1
|
Xie C, Tian Q, Qiu H, Wang R, Wang L, Yue Y, Yang X. Methylation Modification in Ornamental Plants: Impact on Floral Aroma and Color. Int J Mol Sci 2024; 25:8267. [PMID: 39125834 PMCID: PMC11311783 DOI: 10.3390/ijms25158267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Methylation represents a crucial class of modification that orchestrates a spectrum of regulatory roles in plants, impacting ornamental characteristics, growth, development, and responses to abiotic stress. The establishment and maintenance of methylation involve the coordinated actions of multiple regulatory factors. Methyltransferases play a pivotal role by specifically recognizing and methylating targeted sites, which induces alterations in chromatin structure and gene expression, subsequently influencing the release of volatile aromatic substances and the accumulation of pigments in plant petals. In this paper, we review the regulatory mechanisms of methylation modification reactions and their effects on the changes in aromatic substances and pigments in plant petals. We also explore the potential of methylation modifications to unravel the regulatory mechanisms underlying aroma and color in plant petals. This aims to further elucidate the synthesis, metabolism, and regulatory mechanisms of various methylation modifications related to the aroma and color substances in plant petals, thereby providing a theoretical reference for improving the aroma and color of plant petals.
Collapse
Affiliation(s)
- Chenchen Xie
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qingyin Tian
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hanruo Qiu
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Rui Wang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Wei X, Li L, Xu L, Zeng L, Xu J. Genome-wide identification of the AOMT gene family in wax apple and functional characterization of SsAOMTs to anthocyanin methylation. FRONTIERS IN PLANT SCIENCE 2023; 14:1213642. [PMID: 37822338 PMCID: PMC10562569 DOI: 10.3389/fpls.2023.1213642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Introduction Anthocyanins are major pigments in the peels of red-series wax apple fruits, and two principal components of them, namely, the cyanin and the peonidin, are non-methoxylated and methoxylated anthocyanins, respectively. Anthocyanin O-methyltransferases (AOMTs) are an important group of enzymes that have the ability to catalyze anthocyanins methylation to promote the solubility, stability, and bioactivity of anthocyanins. Although AOMT genes have been studied in a variety of plants, the function of them in wax apple is generally not well understood. Methods The anthocyanin composition in peels of two wax apple cultivars was determined by High Performance Liquid Chromatography Tandem Mass Spectrometry (HPLS-MS). The genome-wide analysis of the AOMT genes was performed with bioinformatics technology, and the expression patterns of different plant tissues, cultivars, fruit ripening stages, and exogenous abscisic acid (ABA) treatments were analyzed by transcriptome sequencing analysis and real-time quantitative PCR verification. An initial functional evaluation was carried out in vitro using recombinant the Anthocyanin O-methyltransferase Gene 5 of S. samarangense (SsAOMT5) protein. Results Only two main compositions of anthocyanin were found in peels of two wax apple cultivars, and it was worth noting that Tub Ting Jiang cultivar contained non-methoxylated anthocyanin (Cy3G) only, whereas Daye cultivar contained both non-methoxylated and methoxylated (Pn3G) anthocyanins. A total of six SsAOMT genes were identified in the whole genome of wax apple, randomly distributing on three chromosomes. A phylogenic analysis of the protein sequences divided the SsAOMT gene family into three subgroups, and all SsAOMTs had highly conserved domains of AOMT family. In total, four types of stress- related and five types of hormone- related cis-elements were discovered in the promoter region of the SsAOMTs. Expression pattern analysis showed that SsAOMT5 and SsAOMT6 were expressed in all tissues to varying degrees; notably, the expression of SsAOMT5 was high in the flower and fruit and significantly higher in Daye peels than those of other cultivars in the fruit ripening period. Exogenous ABA treatment significantly increased anthocyanin accumulation, but the increase of methoxylated anthocyanin content did not reach significant level compared with those without ABA treatment, whereas the expression of SsAOMT5 upregulated under ABA treatment. We identified two homologous SsAOMT5 genes from Daye cultivar (DSsAOMT5) and Tub Ting Jiang cultivar (TSsAOMT5); the results of functional analyses to two SsAOMT5 recombinant proteins in vitro demonstrated that DSsAOMT5 showed methylation modification activity, but TSsAOMT5 did not. Conclusion In conclusion, SsAOMT5 was responsible for methylated anthocyanin accumulation in the peels of wax apple and played an important role in red coloration in wax apple peels.
Collapse
Affiliation(s)
- Xiuqing Wei
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Liang Li
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Ling Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Lihui Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiahui Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Xie L, Lu Y, Zhou Y, Hao X, Chen W. Functional Analysis of a Methyltransferase Involved in Anthocyanin Biosynthesis from Blueberries ( Vaccinium corymbosum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16253-16262. [PMID: 36519893 DOI: 10.1021/acs.jafc.2c06743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Anthocyanins are natural water-soluble pigments that widely exist in plants, with various biological activities, including antioxidant, anti-obesity, and anti-diabetic activities. Currently, monomeric anthocyanins are mainly obtained through natural sources, which limits their availability. In the biosynthesis of anthocyanins, anthocyanin methyltransferases are recognized to play important roles in the water solubility and structural stability of anthocyanins. Blueberries are a rich source of anthocyanins with more than 30 chemical structures. However, the enzymes that were responsible for the methylation of anthocyanidin cores in blueberries had not been reported. Here, blueberries (Vaccinium corymbosum) have been selected as the candidate for characterization of the key enzyme. Phylogenic analysis, enzymatic activity assay, homology modeling, molecular simulation, protein expression and purification assay, site-directed mutation, isothermal titration calorimetry assay, and enzyme kinetic assay were used to identify the enzymatic function and molecular mechanism of VcOMT, which was responsible for the methylation of anthocyanidin cores. VcOMT could use delphinidin as a substrate but not cyanidin, petunidin, anthocyanins, flavonols, and flavonol glycosides. Ile191 and Glu198 were both identified as important amino acid residues for the binding interactions of anthocyanidins with VcOMT.
Collapse
Affiliation(s)
- Lianghua Xie
- Department of Traditional Chinese Medicine, Sir Run Yi yang Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yang Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yiyang Zhou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Xin Hao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Yi yang Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
4
|
Diversification of Chemical Structures of Methoxylated Flavonoids and Genes Encoding Flavonoid-O-Methyltransferases. PLANTS 2022; 11:plants11040564. [PMID: 35214897 PMCID: PMC8876552 DOI: 10.3390/plants11040564] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022]
Abstract
The O-methylation of specialized metabolites in plants is a unique decoration that provides structural and functional diversity of the metabolites with changes in chemical properties and intracellular localizations. The O-methylation of flavonoids, which is a class of plant specialized metabolites, promotes their antimicrobial activities and liposolubility. Flavonoid O-methyltransferases (FOMTs), which are responsible for the O-methylation process of the flavonoid aglycone, generally accept a broad range of substrates across flavones, flavonols and lignin precursors, with different substrate preferences. Therefore, the characterization of FOMTs with the physiology roles of methoxylated flavonoids is useful for crop improvement and metabolic engineering. In this review, we summarized the chemodiversity and physiology roles of methoxylated flavonoids, which were already reported, and we performed a cross-species comparison to illustrate an overview of diversification and conserved catalytic sites of the flavonoid O-methyltransferases.
Collapse
|
5
|
Uchida K, Sawada Y, Ochiai K, Sato M, Inaba J, Hirai MY. Identification of a Unique Type of Isoflavone O-Methyltransferase, GmIOMT1, Based on Multi-Omics Analysis of Soybean under Biotic Stress. PLANT & CELL PHYSIOLOGY 2020; 61:1974-1985. [PMID: 32894761 PMCID: PMC7758036 DOI: 10.1093/pcp/pcaa112] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 05/15/2023]
Abstract
Isoflavonoids are commonly found in leguminous plants. Glycitein is one of the isoflavones produced by soybean. The genes encoding the enzymes in the isoflavone biosynthetic pathway have mostly been identified and characterized. However, the gene(s) for isoflavone O-methyltransferase (IOMT), which catalyzes the last step of glycitein biosynthesis, has not yet been identified. In this study, we conducted multi-omics analyses of fungal-inoculated soybean and indicated that glycitein biosynthesis was induced in response to biotic stress. Moreover, we identified a unique type of IOMT, which participates in glycitein biosynthesis. Soybean seedlings were inoculated with Aspergillus oryzae or Rhizopus oligosporus and sampled daily for 8 d. Multi-omics analyses were conducted using liquid chromatography-tandem mass spectrometry and RNA sequencing. Metabolome analysis revealed that glycitein derivatives increased following fungal inoculation. Transcriptome co-expression analysis identified two candidate IOMTs that were co-expressed with the gene encoding flavonoid 6-hydroxylase (F6H), the key enzyme in glycitein biosynthesis. The enzymatic assay of the two IOMTs using respective recombinant proteins showed that one IOMT, named as GmIOMT1, produced glycitein. Unlike other IOMTs, GmIOMT1 belongs to the cation-dependent OMT family and exhibited the highest activity with Zn2+ among cations tested. Moreover, we demonstrated that GmIOMT1 overexpression increased the levels of glycitein derivatives in soybean hairy roots when F6H was co-expressed. These results strongly suggest that GmIOMT1 participates in inducing glycitein biosynthesis in response to biotic stress.
Collapse
Affiliation(s)
- Kai Uchida
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | | | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Jun Inaba
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | | |
Collapse
|
6
|
Okitsu N, Matsui K, Horikawa M, Sugahara K, Tanaka Y. Identification and Characterization of Novel Nemophila menziesii Flavone Glucosyltransferases that Catalyze Biosynthesis of Flavone 7,4'-O-Diglucoside, a Key Component of Blue Metalloanthocyanins. PLANT & CELL PHYSIOLOGY 2018; 59:2075-2085. [PMID: 29986079 DOI: 10.1093/pcp/pcy129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/02/2018] [Indexed: 05/23/2023]
Abstract
The brilliant blue color of the Nemophila menziesii flower is derived from metalloanthocyanin, which consists of anthocyanin {petunidin 3-O-[6-O-(trans-p-coumaroyl)-β-glucoside]-5-O-[6-O-(malonyl)-β-glucoside]}, flavone [apigenin 7-O-β-glucoside-4'-O-(6-O-malonyl)-O-β-glucoside] and metal ions (Mg2+, Fe3+). Although the two glucosyl moieties at the apigenin 7-O and 4'-O positions are essential for metalloanthocyanin formation, the mechanism of glucosylation has not yet been clarified. In this study, we used crude protein extract prepared from N. menziesii petals to determine that apigenin is sequentially glucosylated by the catalysis of UDP-glucose:flavone 4'-O-glucosyltrasferase (F4'GT) and UDP-glucose:flavone 4'-O-glucoside 7-O-glucosyltransferase (F4'G7GT). We identified 150 contigs exhibiting homology with a UDP-glucose-dependent GT in the N. menziesii petal transcriptome and isolated 24 putative full-length GT cDNAs which were then subjected to functional analysis. Two GT cDNAs, NmF4'GT and NmF4'G7GT, which are highly expressed during the early stages of petal development and rarely in leaves, were shown to encode F4'GT and F4'G7GT activities, respectively. Biochemical characterization of the recombinant enzymes revealed that NmF4'GT specifically catalyzed 4'-glucosylation of flavonoids and that NmF4'G7GT specifically catalyzed 7-glucosylation of flavone 4'-O-glucosides and flavones. Apigenin 7,4'-O-diglucoside was efficiently synthesized from apigenin in the presence of recombinant NmF4'GT and NmF4'G7GT. Transgenic tobacco BY-2 cells expressing NmF4'GT and NmF4'G7GT converted apigenin into apigenin 7,4'-O-diglucoside, confirming their activities in vivo. Based on these results, we conclude that these two GTs act co-ordinately to catalyze apigenin 7,4'-O-diglucoside biosynthesis in N. menziesii.
Collapse
Affiliation(s)
- Naoko Okitsu
- Research Institute, Suntory Global Innovation Center Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| | - Keisuke Matsui
- Research Institute, Suntory Global Innovation Center Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| | - Manabu Horikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| | - Kohtaro Sugahara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| | - Yoshikazu Tanaka
- Research Institute, Suntory Global Innovation Center Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| |
Collapse
|