1
|
Kondracka A, Stupak A, Rybak-Krzyszkowska M, Kondracki B, Oniszczuk A, Kwaśniewska A. MicroRNA Associations with Preterm Labor-A Systematic Review. Int J Mol Sci 2024; 25:3755. [PMID: 38612564 PMCID: PMC11012198 DOI: 10.3390/ijms25073755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This systematic review delves into the connections between microRNAs and preterm labor, with a focus on identifying diagnostic and prognostic markers for this crucial pregnancy complication. Covering studies disseminated from 2018 to 2023, the review integrates discoveries from diverse pregnancy-related scenarios, encompassing gestational diabetes, hypertensive disorders and pregnancy loss. Through meticulous search strategies and rigorous quality assessments, 47 relevant studies were incorporated. The synthesis highlights the transformative potential of microRNAs as valuable diagnostic tools, offering promising avenues for early intervention. Notably, specific miRNAs demonstrate robust predictive capabilities. In conclusion, this comprehensive analysis lays the foundation for subsequent research, intervention strategies and improved outcomes in the realm of preterm labor.
Collapse
Affiliation(s)
- Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (A.K.)
| | - Aleksandra Stupak
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (A.K.)
| | - Magda Rybak-Krzyszkowska
- Department of Obstetrics and Perinatology, The University Hospital in Krakow, 30-551 Krakow, Poland;
| | - Bartosz Kondracki
- Department of Cardiology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Anna Kwaśniewska
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (A.K.)
| |
Collapse
|
2
|
Hussain NM, O'Halloran M, McDermott B, Elahi MA. Fetal monitoring technologies for the detection of intrapartum hypoxia - challenges and opportunities. Biomed Phys Eng Express 2024; 10:022002. [PMID: 38118183 DOI: 10.1088/2057-1976/ad17a6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
Intrapartum fetal hypoxia is related to long-term morbidity and mortality of the fetus and the mother. Fetal surveillance is extremely important to minimize the adverse outcomes arising from fetal hypoxia during labour. Several methods have been used in current clinical practice to monitor fetal well-being. For instance, biophysical technologies including cardiotocography, ST-analysis adjunct to cardiotocography, and Doppler ultrasound are used for intrapartum fetal monitoring. However, these technologies result in a high false-positive rate and increased obstetric interventions during labour. Alternatively, biochemical-based technologies including fetal scalp blood sampling and fetal pulse oximetry are used to identify metabolic acidosis and oxygen deprivation resulting from fetal hypoxia. These technologies neither improve clinical outcomes nor reduce unnecessary interventions during labour. Also, there is a need to link the physiological changes during fetal hypoxia to fetal monitoring technologies. The objective of this article is to assess the clinical background of fetal hypoxia and to review existing monitoring technologies for the detection and monitoring of fetal hypoxia. A comprehensive review has been made to predict fetal hypoxia using computational and machine-learning algorithms. The detection of more specific biomarkers or new sensing technologies is also reviewed which may help in the enhancement of the reliability of continuous fetal monitoring and may result in the accurate detection of intrapartum fetal hypoxia.
Collapse
Affiliation(s)
- Nadia Muhammad Hussain
- Discipline of Electrical & Electronic Engineering, University of Galway, Ireland
- Translational Medical Device Lab, Lambe Institute for Translational Research, University Hospital Galway, Ireland
| | - Martin O'Halloran
- Discipline of Electrical & Electronic Engineering, University of Galway, Ireland
- Translational Medical Device Lab, Lambe Institute for Translational Research, University Hospital Galway, Ireland
| | - Barry McDermott
- Translational Medical Device Lab, Lambe Institute for Translational Research, University Hospital Galway, Ireland
- College of Medicine, Nursing & Health Sciences, University of Galway, Ireland
| | - Muhammad Adnan Elahi
- Discipline of Electrical & Electronic Engineering, University of Galway, Ireland
- Translational Medical Device Lab, Lambe Institute for Translational Research, University Hospital Galway, Ireland
| |
Collapse
|
3
|
Peeples ES. MicroRNA therapeutic targets in neonatal hypoxic-ischemic brain injury: a narrative review. Pediatr Res 2023; 93:780-788. [PMID: 35854090 DOI: 10.1038/s41390-022-02196-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 06/28/2022] [Indexed: 11/11/2022]
Abstract
Neonatal hypoxic-ischemic brain injury (HIBI) is a devastating injury resulting from impaired blood flow and oxygen delivery to the brain at or around the time of birth. Despite the use of therapeutic hypothermia, more than one in four survivors suffer from major developmental disabilities-an indication of the critical need for more effective therapies. MicroRNAs (miRNA) have the potential to act as biomarkers and/or therapeutic targets in neonatal HIBI as a step toward improving outcomes in this high-risk population. This review summarizes the current literature around the use of cord blood and postnatal circulating blood miRNA expression for diagnosis or prognosis in human infants with hypoxic-ischemic encephalopathy, as well as animal studies assessing endogenous brain miRNA expression and potential for therapeutic targeting of miRNA expression for neuroprotection. Ultimately, the lack of knowledge regarding brain specificity of circulating miRNAs and the temporal variability in expression currently limit the use of miRNAs as biomarkers. However, given their broad effect profile, ease of administration, and small size allowing for effective blood-brain barrier crossing, miRNAs represent promising therapeutic targets for improving brain injury and reducing developmental impairments in neonates after HIBI. IMPACT: The high morbidity and mortality of neonatal hypoxic-ischemic brain injury (HIBI) despite current therapies demonstrates a need for developing more sensitive biomarkers and superior therapeutic options. MicroRNAs have been evaluated both as biomarkers and therapeutic options after neonatal HIBI. The limited knowledge regarding brain specificity of circulating microRNAs and temporal variability in expression currently limit the use of microRNAs as biomarkers. Future studies comparing the neuroprotective effects of modulating microRNA expression must consider temporal changes in the endogenous expression to determine appropriate timing of therapy, while also optimizing techniques for delivery.
Collapse
Affiliation(s)
- Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA.
- Children's Hospital & Medical Center, Omaha, NE, USA.
- Child Health Research Institute, Omaha, NE, USA.
| |
Collapse
|
4
|
He L, Wang X, Jin Y, Xu W, Guan Y, Wu J, Han S, Liu G. Identification and validation of the miRNA-mRNA regulatory network in fetoplacental arterial endothelial cells of gestational diabetes mellitus. Bioengineered 2021; 12:3503-3515. [PMID: 34233591 PMCID: PMC8806558 DOI: 10.1080/21655979.2021.1950279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gestational diabetes mellitus (GDM) increases the risk of fetal heart malformations, though little is known about the mechanism of hyperglycemia-induced heart malformations. Thus, we aimed to reveal the global landscape of miRNAs and mRNAs in GDM-exposed fetoplacental arterial endothelial cells (dAECs) and establish regulatory networks for exploring the pathophysiological mechanism of fetal heart malformations in maternal hyperglycemia. Gene Expression Omnibus (GEO) datasets were used, and identification of differentially expressed miRNAs (DEMs) and genes (DEGs) in GDM was based on a previous sequencing analysis of dAECs. A miRNA-mRNA network containing 20 DEMs and 65 DEGs was established using DEMs altered in opposite directions to DEGs. In an in vivo study, we established a streptozotocin-induced pregestational diabetes mellitus (PGDM) mouse model and found the fetal cardiac wall thickness in different regions to be dramatically increased in the PGDM grouValidation of DEMs and DEGs in the fetal heart showed significantly upregulated expression of let-7e-5p, miR-139-5p and miR-195-5p and downregulated expression of SGOL1, RRM2, RGS5, CDK1 and CENPA. In summary, we reveal the miRNA-mRNA regulatory network related to fetal cardiac development disorders in offspring, which may shed light on the potential molecular mechanisms of fetal cardiac development disorders during maternal hyperglycemia.
Collapse
Affiliation(s)
- Longkai He
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaotong Wang
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ya Jin
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Weipeng Xu
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yi Guan
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jingchao Wu
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shasha Han
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Guosheng Liu
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Wu R, Zhao B, Ren X, Wu S, Liu M, Wang Z, Liu W. MiR-27a-3p Targeting GSK3β Promotes Triple-Negative Breast Cancer Proliferation and Migration Through Wnt/β-Catenin Pathway. Cancer Manag Res 2020; 12:6241-6249. [PMID: 32801869 PMCID: PMC7386804 DOI: 10.2147/cmar.s255419] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Dysregulation of microRNAs (miRNAs) was found to play crucial roles in varieties of cancers, which affect tumor proliferation and migration. MiR-27a-3p has been identified as a tumor-related miRNA in liver cancer, lung cancer, and colorectal cancer. However, the function of miR-27a-3p in triple-negative breast cancer (TNBC) and its possible molecular mechanisms have still not been elucidated. METHODS QRT-PCR technique was used to detect the expression of miR-27a-3p in TNBC and normal breast cell lines or the effects of miR-27a-3p knockdown and overexpression in TNBC cell lines. Proliferation and migration were measured by CCK-8 method, colony formation, wound healing, and Transwell assays, respectively. Furthermore, we used a dual-luciferase reporter gene assay and Western blot analysis to identify GSK3β as a target of miR-27a-3p. RESULTS In this study, we found that miR-27a-3p expression was significantly elevated in TNBC cell lines. Database analysis suggested that TNBC patients with a high expression of miR-27a-3p have poorer overall survival possibilities. Overexpression of miR-27a-3p promotes TNBC cells proliferation, colony formation, and cell migration in vitro. Nevertheless, dual-luciferase reporter result showed that miR-27a-3p directly targeted the 3'-UTR regions of GSK3β mRNA and negatively regulated its expression. Lastly, we demonstrated that miR-27a-3p inactivates Wnt/β-catenin signaling pathway via targeting GSK3β. CONCLUSION These results indicate that expression of miR-27a-3p was highly expressed in TNBC and promoted tumor progression through attenuating GSK3β and may have a potential molecular-targeted strategy for TNBC therapy.
Collapse
Affiliation(s)
- Ruizhen Wu
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Bingqing Zhao
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xunxin Ren
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shiheng Wu
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Mingzao Liu
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Zipeng Wang
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Wei Liu
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|