signaling pathway, reversed the suppressive effects of miR-125a-5p/cisplatin in ESCC cells on the activation of the STAT3 signaling pathway. Of note, we found that IL-6 markedly reversed the altered cell phenotype mediated by the combination of miR-125a-5p and cisplatin in ESCC cells. These findings suggest that miR-125a-5p may play a pivotal role in the development and progression of ESCC, which may be achieved via the manipulation of the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ke Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Shujun Yang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Xiaosan Zhang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaqing Zhang
- College of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Hongtao Liu
- College of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Qingxia Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
18
|
Qin X, Yu S, Xu X, Shen B, Feng J. Comparative analysis of microRNA expression profiles between A549, A549/DDP and their respective exosomes. Oncotarget 2018; 8:42125-42135. [PMID: 28178672 PMCID: PMC5522054 DOI: 10.18632/oncotarget.15009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/09/2017] [Indexed: 12/30/2022] Open
Abstract
Exosomes were reported to transport bioactive molecules and influence the biology behavior of recipient cells. In order to study the role of exosomal microRNAs in the mechanism of cisplatin resistance to lung cancer cells, we analyzed the expression profiles of microRNAs in A549, A549/DDP cells and their exosomes by microarray. The results showed that a certain proportion of microRNAs were co-expressed in the cells and exosomes. Linear regression analysis showed that the expression of microRNAs in A549 and A549/DDP cells were strongly correlated with those in their respective exosomes. The expression level of 5 microRNAs (miR-197-5p, miR-4443, miR-642a-3p, miR-27b-3p and miR-100-5p) with the most differential expression were verified by qRT-PCR. The results were consistent with those of the microarray. Target gene prediction and pathway analysis discovered that the microRNAs in the intersections may participate in drug resistance. And the prediction of their association with diseases found that most of these microRNAs was associated with lung cancer. We could draw a preliminary conclusion that microRNAs in exosomes may be involved in the drug resistance of lung cancer cells to cisplatin.
Collapse
Affiliation(s)
- Xiaobing Qin
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China.,Department of Oncology, Xuzhou First People's Hospital, Xuzhou, Jiangsu Province, China
| | - Shaorong Yu
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| | - Xiaoyue Xu
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| | - Bo Shen
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| | - Jifeng Feng
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, China
| |
Collapse
|
19
|
Wu L, Hu B, Zhao B, Liu Y, Yang Y, Zhang L, Chen J. Circulating microRNA-422a is associated with lymphatic metastasis in lung cancer. Oncotarget 2017; 8:42173-42188. [PMID: 28178679 PMCID: PMC5522058 DOI: 10.18632/oncotarget.15025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/10/2017] [Indexed: 12/20/2022] Open
Abstract
To identify specific circulating microRNAs that were associated with the lymphatic metastasis in lung cancer, we performed miRNA microarray analysis of lymph node with and without metastasis from five lung cancer patients. Top six differentially expressed miRNAs were selected for further validation. A training cohort of 26 patients with lung cancer was firstly recruited and the selected miRNAs in the plasma samples were investigated. miRNA-422a, with highest diagnostic accuracy in lymphatic metastasis was identified (AUC, area under the receiver operating characteristic curve, 0.744; 95%CI, 0.570-0.918). The diagnostic value of miR-422a was also demonstrated by a validation cohort of 51 lung cancer patients (AUC, 0.880; 95%CI, 0.787-0.972). Moreover, a high diagnostic value was also observed after integrated analysis of training and validation cohorts (AUC, 0.792; 95%CI, 0.688-0.896). The odds ratio of high miR-422a expression for lymphatic metastasis in lung cancer was 13.645 (95%CI, 2.677-69.553) after adjustment of the potential confounding factors. Furthermore, we predicted the target genes of miR-422a by combining the online database, miRcords, and the data from GEO and TCGA. Sixty-one target genes of miR-422a that might be involved in lymphatic metastasis in lung cancer were identified. And GO analysis suggested multiple target genes relatively concentrated in the biological processes of apoptosis, transport, and protein phosphorylation.
Collapse
Affiliation(s)
- Lina Wu
- Central Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, China
| | - Bo Hu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Thoracic Surgery II, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, China
| | - Bingtian Zhao
- Department of Respiratory & Critical Care Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Yinan Liu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Thoracic Surgery II, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, China
| | - Yue Yang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Thoracic Surgery II, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, China
| | - Lijian Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Thoracic Surgery II, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, China
| | - Jinfeng Chen
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Thoracic Surgery II, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
20
|
Lu C, Shan Z, Hong J, Yang L. MicroRNA-92a promotes epithelial-mesenchymal transition through activation of PTEN/PI3K/AKT signaling pathway in non-small cell lung cancer metastasis. Int J Oncol 2017; 51:235-244. [DOI: 10.3892/ijo.2017.3999] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/18/2017] [Indexed: 11/05/2022] Open
|
21
|
Qin X, Yu S, Zhou L, Shi M, Hu Y, Xu X, Shen B, Liu S, Yan D, Feng J. Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner. Int J Nanomedicine 2017; 12:3721-3733. [PMID: 28553110 PMCID: PMC5439933 DOI: 10.2147/ijn.s131516] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exosomes derived from lung cancer cells confer cisplatin (DDP) resistance to other cancer cells. However, the underlying mechanism is still unknown. A549 resistance to DDP (A549/DDP) was established. Microarray was used to analyze microRNA (miRNA) expression profiles of A549 cells, A549/DDP cells, A549 exosomes, and A549/DDP exosomes. There was a strong correlation of miRNA profiles between exosomes and their maternal cells. A total of 11 miRNAs were significantly upregulated both in A549/DDP cells compared with A549 cells and in exosomes derived from A549/DDP cells in contrast to exosomes from A549 cells. A total of 31 downregulated miRNAs were also observed. miR-100–5p was the most prominent decreased miRNA in DDP-resistant exosomes compared with the corresponding sensitive ones. Downregulated miR-100–5p was proved to be involved in DDP resistance in A549 cells, and mammalian target of rapamycin (mTOR) expression was reverse regulated by miR-100–5p. Exosomes confer recipient cells’ resistance to DDP in an exosomal miR-100–5p-dependent manner with mTOR as its potential target both in vitro and in vivo. Exosomes from DDP-resistant lung cancer cells A549 can alter other lung cancer cells’ sensitivity to DDP in exosomal miR-100–5p-dependent manner. Our study provides new insights into the molecular mechanism of DDP resistance in lung cancer.
Collapse
Affiliation(s)
- Xiaobing Qin
- Research Center for Clinical Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing.,Department of Oncology, Xuzhou First People's Hospital, Xuzhou
| | - Shaorong Yu
- Research Center for Clinical Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing.,Department of Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing
| | - Leilei Zhou
- Research Center for Clinical Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing.,Department of Oncology, Affiliated Huai'an Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Meiqi Shi
- Department of Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing
| | - Yong Hu
- Research Center for Clinical Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing
| | - Xiaoyue Xu
- Research Center for Clinical Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing
| | - Bo Shen
- Research Center for Clinical Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing
| | - Siwen Liu
- Research Center for Clinical Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing
| | - Dali Yan
- Research Center for Clinical Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing
| | - Jifeng Feng
- Research Center for Clinical Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing.,Department of Oncology, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing
| |
Collapse
|
22
|
Li GJ, Zhao GQ, Yang JP, Zhou YC, Yang KY, Lei YJ, Huang YC. Effect of miR-1244 on cisplatin-treated non-small cell lung cancer via MEF2D expression. Oncol Rep 2017; 37:3475-3483. [PMID: 28498474 DOI: 10.3892/or.2017.5624] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/06/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the function of miR-1244 in cisplatin-treated non-small cell lung cancer (NSCLC). The results of quantitative PCR analysis revealed that the expression levels of miR-1244 in cisplatin‑treated A549 and NCI-H522 human lung cancer cell lines were lower than those in untreated A549 and NCI-H522 cells. Similarly, the expression level of miR-1244 in NSCLC tissue samples from cisplatin-treated patients was also lower than that in non-cisplatin-treated NSCLC patients. Notably, the overall survival times of cisplatin-treated NSCLC patients with high miR-1244 expression were superior to those patients with low miR-1244 expression. We found that overexpression of miR-1244 suppressed cell viability and increased LDH toxicity in cisplatin-treated A549 and NCI-H522 cells. Additionally, overexpression of miR-1244 induced the apoptosis of cisplatin-treated A549 and NCI-H522 cells. Furthermore, overexpression of miR-1244 promoted caspase-3 activity and p53 and Bax protein expression, and suppressed myocyte enhancer factor 2D (MEF2D) and cyclin D1 protein expression in cisplatin‑treated A549 and NCI-H522 cells. Small interfering RNA (siRNA) targeting MEF2D suppressed the protein expression of MEF2D, and was able to decrease the proliferation, promote caspase-3 activity, p53 and Bax protein expression and inhibit cyclin D1 protein expression in cisplatin-treated A549 and NCI-H522 cells following the overexpression of miR-1244. In summary, we found that miR-1244 affected cisplatin-treated NSCLC via MEF2D expression.
Collapse
Affiliation(s)
- Guang-Jian Li
- Department of Thoracic Surgery, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Guang-Qiang Zhao
- Department of Thoracic Surgery, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Jia-Peng Yang
- Department of Thoracic Surgery, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Yong-Chun Zhou
- Department of Thoracic Surgery, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Kai-Yun Yang
- Department of Thoracic Surgery, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Yu-Jie Lei
- Department of Thoracic Surgery, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Yun-Chao Huang
- Department of Thoracic Surgery, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
23
|
Yan J, Ma C, Gao Y. MicroRNA-30a-5p suppresses epithelial-mesenchymal transition by targeting profilin-2 in high invasive non-small cell lung cancer cell lines. Oncol Rep 2017; 37:3146-3154. [PMID: 28405690 DOI: 10.3892/or.2017.5566] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/03/2017] [Indexed: 11/05/2022] Open
Abstract
PFN2 is an invasion promoter in several cancers including lung cancer. However, the probable effects and underlying mechanisms of PFN2 in tumor cell epithelial-mesenchymal-transition (EMT) of non-small cell lung cancer (NSCLC) remain poorly understood. The protein and mRNA levels of PFN2 in human bronchial epithelial cell line 16HBE and three NSCLC cell lines A549, NCI-H520 and 95D were assessed. The gain-of-function (overexpression) and loss‑of-function (siRNA) experiments of PFN2 were performed in 95D cells. A dual-luciferase reporter assay, western blotting and real-time PCR were used to investigate the relationship between PFN2 and miR‑30a‑5p. PFN2 was upregulated in three NSCLC cell lines, and the highest in 95D cell line. Furthermore, the upregulation of PFN2 promoted, whereas the downregulation of PFN2 suppressed invasion and EMT in 95D. Dual-luciferase reporter assay showed that miR‑30a‑5p directly interacts with the 3'-untranslated region (3'-UTR) of PFN2 mRNA. Interestingly, miR‑30a‑5p negatively regulates the expression of PFN2 and suppresses EMT and invasion in 95D. In summary, the present study demonstrated that miR‑30a‑5p inhibits EMT and invasion in high invasive NSCLC cell lines via targeting PFN2. Suggesting the association of miR‑30a‑5p and PFN2 may play an essential role in the development of NSCLC by modulating EMT and cell invasion.
Collapse
Affiliation(s)
- Jiliang Yan
- Department of Clinical Laboratory, Kaifeng Central Hospital, Kaifeng, Henan 475000, P.R. China
| | - Chunyan Ma
- Department of Clinical Laboratory, Kaifeng Central Hospital, Kaifeng, Henan 475000, P.R. China
| | - Yue Gao
- Department of Clinical Laboratory, Beibei Traditional Chinese Medical Hospital, Chongqing 400700, P.R. China
| |
Collapse
|
24
|
Li H, Yang T, Ning Q, Shang D, Yao Y, Sun Z. WITHDRAWN: MicroRNA-505 modulates cancer proliferation and migration in human non-small cell lung cancer through inverse regulation of FZD4. Lung Cancer 2017:S0169-5002(17)30270-2. [PMID: 28438350 DOI: 10.1016/j.lungcan.2017.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/15/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
This article has been withdrawn at the request of the Editor-in-Chief. Following peer-review and acceptance of the above referenced paper for publication in Lung Cancer, the Editor-in-Chief was contacted by the Editor-in-Chief of the journal, Gene Therapy, with information that the manuscript had simultaneously been submitted to both Lung Cancer and Gene Therapy. A referee selected to review the manuscript for Gene Therapy was also contacted by the Editor-in-Chief of the journal, Respiratory Research, with a request to review the same manuscript for that journal. The three journals ascertained that the manuscript had been simultaneously submitted to all three journals. In addition, as part of their investigation of potential simultaneous submission, the Editors of Lung Cancer compared the manuscript submitted to Gene Therapy with that accepted for publication in Lung Cancer, and this has raised concerns related to the data presented in the paper. The paper accepted for publication in Lung Cancer examines A549 and H810 cells. The paper submitted to Gene Therapy examines A549 and H510A cells. However, the data presented in both papers, including the figures, are identical. The Editors of Lung Cancer have asked the authors for an explanation, but the corresponding author has not responded. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Hong Li
- Department of Respiratory, Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Tian Yang
- Department of Respiratory, Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qian Ning
- Department of Respiratory, Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dong Shang
- Department of Respiratory, Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yan Yao
- Department of Respiratory, Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhongmin Sun
- Department of Respiratory, Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
25
|
Fang C, Chen YX, Wu NY, Yin JY, Li XP, Huang HS, Zhang W, Zhou HH, Liu ZQ. MiR-488 inhibits proliferation and cisplatin sensibility in non-small-cell lung cancer (NSCLC) cells by activating the eIF3a-mediated NER signaling pathway. Sci Rep 2017; 7:40384. [PMID: 28074905 PMCID: PMC5225486 DOI: 10.1038/srep40384] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022] Open
Abstract
Our previous studied indicated that eukaryotic translation initiation factor 3a (eIF3a) increases the sensitive of platinum-based chemotherapy in lung cancer. MiRNAs play an important role in lung carcinogenesis and drug response. In this study, we aimed to identify potential endogenous miRNAs that inhibit eIF3a expression and determine their influence of this inhibition on cisplatin resistance. Using bioinformatics analysis prediction and confirmation with dual-luciferase reporter assays, we found that miRNA-488 inhibited eIF3a expression by directly binding to the 3’UTR of eIF3a. In addition, the overexpression of miRNA-488 inhibited cell migration and invasion in A549 cells, and also inhibited cell proliferation, cell cycle progression by elevated P27 expression. Compared to the parental cell line, A549/cisplatin (DDP) resistant cells exhibited a higher level of miRNA-488. Moreover, we found that miRNA-488 was associated with cisplatin resistance in three NSCLC cells (A549, H1299 and SK-MES-1). The mechanism of miRNA-488 induced cisplatin resistance was that miRNA-488 activated nucleotide excision repair (NER) by increasing the expression of Replication Protein A (RPA) 14 and Xeroderma pigmentosum group C (XPC). In conclusion, our results demonstrated that miRNA-488 is a tumor suppressor miRNA that acts by targeting eIF3a. Moreover, miRNA-488 also participates in eIF3a mediated cisplatin resistance in NSCLC cells.
Collapse
Affiliation(s)
- Chao Fang
- Departments of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Yi-Xin Chen
- Departments of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Na-Yiyuan Wu
- Departments of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ji-Ye Yin
- Departments of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xiang-Ping Li
- Departments of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Hsuan-Shun Huang
- Department of Research, Cervical Cancer Prevention Center, Tzu Chi University, Hualien 970, Taiwan, Republic of China
| | - Wei Zhang
- Departments of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Hong-Hao Zhou
- Departments of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, P. R. China
| | - Zhao-Qian Liu
- Departments of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, P. R. China
| |
Collapse
|
26
|
Inhibition of MicroRNA miR-222 with LNA Inhibitor Can Reduce Cell Proliferation in B Chronic Lymphoblastic Leukemia. Indian J Hematol Blood Transfus 2016; 33:327-332. [PMID: 28824233 DOI: 10.1007/s12288-016-0694-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/04/2016] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are small regulatory molecules that negatively regulate gene expression by base-pairing with their target mRNAs. miRNAs have contribute significantly to cancer biology and recent studies have demonstrated the oncogenic or tumor-suppressing role in cancer cells. In many tumors up-regulation miRNAs has been reported especially miR-222 has been shown to be up-regulated in B chronic lymphocytic leukemia (B-CLL). In this study we assessed the effected inhibition of miR-222 in cell viability of B-CLL. We performed inhibition of mir-222 in B-CLL cell line (183-E95) using locked nucleic acid (LNA) antagomir. At different time points after LNA-anti-mir-222 transfection, miR-222 quantitation and cell viability were assessed by qRT-real time polymerase chain reaction and MTT assays. The data were analyzed by independent t test and one way ANOVA. Down-regulation of miR-222 in B-CLL cell line (183-E95) with LNA antagomir decreased cell viability in B-CLL. Cell viability gradually decreased over time as the viability of LNA-anti-mir transfected cells was <47 % of untreated cells at 72 h post-transfection. The difference in cell viability between LNA-anti-miR and control groups was statistically significant (p < 0.042). Based on our findings, the inhibition of miR-222 speculate represent a potential novel therapeutic approach for treatment of B-CLL.
Collapse
|