1
|
Wang M, Xu F, Niu X, Zhang M, Liu H, Hong T, Dang S, Zhang W. The secreted protease ADAMTS18 is a novel activator of latent TGF-β to exacerbate renal fibrosis. Commun Biol 2025; 8:892. [PMID: 40483302 PMCID: PMC12145425 DOI: 10.1038/s42003-025-08320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 05/30/2025] [Indexed: 06/11/2025] Open
Abstract
Renal fibrosis (RF) is an inevitable consequence of almost all forms of progressive chronic kidney disease (CKD). TGFβ is a powerful cytokine capable of dominating the fibrotic process. Targeting factors capable of activating latent TGF-β is a more effective and safe strategy to reduce TGF-β-induced fibrosis, but appropriate targets need to be identified. Here, we show that ADAMTS18/Adamts18 is significantly upregulated in the fibrotic kidneys of human CKD patients and mice. ADAMTS18 is primarily produced by renal tubular epithelial cells and fibroblasts during RF. Functionally, Adamts18 deletion inhibits epithelial-mesenchymal transition, inflammation, and collagen synthesis. Conversely, Adamts18 overexpression exacerbates progressive renal fibrosis. Mechanistically, the KPFR sequence in ADAMTS18 disrupts the latency-associated peptide (LAP) interaction with TGF-β and increases the release of mature TGF-β1. Blockage of ADAMTS18-mediated latent TGF-β activation by a tetrapeptide (LSKL) effectively reverses RF. Collectively, ADAMTS18 is a novel LAP-TGF-β1 activator with the potential to optimize CKD treatment strategies.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Fangmin Xu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Xiaohan Niu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Mengxi Zhang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Hanlin Liu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Tao Hong
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Talati YK, Dagar N, Gaikwad AB. Flavokawain A Attenuated Chronic Kidney Disease: Evidence From Network Pharmacology and Experimental Verification. Cell Biol Int 2025. [PMID: 40418741 DOI: 10.1002/cbin.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/16/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025]
Abstract
Chronic kidney disease (CKD) is a silent global epidemic affecting ~700 million people worldwide, contributing to rising mortality rates. Despite the variety of underlying causes, renal fibrosis is the key pathological feature of CKD. Flavokawain A (FKA), a natural chalcone, is thought to offer protective effects against CKD through its anti-inflammatory, antioxidant, and anti-fibrotic properties. This study aims to investigate the therapeutic potential of FKA against CKD, using network pharmacology (NP), molecular docking analysis, and In Vivo validation. GeneCards, SwissTargetPrediction, and SuperPred databases were utilized to identify therapeutic targets related to CKD and FKA. Protein-protein interactions (PPIs) were performed using the STRING database. Gene ontology and pathway enrichment analyses were performed with DAVID databases, followed by network construction in Cytoscape. For validation, molecular docking studies were performed using PyRx and tested at doses of 50 mg/kg and 100 mg/kg (p.o.) for 21 days using a unilateral ureteral obstruction (UUO) rat model. The study identified 109 therapeutic targets for FKA in relation to CKD, highlighting 11 hub targets and 78 potential pathways. Molecular docking showed strong binding efficacy with nuclear factor κB subunit 1 (NF-κB1) and matrix metallopeptidase 9 (MMP9). In vivo validation supported these findings, as FKA administration showed protective effects on kidney function and histology with the downregulation of extracellular matrix (ECM) markers, such as fibronectin (FN) and transforming growth factor β1 (TGF-β1), along with reduced expression of NF-κB1 and MMP9. These findings indicate that FKA could be a valuable therapeutic candidate for managing CKD by targeting NF-κB1 and MMP9.
Collapse
Affiliation(s)
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Rajasthan, India
| | | |
Collapse
|
3
|
Taherkhani S, Sheibani M, Mohammadkhanizadeh A, Virag JAI, de Castro Braz L, Azizi Y. Metalloproteinases (MMPs) in hypertensive disorders: role, function, pharmacology, and potential strategies to mitigate pathophysiological changes. Front Pharmacol 2025; 16:1559288. [PMID: 40492135 PMCID: PMC12146787 DOI: 10.3389/fphar.2025.1559288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/29/2025] [Indexed: 06/11/2025] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of enzymes that play an important role in the pathophysiology of hypertensive disorders, particularly through their involvement in extracellular matrix (ECM) remodeling and vascular dysfunction. Their activity is closely linked to hypertension-mediated organ damage, which affects the vascular and cardio-renal systems. MMPs are responsible for degrading various components of the ECM, which is crucial for maintaining vascular structure and function. In hypertensive patients, several MMPs, including MMP-1, MMP-3, and MMP-9, are often found at elevated levels. This is associated with vascular remodeling and dysfunction due to chronic high blood pressure. The activation of MMPs in hypertension can be triggered by several factors, such as oxidative stress, inflammatory cytokines, and vasoactive agents like angiotensin II. In addition to increasing MMP activity, these variables cause an imbalance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), which are the MMPs' natural inhibitors. This imbalance contributes to excessive degradation of the ECM and promotes pathological changes in vascular smooth muscle cells (VSMCs), leading to their transition from a contractile to a synthetic phenotype. This shift facilitates cell growth and migration, exacerbating vascular remodeling. Given their critical roles in hypertension-related organ damage, MMPs are being explored as potential pharmacological targets. Inhibitors of MMPs may help mitigate the adverse effects of hypertension by restoring balance in ECM remodeling processes. Understanding their mechanisms opens avenues for targeted therapies that could significantly improve outcomes for individuals suffering from hypertension-related complications.
Collapse
Affiliation(s)
- Soroush Taherkhani
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadkhanizadeh
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jitka A. I. Virag
- Department of Physiology, East Carolina University, Greenville, NC, United States
| | | | - Yaser Azizi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Chen X, Wu C, Tang F, Zhou J, Mo L, Li Y, He J. The Immune Microenvironment: New Therapeutic Implications in Organ Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e05067. [PMID: 40391706 DOI: 10.1002/advs.202505067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/28/2025] [Indexed: 05/22/2025]
Abstract
Fibrosis, characterized by abnormal deposition of structural proteins, is a major cause of tissue dysfunction in chronic diseases. The disease burden associated with progressive fibrosis is substantial, and currently approved drugs are unable to effectively reverse it. Immune cells are increasingly recognized as crucial regulators in the pathological process of fibrosis by releasing effector molecules, such as cytokines, chemokines, extracellular vesicles, metabolites, proteases, or intercellular contact. Therefore, targeting the immune microenvironment can be a potential strategy for fibrosis reduction and reversion. This review summarizes the recent advances in the understanding of the immune microenvironment in fibrosis including phenotypic and functional transformations of immune cells and the interaction of immune cells with other cells. The novel opportunities for the discovery and development of drugs for immune microenvironment remodeling and their associated challenges are also discussed.
Collapse
Affiliation(s)
- Xiangqi Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Wu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Tang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingyue Zhou
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Mo
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Petrovic V, Whiteman A, Peach M, Kim S, Malkov VA, Budas G, Billin AN. Plasma proteome signatures of ASK1 inhibition by selonsertib associate with efficacy in the MOSAIC randomized trial for diabetic kidney disease. BMC Nephrol 2025; 26:244. [PMID: 40375085 PMCID: PMC12080038 DOI: 10.1186/s12882-025-04166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 05/08/2025] [Indexed: 05/18/2025] Open
Abstract
Oxidative stress is a driver of acute and chronic kidney injury. Selonsertib is a clinical stage antagonist of ASK1 (MAP3K5), a serine/threonine kinase that is a mediator of oxidative stress signaling pathways. Selonsertib has demonstrated promising effects on preserving kidney function in the Phase2b Diabetic Kidney Disease (DKD) MOSAIC trial. However, little is known about the biological effects of ASK1 inhibition by selonsertib and its potential mechanism of action in DKD. We identified a plasma proteome signature of selonsertib activity that implicates numerous signaling pathways that regulate fibrosis, inflammation and oxidative stress response demonstrating translation of non-clinical models to the clinic. We further demonstrate that the effects of selonsertib on the plasma proteome are most pronounced in a subset of patients with poor baseline kidney function but who respond well to selonsertib treatment. This observation has implications for the future development of ASK1 inhibitors in a distinct patient population with DKD.
Collapse
Affiliation(s)
| | | | - Matt Peach
- Gilead Sciences Inc., Foster City, CA, USA
| | - Sam Kim
- Gilead Sciences Inc., Foster City, CA, USA
| | | | | | | |
Collapse
|
6
|
Bouwens D, Kabgani N, Bergerbit C, Kim H, Ziegler S, Ijaz S, Abdallah A, Haraszti T, Maryam S, Omidinia-Anarkoli A, De Laporte L, Hayat S, Jansen J, Kramann R. A bioprinted and scalable model of human tubulo-interstitial kidney fibrosis. Biomaterials 2025; 316:123009. [PMID: 39705928 DOI: 10.1016/j.biomaterials.2024.123009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Chronic kidney disease (CKD) affects more than 10% of the global population. As kidney function negatively correlates with the presence of interstitial fibrosis, the development of new anti-fibrotic therapies holds promise to stabilize functional decline in CKD patients. The goal of the study was to generate a scalable bioprinted 3-dimensional kidney tubulo-interstitial disease model of kidney fibrosis. We have generated novel human PDGFRβ+ pericytes, CD10+ epithelial and CD31+ endothelial cell lines and compared their transcriptomic signature to their in vivo counterpart using bulk RNA sequencing in comparison to human kidney single cell RNA-sequencing datasets. This comparison indicated that the novel cell lines still expressed kidney cell specific genes and shared many features with their native cell-state. PDGFRβ+ pericytes showed three-lineage differentiation capacity and differentiated towards myofibroblasts following TGFβ treatment. We utilized a fibrinogen/gelatin-based hydrogel as bioink and confirmed a good survival rate of all cell types within the bioink after printing. We then combined all three cells in a bioprinted model using separately printed compartments for tubule epithelium, and interstitial endothelium and pericytes. We confirmed that this 3D printed model allows to recapitulate key disease driving epithelial-mesenchymal crosstalk mechanisms of kidney fibrosis since injury of epithelial cells prior to bioprinting resulted in myofibroblast differentiation and fibrosis driven by pericytes after bioprinting. The bioprinted model was also scalable up to a 96-well format.
Collapse
Affiliation(s)
- Daphne Bouwens
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Nazanin Kabgani
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Cédric Bergerbit
- DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany; AMB-Advanced Materials for Biomedicine, Institute of Applied Medical Engineering, University Hospital Aachen, Germany
| | - Hyojin Kim
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Susanne Ziegler
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Sadaf Ijaz
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Ali Abdallah
- Interdisciplinary Center for Clinical Research, RWTH University Aachen, Germany
| | - Tamás Haraszti
- ITMC-Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany; DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany
| | - Sidrah Maryam
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Abdolrahman Omidinia-Anarkoli
- DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany; AMB-Advanced Materials for Biomedicine, Institute of Applied Medical Engineering, University Hospital Aachen, Germany
| | - Laura De Laporte
- ITMC-Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany; DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany; AMB-Advanced Materials for Biomedicine, Institute of Applied Medical Engineering, University Hospital Aachen, Germany
| | - Sikander Hayat
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Jitske Jansen
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Rafael Kramann
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany; Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
7
|
Carestia E, Di Giuseppe F, Kazemi M, Ramahi M, Priyadarshi U, Giuliani P, De Francesco P, Schips L, Di Ilio C, Ciccarelli R, Di Iorio P, Angelucci S. Significant Changes in Low-Abundance Protein Content Detected by Proteomic Analysis of Urine from Patients with Renal Stones After Extracorporeal Shock Wave Lithotripsy. BIOLOGY 2025; 14:482. [PMID: 40427671 PMCID: PMC12108638 DOI: 10.3390/biology14050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 05/29/2025]
Abstract
Extracorporeal shock wave lithotripsy (ESWL), although a highly effective method for the treatment of kidney stones, can cause significant kidney damage. Since urinary protein composition directly reflects kidney function, proteomic analysis of this fluid may be useful to identify changes in protein levels induced by patient exposure to ESWL as a sign of kidney damage. To this end, we collected urine samples from 80 patients with nephrolithiasis 2 h before and 24 h after exposure to ESWL, which were concentrated and subsequently processed with a commercially available enrichment method to extract low-abundance urinary proteins. These were then separated by 2D electrophoresis and subsequently analyzed by a proteomic approach. A large number of proteins were identified as being related to inflammatory, fibrotic, and antioxidant processes and changes in the levels of some of them were confirmed by Western blot analysis. Therefore, although further experimental confirmation is needed, our results demonstrate that ESWL significantly influences the low urinary protein profile of patients with nephrolithiasis. Notably, among the identified proteins, matrix metalloproteinase 7, alpha1-antitrypsin, and clusterin, as well as dimethyl arginine dimethyl amino hydrolase 2 and ab-hydrolase, may play an important role as putative biomarkers in the monitoring and management of ESWL-induced renal damage.
Collapse
Affiliation(s)
- Elena Carestia
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (E.C.); (F.D.G.); (M.K.); (M.R.); (U.P.); (C.D.I.); (S.A.)
- Department of Sciences, ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| | - Fabrizio Di Giuseppe
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (E.C.); (F.D.G.); (M.K.); (M.R.); (U.P.); (C.D.I.); (S.A.)
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Mohammad Kazemi
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (E.C.); (F.D.G.); (M.K.); (M.R.); (U.P.); (C.D.I.); (S.A.)
- Department of Aging Medicine and Sciences (DMSI), ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| | - Massoumeh Ramahi
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (E.C.); (F.D.G.); (M.K.); (M.R.); (U.P.); (C.D.I.); (S.A.)
- Department of Aging Medicine and Sciences (DMSI), ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| | - Uditanshu Priyadarshi
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (E.C.); (F.D.G.); (M.K.); (M.R.); (U.P.); (C.D.I.); (S.A.)
- Department of Aging Medicine and Sciences (DMSI), ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (L.S.); (P.D.I.)
| | - Piergustavo De Francesco
- Urology Unit, Azienda Sanitaria Locale 2, San Pio Hospital, Via San Camillo de Lellis, 66054 Vasto, Italy;
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (L.S.); (P.D.I.)
| | - Carmine Di Ilio
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (E.C.); (F.D.G.); (M.K.); (M.R.); (U.P.); (C.D.I.); (S.A.)
| | - Renata Ciccarelli
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (E.C.); (F.D.G.); (M.K.); (M.R.); (U.P.); (C.D.I.); (S.A.)
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (L.S.); (P.D.I.)
| | - Stefania Angelucci
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (E.C.); (F.D.G.); (M.K.); (M.R.); (U.P.); (C.D.I.); (S.A.)
- Department of Sciences, ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
8
|
Elhenawy YI, Abdelmaksoud AA, Ismail EAR, Elashmawy ZM, Sallam DE. E-cadherin as a surrogate marker of epithelial-to-mesenchymal transition for detection of diabetic nephropathy and subclinical atherosclerosis among children and adolescents with type 1 diabete. Expert Rev Endocrinol Metab 2025:1-7. [PMID: 40223176 DOI: 10.1080/17446651.2025.2492762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) may be involved in the pathogenesis of diabetic nephropathy (DN) among adults with type 2 diabetes. The current study aimed to evaluate the role of E-cadherin as a surrogate marker of EMT among children and adolescent with type 1 diabetes (T1D) and DN and its possible relation to carotid intima media thickness (CIMT). RESEARCH DESIGN AND METHODS Sixty participants with T1D were divided equally into two groups based on urinary albumin creatinine ratio (UACR) and compared with 30 healthy controls. Hemoglobin A1c (HbA1c), kidney function tests, serum E-cadherin and CIMT were assessed. RESULTS E-cadherin levels were significantly lower in patients with microalbuminuria (56.5 ± 15.8 ng/mL) compared with patients with normoalbuminuria (179.8 ± 45.1 ng/mL) and healthy controls (222.5 ± 39.9 ng/mL) (p < 0.001). E-cadherin correlated negatively with HbA1c (r = -0.42, p = 0.001), UACR (r = -0.89, p < 0.001) and CIMT (r = -0.716, p < 0.001). ROC curve analysis showed that the E-cadherin cutoff value 135 ng/mL could detect nephropathy with 96.67% sensitivity and 86.67% specificity. Logistic regression showed that E-cadherin was a significant independent factor for nephropathy. CONCLUSIONS E-cadherin is a potential biomarker reflecting EMT activity in both pathogenesis and progression of DN and subclinical atherosclerosis in pediatric patients with T1D.
Collapse
Affiliation(s)
| | | | | | | | - Dina Ebrahem Sallam
- Pediatric Departments, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Lin HH, Liang YH, Chyau CC, Tseng CY, Zhang JQ, Chen JH. Desmodium caudatum (Thunb.) DC. extract attenuates hyperuricemia-induced renal fibrosis via modulating TGF-β1 pathway and uric acid transporters: Evidence from in vitro and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119609. [PMID: 40064319 DOI: 10.1016/j.jep.2025.119609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Desmodium caudatum (Thunb.) DC., a traditional Chinese medicinal herb, has been used to treat conditions such as rheumatic back pain, diarrhea, jaundice-related hepatitis, and abscesses; it also serves as an anthelmintic. The extract of Desmodium caudatum (Thunb.) DC. (DCE) is also known for its antioxidant and anti-inflammatory properties. However, its impact on kidney fibrosis remains unclear. AIM OF THE STUDY This study investigated whether DCE can alleviate hyperuricemia-induced kidney fibrosis by modulating the transforming growth factor-β1 (TGF-β1) pathway, activating epithelial-mesenchymal transition (EMT), and regulating uric acid transporters. MATERIALS AND METHODS NRK52E cells were exposed to uric acid (UA) followed by DCE and isovitexin (IV) for 24 h. Cell damage was assessed using an Oxidative Stress Kit, ELISA, Gelatin Zymography, and Western blotting. In parallel, adenine-induced C57BL/6 mice received DCE and IV treatment for 11 weeks. After sacrifice, renal injury was assessed through histopathological examination and protein expression analysis of fibrosis markers, EMT indicators, and uric acid transporters. RESULTS DCE reduced reactive oxygen species (ROS) accumulation in uric acid-induced NRK52E cells and inhibited EMT by suppressing TGF-β1 and Slug while restoring E-cadherin expression. DCE treatment reduced fibrosis-related proteins (CTGF, collagen I, fibronectin, and α-SMA) in UA-treated cells and modulated uric acid transporters by increasing ABCG2 and OAT3 while decreasing URAT1 and GLUT9. In adenine-induced hyperuricemic C57BL/6 mice, DCE administration reduced serum uric acid levels and xanthine oxidase activity. Histological analysis showed that DCE attenuated renal fibrosis through decreased glomerular atrophy, reduced collagen deposition, and diminished α-SMA and fibronectin expression. CONCLUSION Our study demonstrates that DCE exerts protective benefits against hyperuricemia-induced renal fibrosis. The potential mechanism may involve suppressing the TGF-β1 signaling pathway and regulating the uric acid transporter, thereby mitigating kidney injury.
Collapse
Affiliation(s)
- Hui-Hsuan Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Yu-Hsuan Liang
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, 34 Chung-Chie Road, Shalu County, Taichung, 43302, Taiwan
| | - Chiao-Yun Tseng
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Jun-Quan Zhang
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan.
| |
Collapse
|
10
|
Bulusu SN, Bavikatte AN, Shah S, Murthy SSN, Kommoju V, Mariaselvam CM, Kavadichanda C, Vembar SS, Thabah MM, Negi VS. Renal and Peripheral Blood Transcriptome Signatures That Predict Treatment Response in Proliferative Lupus Nephritis-A Prospective Study. Immunology 2025; 174:470-480. [PMID: 39875315 DOI: 10.1111/imm.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/15/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Mechanisms contributing to non-response to treatment in lupus nephritis (LN) are unclear. We characterised the transcriptome of paired peripheral blood mononuclear cells (PBMCs) and renal tissues in LN before and after cyclophosphamide (CYC) treatment and identified markers that predicted treatment response. Total RNA isolated from paired PBMCs (n = 32) and renal tissues (n = 25) of 16 proliferative LN before CYC treatment, 6 months post-treatment, and during renal flare, was sequenced on Illumina Novaseq-6000 platform. Post-treatment, eight patients were clinical responders (CR), of whom four flared (FL), and eight were non-responders (NR). Comparative transcriptomic analyses before and after treatment within CR, NR, and FL groups was performed using DESeq2. Weighted gene co-expression network analysis (WGCNA) and ROC analysis was performed to identify and validate hub genes predictive of treatment response. Based on this, we observed that pathways such as degradation of cell cycle proteins, expression of G0 and G1 phase proteins, and apoptosis, were upregulated in CR PBMCs post-treatment, while IFN-γ signalling and ECM organisation were downregulated. In NR PBMCs, ECM molecules, neddylation and BCR signalling were upregulated post-CYC treatment, while in NR renal tissue, TLR, IFN and NF-κB signalling pathways were upregulated. In FL PBMCs, neutrophil degranulation and ROS and RNS production in phagocytes were downregulated following treatment, whereas, in the corresponding renal tissue, cell-ECM interactions and ISG15 antiviral mechanism were downregulated. After WGCNA and subsequent ROC analysis, TENM2, NLGN1 and AP005230.1 from PBMCs each predicted NR (AUC-0.91; p = 0.03), while combined model improved prediction (AUC-0.94; p = 0.02). AP005230.1 from renal tissue also predicted non-response (AUC-0.94; p = 0.01) and AC092436.3 from PBMCs predicted renal flare (AUC-0.81; p = 0.04). Our study identified significant DEGs/pathways specific to different treatment outcomes and hub genes that predicted non-response and renal flare.
Collapse
Affiliation(s)
- Sree Nethra Bulusu
- Department of Clinical Immunology, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Sanket Shah
- Department of Clinical Immunology, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Vallayyachari Kommoju
- Department of Clinical Immunology, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Christina Mary Mariaselvam
- Department of Clinical Immunology, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Chengappa Kavadichanda
- Department of Clinical Immunology, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Molly Mary Thabah
- Department of Clinical Immunology, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
11
|
Alberti G, Russo E, Lo Iacono M, Di Pace MR, Grasso F, Baldanza F, Pensabene M, La Rocca G, Sergio M. Matrix Metalloproteinases in Ureteropelvic Junction Obstruction: Their Role in Pathogenesis and Their Use as Clinical Markers. Cells 2025; 14:520. [PMID: 40214474 PMCID: PMC11988040 DOI: 10.3390/cells14070520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
The obstruction of the urinary tract is responsible for obstructive nephropathy (ON), also known as uropathy, which may then evolve in a renal parenchymal disease (hydronephrosis). Regarding the etiology of ON, it has been linked to the perturbation of processes occurring during the urinary tract development such as morphogenesis, maturation, and growth. Despite the research carried out in recent years, there is still a pressing need to elucidate the molecular processes underlying the disease. This may then result in the definition of novel biomarkers that can help in patient stratification and the monitoring of therapeutic choices. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases with key roles in extracellular matrix remodeling due to their wide cleavage specificity and ability to modulate the bioavailability of growth factors. Despite the known changes in the local tissue microenvironment at the site of the urinary tract obstruction, the role of MMPs in ureteropelvic junction obstruction (UPJO) and, therefore, in the pathogenesis of renal damage in ON is not well-documented. In this review, we underline the possible roles of MMPs both in the pathogenesis of UPJO and in the progression of related hydronephrosis. The potential use of MMPs as biomarkers detectable in bodily fluids (such as the patient's urine) is also discussed.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.L.I.)
| | - Eleonora Russo
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Melania Lo Iacono
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.L.I.)
| | - Maria Rita Di Pace
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (M.R.D.P.); (F.G.); (F.B.); (M.P.)
| | - Francesco Grasso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (M.R.D.P.); (F.G.); (F.B.); (M.P.)
| | - Fabio Baldanza
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (M.R.D.P.); (F.G.); (F.B.); (M.P.)
| | - Marco Pensabene
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (M.R.D.P.); (F.G.); (F.B.); (M.P.)
| | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.L.I.)
| | - Maria Sergio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (M.R.D.P.); (F.G.); (F.B.); (M.P.)
| |
Collapse
|
12
|
Baryła M, Skrzycki M, Danielewicz R, Kosieradzki M, Struga M. Protein biomarkers in assessing kidney quality before transplantation‑current status and future perspectives (Review). Int J Mol Med 2024; 54:107. [PMID: 39370783 PMCID: PMC11448562 DOI: 10.3892/ijmm.2024.5431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/31/2024] [Indexed: 10/08/2024] Open
Abstract
To meet the demand for kidney transplants (KTx), organs are frequently retrieved not only from standard criteria donors (SCD; a donor who is aged <50 years and suffered brain death from any number of causes, such as traumatic injuries or a stroke) but also from expanded criteria donors (any donor aged >60 years or donors aged >50 years with two of the following: A history of high blood pressure, a creatinine serum level ≥1.5 mg/dl or death resulting from a stroke). This comes at the cost of a higher risk of primary non‑function (the permanent hyperkalemia, hyperuremia and fluid overload that result in the need for continuous dialysis after KTx), delayed graft function (the need for dialysis session at least once during the first week after KTx), earlier graft loss and urinary complications (vesico‑ureteral reflux, obstruction of the vesico‑ureteral anastomosis, urine leakage). At present, there are no commercially available diagnostic tools for assessing kidney quality prior to KTx. Currently available predictive models based on clinical data, such as the Kidney Donor Profile Index, are insufficient. One promising option is the application of perfusion solutions for protein biomarkers of kidney quality and predictors of short‑ and long‑term outcomes. However, to date, protein markers that can be detected with ELISA, western blotting and cytotoxic assays have not been identified to be a beneficial predictors of kidney quality. These include lactate dehydrogenases, glutathione S‑transferases, fatty acid binding proteins, extracellular histones, IL‑18, neutrophil gelatinase‑associated lipocalin, MMPs and kidney injury molecule‑1. However, novel methods, including liquid chromatography‑mass spectrometry (LC‑MS) and microarrays, allow the analysis of all renal proteins suspended/dissolved in the acellular preservation solution used for kidney storage before KTx (including hypothermic machine perfusion as one of kidney storage methods) e.g. Belzer University of Wisconsin. Recent proteomic studies utilizing LC‑MS have identified complement pathway elements (C3, C1QB, C4BPA, C1S, C1R and C1RL), desmoplakin, blood coagulation pathway elements and immunoglobulin heavy variable 2‑26 to be novel predictors of kidney quality before transplantation. This was because they were found to correlate with estimated glomerular filtration rate at 3 and 12 months after kidney transplantation. However, further proteomic studies focusing on distinct markers obtained from hypothermic and normothermic machine perfusion are needed to confirm their predictive value and to improve kidney storage methods. Therefore, the present literature review from PubMed, Scopus, Embase and Web of Science was performed with the aims of summarizing the current knowledge on the most frequently studied single protein biomarkers. In addition, novel analytical methods and insights into organ injury during preservation were documented, where future directions in assessing organ quality before kidney transplantation were also discussed.
Collapse
Affiliation(s)
- Maksymilian Baryła
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Michał Skrzycki
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Roman Danielewicz
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Maciej Kosieradzki
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Marta Struga
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|
13
|
Pang G, Ye L, Jiang Y, Wu Y, Zhang R, Yang H, Yang Y. Unveiling the bidirectional role of MMP9: A key player in kidney injury. Cell Signal 2024; 122:111312. [PMID: 39074714 DOI: 10.1016/j.cellsig.2024.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc-dependent proteolytic metalloenzymes that are involved in numerous pathological conditions, including nephropathy. MMP9, a member of the MMPs family, is categorized as a constituent of the gelatinase B subgroup, and its involvement in extracellular matrix (ECM) remodeling and renal fibrosis highlights its importance in the development and progression of renal diseases. The exact role of MMP9 in the development of kidney diseases is still controversial. This study investigated the dual role of MMP9 in kidney injury, discussing its implications in the pathogenesis of kidney diseases and investigating the design and mechanism of MMP9 inhibitors based on previous studies. This study provides an effective basis for the development of novel and selective MMP9 inhibitors for treating renal diseases.
Collapse
Affiliation(s)
- Guiying Pang
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Ling Ye
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Yinxiao Jiang
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Yilin Wu
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Rufeng Zhang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing 102609, People's Republic of China
| | - Hongxu Yang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China.
| | - Yi Yang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China.
| |
Collapse
|
14
|
Dahdah N, Tercero-Alcázar C, Malagón MM, Garcia-Roves PM, Guzmán-Ruiz R. Interrelation of adipose tissue macrophages and fibrosis in obesity. Biochem Pharmacol 2024; 225:116324. [PMID: 38815633 DOI: 10.1016/j.bcp.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Obesity is characterized by adipose tissue expansion, extracellular matrix remodelling and unresolved inflammation that contribute to insulin resistance and fibrosis. Adipose tissue macrophages represent the most abundant class of immune cells in adipose tissue inflammation and could be key mediators of adipocyte dysfunction and fibrosis in obesity. Although macrophage activation states are classically defined by the M1/M2 polarization nomenclature, novel studies have revealed a more complex range of macrophage phenotypes in response to external condition or the surrounding microenvironment. Here, we discuss the plasticity of adipose tissue macrophages (ATMs) in response to their microenvironment in obesity, with special focus on macrophage infiltration and polarization, and their contribution to adipose tissue fibrosis. A better understanding of the role of ATMs as regulators of adipose tissue remodelling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Norma Dahdah
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Carmen Tercero-Alcázar
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María M Malagón
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Pablo Miguel Garcia-Roves
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Rocío Guzmán-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain.
| |
Collapse
|
15
|
Avramidou E, Srinivasan D, Todorov D, Tsoulfas G, Papalois V. Diagnostic and Prognostic Value of Machine Perfusion Biomarkers in Kidney Graft Evaluation. Transplant Proc 2024; 56:1308-1318. [PMID: 39069459 DOI: 10.1016/j.transproceed.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/24/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND With the rising prevalence of end-stage kidney disease, the use of expanded criteria donor allografts, seen as essential for meeting organ demand, still proves challenging due to their higher risk of graft loss, delayed function, and rejection. Machine perfusion, a technique in preserving allografts, offers improved allograft outcomes compared to static cold storage while allowing for the noninvasive measurement of kidney injury biomarkers in the perfusate solution. This offers an objective method to assess graft function at various preservation stages. MATERIALS AND METHODS We conducted a narrative review of the databases PubMed and Scopus, including studies written in the English language and published after 2010. RESULTS In this narrative review, we identified biomarkers, like 4-hydroxyproline, taurine, and glutathione transferase, as predictive markers of delayed graft function. Additionally, biomarkers, like extracellular histone h3, vascular cell adhesion protein, and matrix metalloprotease protein, have shown correlation with decreased graft function, although their predictive ability remains inconclusive. DISCUSSION The review outlines various suggestions for potential areas of research focus to enhance future expanded criteria donor allograft utilization. However, limitations exist, including the absence of a singular reliable biomarker and the challenges of validating biomarker effectiveness across diverse outcomes.
Collapse
Affiliation(s)
- Eleni Avramidou
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki, Greece.
| | - Divya Srinivasan
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Dominik Todorov
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki, Greece
| | - Vassilios Papalois
- Imperial College Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
16
|
Xiao X, Ge H, Wang Y, Wan X, Li D, Xie Z. (-)-Gallocatechin Gallate Mitigates Metabolic Syndrome-Associated Diabetic Nephropathy in db/db Mice. Foods 2024; 13:1755. [PMID: 38890983 PMCID: PMC11171689 DOI: 10.3390/foods13111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Metabolic syndrome (MetS) significantly predisposes individuals to diabetes and is a prognostic factor for the progression of diabetic nephropathy (DN). This study aimed to evaluate the efficacy of (-)-gallocatechin gallate (GCG) in alleviating signs of MetS-associated DN in db/db mice. We administered GCG and monitored its effects on several metabolic parameters, including food and water intake, urinary output, blood glucose levels, glucose and insulin homeostasis, lipid profiles, blood pressure, and renal function biomarkers. The main findings indicated that GCG intervention led to marked improvements in these metabolic indicators and renal function, signifying its potential in managing MetS and DN. Furthermore, transcriptome analysis revealed substantial modifications in gene expression, notably the downregulation of pro-inflammatory genes such as S100a8, S100a9, Cd44, Socs3, Mmp3, Mmp9, Nlrp3, IL-1β, Osm, Ptgs2, and Lcn2 and the upregulation of the anti-oxidative gene Gstm3. These genetic alterations suggest significant effects on pathways related to inflammation and oxidative stress. In conclusion, GCG demonstrates therapeutic efficacy for MetS-associated DN, mitigating metabolic disturbances and enhancing renal health by modulating inflammatory and oxidative responses.
Collapse
Affiliation(s)
- Xin Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Huifang Ge
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| |
Collapse
|
17
|
Liu PC, Song YT, Zhao LM, Jiang YL, Hu JG, Dong L, Zhou XL, Zhou L, Li Y, Li-Ling J, Xie HQ. Establishment and comparison of different procedures for modeling intrauterine adhesion in rats: A preliminary study. Heliyon 2024; 10:e25365. [PMID: 38322868 PMCID: PMC10844578 DOI: 10.1016/j.heliyon.2024.e25365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
The establishment of a stable animal model for intrauterine adhesion (IUA) can significantly enhance research on the pathogenesis and pathological changes of this disease, as well as on the development of innovative therapeutic approaches. In this study, three different modeling methods, including phenol mucilage combined mechanical scraping, ethanol combined mechanical scraping and ethanol modeling alone were designed. The morphological characteristics of the models were evaluated. The underlying mechanisms and fertility capacity of the ethanol modeling group were analyzed and compared to those of the sham surgery group. All three methods resulted in severe intrauterine adhesions, with ethanol being identified as a reliable modeling agent and was subsequently subjected to further evaluation. Immunohistochemistry and RT-PCR results indicated that the ethanol modeling group exhibited an increase in the degree of fibrosis and inflammation, as well as a significant reduction in endometrial thickness, gland number, vascularization, and endometrial receptivity, ultimately resulting in the loss of fertility capacity. The aforementioned findings indicate that the intrauterine perfusion of 95 % ethanol is efficacious in inducing the development of intrauterine adhesions in rats. Given its cost-effectiveness, efficacy, and stability in IUA formation, the use of 95 % ethanol intrauterine perfusion may serve as a novel platform for evaluating innovative anti-adhesion materials and bioengineered therapies.
Collapse
Affiliation(s)
- Peng-Cheng Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Yu-Ting Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Long-Mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Yan-Ling Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Jun-Gen Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Dong
- Regenerative Medicine Research Center of Topregmed, Chengdu, Sichuan, China
| | - Xing-li Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Li Zhou
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaxing Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Jesse Li-Ling
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Thipboonchoo N, Fongsupa S, Sureram S, Sa-nguansak S, Kesornpun C, Kittakoop P, Soodvilai S. Altenusin, a fungal metabolite, alleviates TGF-β1-induced EMT in renal proximal tubular cells and renal fibrosis in unilateral ureteral obstruction. Heliyon 2024; 10:e24983. [PMID: 38318047 PMCID: PMC10839986 DOI: 10.1016/j.heliyon.2024.e24983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Renal fibrosis is a pathological feature of chronic kidney disease (CKD), progressing toward end-stage kidney disease (ESKD). The aim of this study is to investigate the therapeutic potential of altenusin, a farnesoid X receptor (FXR) agonist derived from fungi, on renal fibrosis. The effect of altenusin was determined (i) in vitro using the transforming growth factor β1 (TGF-β1)-induced epithelial to mesenchymal transition (EMT) of human renal proximal tubular cells and (ii) in vivo using mouse unilateral ureteral obstruction (UUO). The findings revealed that incubation of 10 ng/ml TGF-β1 promotes morphological change in RPTEC/TERT1 cells, a human renal proximal tubular cell line, from epithelial to fibroblast-like cells. TGF-β1 markedly increased EMT markers namely α-smooth muscle actin (α-SMA), fibronectin, and matrix metalloproteinase 9 (MMP-9), while decreased the epithelial marker E-cadherin. Co-incubation TGF-β1 with altenusin preserved the epithelial characteristics of the renal epithelial cells by antagonizing TGF-β/Smad signaling pathway, specifically a decreased phosphorylation of Smad2/3 with an increased level of Smad7. Interestingly, the antagonizing effect of altenusin does not require FXR activation. Moreover, altenusin could reverse TGF-β1-induced fibroblast-like cells to epithelial-like cells. Treatment on UUO mice with 30 mg/kg altenusin significantly reduced the expression of α-SMA, fibronectin, and collagen type 1A1 (COL1A1). The reduction in the renal fibrosis markers is correlated with the decreased phosphorylation of Smad2/3 levels but does not improve E-cadherin protein expression. Collectively, altenusin reduces EMT in human renal proximal tubular cells and renal fibrosis by antagonizing the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Natechanok Thipboonchoo
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Somsak Fongsupa
- Department of Medical Technology, Faculty of Allied Health Science, Thammasat University Rangsit Campus, Thailand
| | - Sanya Sureram
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Suliporn Sa-nguansak
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Chatchai Kesornpun
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Sunhapas Soodvilai
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
- Excellent Center for Drug Discovery, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
19
|
Saad KM, Salles ÉL, Naeini SE, Baban B, Abdelmageed ME, Abdelaziz RR, Suddek GM, Elmarakby AA. Reno-protective effect of protocatechuic acid is independent of sex-related differences in murine model of UUO-induced kidney injury. Pharmacol Rep 2024; 76:98-111. [PMID: 38214881 DOI: 10.1007/s43440-023-00565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Obstructive nephropathy is a condition often caused by urinary tract obstruction either anatomical (e.g., tumors), mechanical (e.g., urolithiasis), or compression (e.g., pregnancy) and can progress to chronic kidney disease (CKD). Studies have shown sexual dimorphism in CKD, where males were found to have a more rapid decline in kidney function following kidney injury compared to age-matched females. Protocatechuic acid (PCA), an anti-oxidant and anti-inflammatory polyphenolic compound, has demonstrated promising effects in mitigating drug-induced kidney injuries. The current study aims to explore sexual dimorphism in kidney injury after unilateral ureteral obstruction (UUO) and assess whether PCA treatment can mitigate kidney injury in both sexes. METHODS UUO was induced in 10-12 weeks old male and female C57BL/6J mice. Mice were categorized into four groups (n = 6-8/group); Sham, Sham plus PCA (100 mg/kg, I.P daily), UUO, and UUO plus PCA. RESULTS After 2 weeks of induction of UUO, markers of kidney oxidative stress (TBARs), inflammation (IL-1α and IL-6), tubular injury (neutrophil gelatinase-associated lipocalin, NGAL and urinary kidney injury molecule-1, KIM-1), fibrosis (Masson's trichrome staining, collagen IV expression, MMP-2 and MMP-9) and apoptosis (TUNEL+ cells, active caspase-1 and caspase-3) were significantly elevated in both males and females relative to their sham counterparts. Males exhibited significantly greater kidney oxidative stress, inflammation, fibrosis, and apoptosis after induction of UUO when compared to females. PCA treatment significantly attenuated UUO-induced kidney injury, inflammation, fibrosis, and apoptosis in both sexes. CONCLUSION Our findings suggest a differential gender response to UUO-induced kidney injury with males being more sensitive to UUO-induced kidney inflammation, fibrosis, and apoptosis than age-matched females. Importantly, PCA treatment reduced UUO-induced kidney injury in a sex-independent manner which might be attributed to its anti-oxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Karim M Saad
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA
| | - Sahar Emami Naeini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed A Elmarakby
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
20
|
Wang Y, Jiao L, Qiang C, Chen C, Shen Z, Ding F, Lv L, Zhu T, Lu Y, Cui X. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed Pharmacother 2024; 171:116116. [PMID: 38181715 DOI: 10.1016/j.biopha.2023.116116] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Fibrosis is a process of tissue repair that results in the slow creation of scar tissue to replace healthy tissue and can affect any tissue or organ. Its primary feature is the massive deposition of extracellular matrix (mainly collagen), eventually leading to tissue dysfunction and organ failure. The progression of fibrotic diseases has put a significant strain on global health and the economy, and as a result, there is an urgent need to find some new therapies. Previous studies have identified that inflammation, oxidative stress, some cytokines, and remodeling play a crucial role in fibrotic diseases and are essential avenues for treating fibrotic diseases. Among them, matrix metalloproteinases (MMPs) are considered the main targets for the treatment of fibrotic diseases since they are the primary driver involved in ECM degradation, and tissue inhibitors of metalloproteinases (TIMPs) are natural endogenous inhibitors of MMPs. Through previous studies, we found that MMP-9 is an essential target for treating fibrotic diseases. However, it is worth noting that MMP-9 plays a bidirectional regulatory role in different fibrotic diseases or different stages of the same fibrotic disease. Previously identified MMP-9 inhibitors, such as pirfenidone and nintedanib, suffer from some rather pronounced side effects, and therefore, there is an urgent need to investigate new drugs. In this review, we explore the mechanism of action and signaling pathways of MMP-9 in different tissues and organs, hoping to provide some ideas for developing safer and more effective biologics.
Collapse
Affiliation(s)
- Yuling Wang
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Linke Jiao
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Caoxia Qiang
- Department of Traditional Chinese Medicine, Tumor Hospital Affiliated to Nantong University, Jiangsu, China
| | - Chen Chen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihuan Shen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Fan Ding
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lifei Lv
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tingting Zhu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
21
|
Shuangshuang H, Mengmeng S, Lan Z, Fang Z, Yu L. Maimendong decoction regulates M2 macrophage polarization to suppress pulmonary fibrosis via PI3K/Akt/FOXO3a signalling pathway-mediated fibroblast activation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117308. [PMID: 37865276 DOI: 10.1016/j.jep.2023.117308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mai Men Dong decoction (MMDD), a traditional Chinese medicine formula, is relevant to ethnopharmacology due to its constituents and therapeutic properties. The formula contains herbs like Ophiopogon japonicus (Thunb.) Ker Gawl., Pinellia ternata (Thunb.) Makino, Panax ginseng C.A.Mey, Glycyrrhiza uralensis Fisch, and Ziziphus jujuba Mill, Oryza sativa L., which have been used for centuries in Chinese medicine. These herbs provide a comprehensive approach to treating respiratory conditions by addressing dryness, cough, and phlegm. Ethnopharmacological studies have explored the scientific basis of these herbs and identified active compounds that contribute to their medicinal effects. The traditional usage of MMDD by different ethnic groups reflects their knowledge and experiences. Examining this formula contributes to the understanding and development of ethnopharmacology. AIM OF THE STUDY In the case of pulmonary fibrosis (PF), treating it can be challenging due to the limited treatment options available. This study aimed to assess the potential of MMDD as a treatment for PF by targeting macrophages and the PI3K/Akt/FOXO3a signaling pathway. MATERIALS AND METHODS In a mouse model of PF, we investigated the effects of MMDD on inflammation, fibrosis, and M2 macrophage infiltration in lung tissue. Additionally, we examined the modulation of pro-fibrotic factors and key proteins in the PI3K/Akt/FOXO3a pathway. In vitro experiments involved inducing M2-type macrophages and assessing the impact of MMDD on fibroblast activation and the PI3K/Akt/FOXO3a pathway. RESULTS Results demonstrated that MMDD improved weight, reduced inflammation, and inhibited M2 macrophage infiltration in mouse lung tissue. It downregulated pro-fibrotic factors, such as TGF-β1 and PDGF-RB, as well as markers of fibroblast activation. MMDD also exhibited regulatory effects on key proteins in the PI3K/Akt/FOXO3a signaling pathway. CONCLUSIONS MMDD inhibited M2 macrophage polarization and released profibrotic factors that inhibited pulmonary fibrosis. As a result, the PI3K/Akt/FOXO3a signaling pathway is suppressed. MMDD is proving to be a successful treatment for PF. However, further research is needed to validate its effectiveness in clinical practice.
Collapse
Affiliation(s)
- He Shuangshuang
- School of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Shen Mengmeng
- School of Chinese North China University of Science and Technology, China
| | - Zhang Lan
- School of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Zhang Fang
- School of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Li Yu
- School of Chinese Medicine, Beijing University of Chinese Medicine, China.
| |
Collapse
|
22
|
Cheng T, Agwu C, Shim K, Wang B, Jain S, Mahjoub MR. Aberrant centrosome biogenesis disrupts nephron and collecting duct progenitor growth and fate resulting in fibrocystic kidney disease. Development 2023; 150:dev201976. [PMID: 37982452 PMCID: PMC10753588 DOI: 10.1242/dev.201976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Mutations that disrupt centrosome biogenesis or function cause congenital kidney developmental defects and fibrocystic pathologies. Yet how centrosome dysfunction results in the kidney disease phenotypes remains unknown. Here, we examined the consequences of conditional knockout of the ciliopathy gene Cep120, essential for centrosome duplication, in the nephron and collecting duct progenitor niches of the mouse embryonic kidney. Cep120 loss led to reduced abundance of both cap mesenchyme and ureteric bud populations, due to a combination of delayed mitosis, increased apoptosis and premature differentiation of progenitor cells. These defects resulted in dysplastic kidneys at birth, which rapidly formed cysts, displayed increased interstitial fibrosis and decline in kidney function. RNA sequencing of embryonic and postnatal kidneys from Cep120-null mice identified changes in the pathways essential for development, fibrosis and cystogenesis. Our study defines the cellular and developmental defects caused by centrosome dysfunction during kidney morphogenesis and identifies new therapeutic targets for patients with renal centrosomopathies.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Chidera Agwu
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Kyuhwan Shim
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Sanjay Jain
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Moe R. Mahjoub
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University in St Louis, St. Louis, MO 63110, USA
| |
Collapse
|
23
|
Samantasinghar A, Ahmed F, Rahim CSA, Kim KH, Kim S, Choi KH. Artificial intelligence-assisted repurposing of lubiprostone alleviates tubulointerstitial fibrosis. Transl Res 2023; 262:75-88. [PMID: 37541485 DOI: 10.1016/j.trsl.2023.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Tubulointerstitial fibrosis (TIF) is the most prominent cause which leads to chronic kidney disease (CKD) and end-stage renal failure. Despite extensive research, there have been many clinical trial failures, and there is currently no effective treatment to cure renal fibrosis. This demonstrates the necessity of more effective therapies and better preclinical models to screen potential drugs for TIF. In this study, we investigated the antifibrotic effect of the machine learning-based repurposed drug, lubiprostone, validated through an advanced proximal tubule on a chip system and in vivo UUO mice model. Lubiprostone significantly downregulated TIF biomarkers including connective tissue growth factor (CTGF), extracellular matrix deposition (Fibronectin and collagen), transforming growth factor (TGF-β) downstream signaling markers especially, Smad-2/3, matrix metalloproteinase (MMP2/9), plasminogen activator inhibitor-1 (PAI-1), EMT and JAK/STAT-3 pathway expression in the proximal tubule on a chip model and UUO model compared to the conventional 2D culture. These findings suggest that the proximal tubule on a chip model is a more physiologically relevant model for studying and identifying potential biomarkers for fibrosis compared to conventional in vitro 2D culture and alternative of an animal model. In conclusion, the high throughput Proximal tubule-on-chip system shows improved in vivo-like function and indicates the potential utility for renal fibrosis drug screening. Additionally, repurposed Lubiprostone shows an effective potency to treat TIF via inhibiting 3 major profibrotic signaling pathways such as TGFβ/Smad, JAK/STAT, and epithelial-mesenchymal transition (EMT), and restores kidney function.
Collapse
Affiliation(s)
| | - Faheem Ahmed
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
| | | | | | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
| |
Collapse
|
24
|
Xu L, Jiang H, Xie J, Xu Q, Zhou J, Lu X, Wang M, Dong L, Zuo D. Mannan-binding lectin ameliorates renal fibrosis by suppressing macrophage-to-myofibroblast transition. Heliyon 2023; 9:e21882. [PMID: 38034794 PMCID: PMC10685189 DOI: 10.1016/j.heliyon.2023.e21882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Mannan-binding lectin (MBL) is a pattern-recognition molecule that plays a crucial role in innate immunity. MBL deficiency correlates with an increased risk of chronic kidney disease (CKD). However, the molecular mechanisms are not fully defined. Here, we established a CKD model in wild-type (WT) and MBL-deficient (MBL-/-) mice via unilateral ureteral obstruction (UUO). The result showed that MBL deficiency aggravated the pathogenesis of renal fibrosis in CKD mice. Strikingly, the in vivo macrophage depletion investigation revealed that macrophages play an essential role in the MBL-mediated suppression of renal fibrosis. We found that MBL limited the progression of macrophage-to-myofibroblast transition (MMT) in kidney tissues of UUO mice. Further in vitro study showed that MBL-/- macrophages exhibited significantly increased levels of fibrotic-related molecules compared with WT cells upon transforming growth factor beta (TGF-β) stimulation. We demonstrated that MBL inhibited the MMT process by suppressing the production of matrix metalloproteinase 9 (MMP-9) and activation of Akt signaling. In summary, our study revealed an expected role of MBL on macrophage transition during renal fibrosis, thus offering new insight into the potential of MBL as a therapeutic target for CKD.
Collapse
Affiliation(s)
- Li Xu
- Clinical Research Institute of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, Guangdong Province, 524045, China
| | - Honglian Jiang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510030, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jingwen Xie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qishan Xu
- Clinical Research Institute of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, Guangdong Province, 524045, China
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, China
- School of Medical Technology, Shangqiu Medical College, Shangqiu, 476100, China
| | - Lijun Dong
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Daming Zuo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
25
|
Wang J, Yue Z, Che L, Li H, Hu R, Shi L, Zhang X, Zou H, Peng Q, Jiang Y, Wang Z. Establishment of SV40 Large T-Antigen-Immortalized Yak Rumen Fibroblast Cell Line and the Fibroblast Responses to Lipopolysaccharide. Toxins (Basel) 2023; 15:537. [PMID: 37755963 PMCID: PMC10537058 DOI: 10.3390/toxins15090537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
The yak lives in harsh alpine environments and the rumen plays a crucial role in the digestive system. Rumen-associated cells have unique adaptations and functions. The yak rumen fibroblast cell line (SV40T-YFB) was immortalized by introducing simian virus 40 large T antigen (SV40T) by lentivirus-mediated transfection. Further, we have reported the effects of lipopolysaccharide (LPS) of different concentrations on cell proliferation, extracellular matrix (ECM), and proinflammatory mediators in SV40T-YFB. The results showed that the immortalized yak rumen fibroblast cell lines were identified as fibroblasts that presented oval nuclei, a fusiform shape, and positive vimentin and SV40T staining after stable passage. Chromosome karyotype analysis showed diploid characteristics of yak (n = 60). LPS at different concentrations inhibited cell viability in a dose-dependent manner. SV40T-YFB treated with LPS increased mRNA expression levels of matrix metalloproteinases (MMP-2 and MMP-9), inflammatory cytokines (TNF-α, IL-1β, IL-6), and urokinase-type plasminogen activator system components (uPA, uPAR). LPS inhibits the expression of tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2), plasminogen activator inhibitor-2 (PAI-2), fibronectin (FN), anti-inflammatory factor IL-10, and collagen I (COL I) in SV40T-YFB. Overall, these results suggest that LPS inhibits cell proliferation and induces ECM degradation and inflammatory response in SV40T-YFB.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhisheng Wang
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (Z.Y.); (L.C.); (H.L.); (R.H.); (L.S.); (X.Z.); (H.Z.); (Q.P.); (Y.J.)
| |
Collapse
|
26
|
Hassan NH, Yousef DM, Alsemeh AE. Hesperidin protects against aluminum-induced renal injury in rats via modulating MMP-9 and apoptosis: biochemical, histological, and ultrastructural study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36208-36227. [PMID: 36547838 PMCID: PMC10039835 DOI: 10.1007/s11356-022-24800-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/13/2022] [Indexed: 06/09/2023]
Abstract
Aluminum, one of the most abundant metallic elements, is known to be toxic to multiple organs including the kidneys. This study aimed to investigate the pleiotropic nephroprotective effects of Hesperidin in aluminum chloride (ALCL3)-induced renal injury, highlighting the potential molecular mechanisms underlying. Twenty-four male albino rats were divided into four groups: control, Hesperidin (80 mg/kg BW, orally), ALCL3 (10 mg/kg BW, IP), and ALCL3 + Hesperidin groups. By the end of the study, blood samples were collected, and tissue samples were harvested at sacrifice. ALCL3 rats showed dramatically declined renal function, enhanced intrarenal oxidative stress, inflammation, apoptosis, and extravagant renal histopathological damage with interstitial fibrosis as shown by a higher Endothelial, Glomerular, Tubular, and Interstitial (EGTI) score. Hesperidin significantly reversed all the aforementioned detrimental effects in ALCL3-treated rats. The study verified the nephroprotective effects of Hesperidin on ALCL3-induced renal damage and confirmed the critical role of extracellular matrix (ECM) remodeling and apoptosis inhibition.
Collapse
Affiliation(s)
- Nancy Husseiny Hassan
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519 Egypt
| | - Doaa Mohammed Yousef
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519 Egypt
| | - Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519 Egypt
| |
Collapse
|
27
|
Song YT, Dong L, Hu JG, Liu PC, Jiang YL, Zhou L, Wang M, Tan J, Li YX, Zhang QY, Zou CY, Zhang XZ, Zhao LM, Nie R, Zhang Y, Li-Ling J, Xie HQ. Application of genipin-crosslinked small intestine submucosa and urine-derived stem cells for the prevention of intrauterine adhesion in a rat model. COMPOSITES PART B: ENGINEERING 2023; 250:110461. [DOI: 10.1016/j.compositesb.2022.110461] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
28
|
Qin L, Liu N, Bao CLM, Yang DZ, Ma GX, Yi WH, Xiao GZ, Cao HL. Mesenchymal stem cells in fibrotic diseases-the two sides of the same coin. Acta Pharmacol Sin 2023; 44:268-287. [PMID: 35896695 PMCID: PMC9326421 DOI: 10.1038/s41401-022-00952-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023]
Abstract
Fibrosis is caused by extensive deposition of extracellular matrix (ECM) components, which play a crucial role in injury repair. Fibrosis attributes to ~45% of all deaths worldwide. The molecular pathology of different fibrotic diseases varies, and a number of bioactive factors are involved in the pathogenic process. Mesenchymal stem cells (MSCs) are a type of multipotent stem cells that have promising therapeutic effects in the treatment of different diseases. Current updates of fibrotic pathogenesis reveal that residential MSCs may differentiate into myofibroblasts which lead to the fibrosis development. However, preclinical and clinical trials with autologous or allogeneic MSCs infusion demonstrate that MSCs can relieve the fibrotic diseases by modulating inflammation, regenerating damaged tissues, remodeling the ECMs, and modulating the death of stressed cells after implantation. A variety of animal models were developed to study the mechanisms behind different fibrotic tissues and test the preclinical efficacy of MSC therapy in these diseases. Furthermore, MSCs have been used for treating liver cirrhosis and pulmonary fibrosis patients in several clinical trials, leading to satisfactory clinical efficacy without severe adverse events. This review discusses the two opposite roles of residential MSCs and external MSCs in fibrotic diseases, and summarizes the current perspective of therapeutic mechanism of MSCs in fibrosis, through both laboratory study and clinical trials.
Collapse
Affiliation(s)
- Lei Qin
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Nian Liu
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Chao-le-meng Bao
- CASTD Regengeek (Shenzhen) Medical Technology Co. Ltd, Shenzhen, 518000 China
| | - Da-zhi Yang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Gui-xing Ma
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Wei-hong Yi
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 China
| | - Guo-zhi Xiao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| | - Hui-ling Cao
- grid.263817.90000 0004 1773 1790Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055 China
| |
Collapse
|
29
|
Punica granatum L. Polyphenolic Extract as an Antioxidant to Prevent Kidney Injury in Metabolic Syndrome Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6144967. [PMID: 36644578 PMCID: PMC9836814 DOI: 10.1155/2023/6144967] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023]
Abstract
Introduction Obesity and metabolic syndrome (MetS) constitute a rapidly increasing health problem and contribute to the development of multiple comorbidities like acute and chronic kidney disease. Insulin resistance, inappropriate lipolysis, and excess of free fatty acids (FFAs) are associated with glomerulus hyperfiltration and atherosclerosis. The important component of MetS, oxidative stress, is also involved in the destabilization of kidney function and the progression of kidney injury. Natural polyphenols have the ability to reduce the harmful effect of reactive oxygen and nitrogen species (ROS/RNS). Extract derived from Punica granatum L. is rich in punicalagin that demonstrates positive effects in MetS and its associated diseases. The aim of the study was to investigate the effect of bioactive substances of pomegranate peel to kidney damage associated with the MetS. Methods In this study, we compared biomarkers of oxidative stress in kidney tissue of adult male Zucker Diabetic Fatty (ZDF) rats with MetS and healthy controls that were treated with Punica granatum L. extract at a dose of 100 or 200 mg/kg. Additionally, we evaluated the effect of polyphenolic extract on kidney injury markers and remodeling. The concentration of ROS/RNS, oxLDL, glutathione (GSH), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), metalloproteinase 2 and 9 (MMP-2, MMP-9), and the activity of superoxide dismutase (SOD) and catalase (CAT) were measured. Results The data showed significant differences in oxidative stress markers between treated and untreated MetS rats. ROS/RNS levels, oxLDL concentration, and SOD activity were lower, whereas CAT activity was higher in rats with MetS receiving polyphenolic extract. After administration of the extract, markers for kidney injury (NGAL, KIM-1) decreased. Conclusion Our study confirmed the usefulness of pomegranate polyphenols in the treatment of MetS and the prevention of kidney damage. However, further, more detailed research is required to establish the mechanism of polyphenol protection.
Collapse
|
30
|
Glucosidase inhibitor, Nimbidiol ameliorates renal fibrosis and dysfunction in type-1 diabetes. Sci Rep 2022; 12:21707. [PMID: 36522378 PMCID: PMC9755213 DOI: 10.1038/s41598-022-25848-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetic nephropathy is characterized by excessive accumulation of extracellular matrix (ECM) leading to renal fibrosis, progressive deterioration of renal function, and eventually to end stage renal disease. Matrix metalloproteinases (MMPs) are known to regulate synthesis and degradation of the ECM. Earlier, we demonstrated that imbalanced MMPs promote adverse ECM remodeling leading to renal fibrosis in type-1 diabetes. Moreover, elevated macrophage infiltration, pro-inflammatory cytokines and epithelial‒mesenchymal transition (EMT) are known to contribute to the renal fibrosis. Various bioactive compounds derived from the medicinal plant, Azadirachta indica (neem) are shown to regulate inflammation and ECM proteins in different diseases. Nimbidiol is a neem-derived diterpenoid that is considered as a potential anti-diabetic compound due to its glucosidase inhibitory properties. We investigated whether Nimbidiol mitigates adverse ECM accumulation and renal fibrosis to improve kidney function in type-1 diabetes and the underlying mechanism. Wild-type (C57BL/6J) and type-1 diabetic (C57BL/6-Ins2Akita/J) mice were treated either with saline or with Nimbidiol (0.40 mg kg-1 d-1) for eight weeks. Diabetic kidney showed increased accumulation of M1 macrophages, elevated pro-inflammatory cytokines and EMT. In addition, upregulated MMP-9 and MMP-13, excessive collagen deposition in the glomerular and tubulointerstitial regions, and degradation of vascular elastin resulted to renal fibrosis in the Akita mice. These pathological changes in the diabetic mice were associated with functional impairments that include elevated resistive index and reduced blood flow in the renal cortex, and decreased glomerular filtration rate. Furthermore, TGF-β1, p-Smad2/3, p-P38, p-ERK1/2 and p-JNK were upregulated in diabetic kidney compared to WT mice. Treatment with Nimbidiol reversed the changes to alleviate inflammation, ECM accumulation and fibrosis and thus, improved renal function in Akita mice. Together, our results suggest that Nimbidiol attenuates inflammation and ECM accumulation and thereby, protects kidney from fibrosis and dysfunction possibly by inhibiting TGF-β/Smad and MAPK signaling pathways in type-1 diabetes.
Collapse
|
31
|
Abstract
Renal fibrosis is a hallmark of end-stage chronic kidney disease. It is characterized by increased accumulation of extracellular matrix (ECM), which disrupts cellular organization and function within the kidney. Here, we review the bi-directional interactions between cells and the ECM that drive renal fibrosis. We will discuss the cells involved in renal fibrosis, changes that occur in the ECM, the interactions between renal cells and the surrounding fibrotic microenvironment, and signal transduction pathways that are misregulated as fibrosis proceeds. Understanding the underlying mechanisms of cell-ECM crosstalk will identify novel targets to better identify and treat renal fibrosis and associated renal disease.
Collapse
Affiliation(s)
- Kristin P. Kim
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Caitlin E. Williams
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
32
|
Zhao X, Chen J, Sun H, Zhang Y, Zou D. New insights into fibrosis from the ECM degradation perspective: the macrophage-MMP-ECM interaction. Cell Biosci 2022; 12:117. [PMID: 35897082 PMCID: PMC9327238 DOI: 10.1186/s13578-022-00856-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a pathological feature of a variety of chronic inflammatory diseases that can affect almost all organs, which can cause severe consequences and even lead to death. Fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM) due to disruption of the balance between ECM production and degradation. Although overabundance of ECM proteins has long been the focus of studies on fibrosis, another facet of the problem-impaired degradation of the ECM-is gaining increasing attention. Matrix metalloproteinase (MMP) and the tissue inhibitor of metalloproteinase (TIMP) system is the main molecular system contributing to ECM degradation, and macrophages are the major regulators of ECM. However, the relationship among macrophages, the MMP/TIMP system and the ECM is not fully understood in the context of fibrosis. Here, we discuss in detail the role played by the ECM in the development of fibrosis and highlight the macrophage-MMP-ECM interaction that is involved in fibrogenesis and may be a potential therapeutic target for fibrosis.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayin Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
Deng J, Wu Z, He Y, Lin L, Tan W, Yang J. Interaction Between Intrinsic Renal Cells and Immune Cells in the Progression of Acute Kidney Injury. Front Med (Lausanne) 2022; 9:954574. [PMID: 35872775 PMCID: PMC9300888 DOI: 10.3389/fmed.2022.954574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
A growing number of studies have confirmed that immune cells play various key roles in the pathophysiology of acute kidney injury (AKI) development. After the resident immune cells and intrinsic renal cells are damaged by ischemia and hypoxia, drugs and toxins, more immune cells will be recruited to infiltrate through the release of chemokines, while the intrinsic cells promote macrophage polarity conversion, and the immune cells will promote various programmed deaths, phenotypic conversion and cycle arrest of the intrinsic cells, ultimately leading to renal impairment and fibrosis. In the complex and dynamic immune microenvironment of AKI, the bidirectional interaction between immune cells and intrinsic renal cells affects the prognosis of the kidney and the progression of fibrosis, and determines the ultimate fate of the kidney.
Collapse
Affiliation(s)
- Junhui Deng
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifen Wu
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun He
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Lirong Lin
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tan
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jurong Yang ;
| |
Collapse
|
34
|
Aczel D, Gyorgy B, Bakonyi P, BukhAri R, Pinho R, Boldogh I, Yaodong G, Radak Z. The Systemic Effects of Exercise on the Systemic Effects of Alzheimer's Disease. Antioxidants (Basel) 2022; 11:antiox11051028. [PMID: 35624892 PMCID: PMC9137920 DOI: 10.3390/antiox11051028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive degenerative disorder and a leading cause of dementia in the elderly. The etiology of AD is multifactorial, including an increased oxidative state, deposition of amyloid plaques, and neurofibrillary tangles of the tau protein. The formation of amyloid plaques is considered one of the first signs of the illness, but only in the central nervous system (CNS). Interestingly, results indicate that AD is not just localized in the brain but is also found in organs distant from the brain, such as the cardiovascular system, gut microbiome, liver, testes, and kidney. These observations make AD a complex systemic disorder. Still, no effective medications have been found, but regular physical activity has been considered to have a positive impact on this challenging disease. While several articles have been published on the benefits of physical activity on AD development in the CNS, its peripheral effects have not been discussed in detail. The provocative question arising is the following: is it possible that the beneficial effects of regular exercise on AD are due to the systemic impact of training, rather than just the effects of exercise on the brain? If so, does this mean that the level of fitness of these peripheral organs can directly or indirectly influence the incidence or progress of AD? Therefore, the present paper aims to summarize the systemic effects of both regular exercise and AD and point out how common exercise-induced adaptation via peripheral organs can decrease the incidence of AD or attenuate the progress of AD.
Collapse
Affiliation(s)
- Dora Aczel
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary; (D.A.); (B.G.); (P.B.); (R.B.)
| | - Bernadett Gyorgy
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary; (D.A.); (B.G.); (P.B.); (R.B.)
| | - Peter Bakonyi
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary; (D.A.); (B.G.); (P.B.); (R.B.)
| | - RehAn BukhAri
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary; (D.A.); (B.G.); (P.B.); (R.B.)
| | - Ricardo Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil;
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Gu Yaodong
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary; (D.A.); (B.G.); (P.B.); (R.B.)
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: ; Tel.: +36-1-3565764; Fax: +36-1-3566337
| |
Collapse
|
35
|
Anti-Hyperglycemic Effect of Magnesium-Enhanced Alkaline-Reduced Water on High Glucose-Induced Oxidative Stress in Renal Tubular Epithelial Cells. Processes (Basel) 2022. [DOI: 10.3390/pr10050919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diabetes is coupled with hyperglycemia, a state in which elevated glucose levels trigger oxidative stress (OS) in various body functions. One of the organs most afflicted by diabetes is the kidney. Despite this, specific treatments to mitigate the harmful effects of hyperglycemia-induced OS in the kidney have not been extensively explored. This study evaluates the anti-hyperglycemic efficacy of magnesium-enhanced alkaline-reduced water (MARW) in human kidney-2 (HK-2) cells. OS, mitogen-activated protein kinase (MAPK) signaling and fibrosis markers were assessed in high glucose (HG)-induced HK-2 cells, followed by treatment with experimental water for 24 h. Surprisingly, MARW rescued the vitality of HG-induced HK-2 cells, in contrast to that seen with other experimental waters. Additionally, MARW maintained reactive oxygen species, nitric oxide, catalase, glutathione peroxidase, hepatocyte growth factor and glucose uptake in HG-induced HK-2 cells but not in tap water and mineral water. Similarly, MARW downregulated the expression of MAPK and fibrosis-linked signaling proteins such as p-p38, phospho-c-Jun N-terminal kinase, α-smooth muscle actin, matrix metalloproteinase-3 and cleaved caspase 3 in HG-induced HK-2 cells. In conclusion, MARW protects HK-2 cells from the deleterious effects of HG by stabilizing antioxidant defenses and by signaling cascades related to metabolism, apoptosis and fibrosis.
Collapse
|
36
|
Wu Q, Sun S, Wei L, Liu M, Liu H, Liu T, Zhou Y, Jia Q, Wang D, Yang Z, Duan M, Yang X, Gao P, Ning X. Twist1 regulates macrophage plasticity to promote renal fibrosis through galectin-3. Cell Mol Life Sci 2022; 79:137. [PMID: 35182235 PMCID: PMC8858306 DOI: 10.1007/s00018-022-04137-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Renal interstitial fibrosis is the pathological basis of end-stage renal disease, in which the heterogeneity of macrophages in renal microenvironment plays an important role. However, the molecular mechanisms of macrophage plasticity during renal fibrosis progression remain unclear. In this study, we found for the first time that increased expression of Twist1 in macrophages was significantly associated with the severity of renal fibrosis in IgA nephropathy patients and mice with unilateral ureteral obstruction (UUO). Ablation of Twist1 in macrophages markedly alleviated renal tubular injury and renal fibrosis in UUO mice, accompanied by a lower extent of macrophage infiltration and M2 polarization in the kidney. The knockdown of Twist1 inhibited the chemotaxis and migration of macrophages, at least partially, through the CCL2/CCR2 axis. Twist1 downregulation inhibited M2 macrophage polarization and reduced the secretion of the profibrotic factors Arg-1, MR (CD206), IL-10, and TGF-β. Galectin-3 was decreased in the macrophages of the conditional Twist1-deficient mice, and Twist1 was shown to directly activate galectin-3 transcription. Up-regulation of galectin-3 recovered Twist1-mediated M2 macrophage polarization. In conclusion, Twist1/galectin-3 signaling regulates macrophage plasticity (M2 phenotype) and promotes renal fibrosis. This study could suggest new strategies for delaying kidney fibrosis in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Qingfeng Wu
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China.,Department of Geriatrics, Ninth Hospital of Xi'an City, Xi'an, 710054, Shaanxi, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Lei Wei
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Minna Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hao Liu
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Ting Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Ying Zhou
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Qing Jia
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Di Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhen Yang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Menglu Duan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiaoxia Yang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Room 2B. 71B, Baltimore, MD, 21224, USA.,Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Room 3B.71, Baltimore, MD, 21224, USA
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China. .,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
37
|
Yaribeygi H, Maleki M, Majeed M, Jamialahmadi T, Sahebkar A. Renoprotective Roles of Curcumin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:531-544. [PMID: 34981504 DOI: 10.1007/978-3-030-73234-9_38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of herb-based therapies is increasing over the past decades. These agents have been reported to provide many beneficial effects in many experimental and clinical studies. Curcumin is one of these agents which has potent pharmacological effects enabling it for the prevent and treatment of many diseases and pathologies such as renal disorders, hyperglycemia, oxidative stress, hypertension, and dyslipidemia. However, the exact molecular mechanisms mediating these renoprotective effects of curcumin are not well established. So, in the current study, we surveyed for possible renoprotective roles of curcumin and concluded how curcumin protects against renal injuries.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mina Maleki
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Zulpaite R, Miknevicius P, Leber B, Strupas K, Stiegler P, Schemmer P. Ex-vivo Kidney Machine Perfusion: Therapeutic Potential. Front Med (Lausanne) 2021; 8:808719. [PMID: 35004787 PMCID: PMC8741203 DOI: 10.3389/fmed.2021.808719] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 01/11/2023] Open
Abstract
Kidney transplantation remains the gold standard treatment for patients suffering from end-stage kidney disease. To meet the constantly growing organ demands grafts donated after circulatory death (DCD) or retrieved from extended criteria donors (ECD) are increasingly utilized. Not surprisingly, usage of those organs is challenging due to their susceptibility to ischemia-reperfusion injury, high immunogenicity, and demanding immune regulation after implantation. Lately, a lot of effort has been put into improvement of kidney preservation strategies. After demonstrating a definite advantage over static cold storage in reduction of delayed graft function rates in randomized-controlled clinical trials, hypothermic machine perfusion has already found its place in clinical practice of kidney transplantation. Nevertheless, an active investigation of perfusion variables, such as temperature (normothermic or subnormothermic), oxygen supply and perfusate composition, is already bringing evidence that ex-vivo machine perfusion has a potential not only to maintain kidney viability, but also serve as a platform for organ conditioning, targeted treatment and even improve its quality. Many different therapies, including pharmacological agents, gene therapy, mesenchymal stromal cells, or nanoparticles (NPs), have been successfully delivered directly to the kidney during ex-vivo machine perfusion in experimental models, making a big step toward achievement of two main goals in transplant surgery: minimization of graft ischemia-reperfusion injury and reduction of immunogenicity (or even reaching tolerance). In this comprehensive review current state of evidence regarding ex-vivo kidney machine perfusion and its capacity in kidney graft treatment is presented. Moreover, challenges in application of these novel techniques in clinical practice are discussed.
Collapse
Affiliation(s)
- Ruta Zulpaite
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Povilas Miknevicius
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | | | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Peter Schemmer
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
39
|
Casagrande V, Federici M, Menghini R. TIMP3 involvement and potentiality in the diagnosis, prognosis and treatment of diabetic nephropathy. Acta Diabetol 2021; 58:1587-1594. [PMID: 34181080 PMCID: PMC8542557 DOI: 10.1007/s00592-021-01766-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
Diabetic kidney disease, one of the most severe complications associated with diabetes, is characterized by albuminuria, glomerulosclerosis and progressive loss of renal function. Loss of TIMP3, an Extracellular matrix-bound protein, is a hallmark of diabetic nephropathy in human and mouse models, suggesting its pivotal role in renal diseases associated to diabetes. There is currently no specific therapy for diabetic nephropathy, and the ability to restore high TIMP3 activity specifically in the kidney may represent a potential therapeutic strategy for the amelioration of renal injury under conditions in which its reduction is directly related to the disease. Increasing evidence shows that diabetic nephropathy is also regulated by epigenetic mechanisms, including noncoding RNA. This review recapitulates the pathological, diagnostic and therapeutic potential roles of TIMP3 and the noncoding RNA (microRNA, long noncoding RNA) related to its expression, in the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Viviana Casagrande
- Departments of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Massimo Federici
- Departments of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Center for Atherosclerosis, Department of Medical Sciences, Policlinico Tor Vergata University, Rome, Italy
| | - Rossella Menghini
- Departments of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
40
|
Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in kidney disease. Adv Clin Chem 2021; 105:141-212. [PMID: 34809827 DOI: 10.1016/bs.acc.2021.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc and calcium endopeptidases which cleave extracellular matrix (ECM) proteins. They are also involved in the degradation of cell surface components and regulate multiple cellular processes, cell to cell interactions, cell proliferation, and cell signaling pathways. MMPs function in close interaction with the endogenous tissue inhibitors of matrix metalloproteinases (TIMPs), both of which regulate cell turnover, modulate various growth factors, and participate in the progression of tissue fibrosis and apoptosis. The multiple roles of MMPs and TIMPs are continuously elucidated in kidney development and repair, as well as in a number of kidney diseases. This chapter focuses on the current findings of the significance of MMPs and TIMPs in a wide range of kidney diseases, whether they result from kidney tissue changes, hemodynamic alterations, tubular epithelial cell apoptosis, inflammation, or fibrosis. In addition, the potential use of these endopeptidases as biomarkers of renal dysfunction and as targets for therapeutic interventions to attenuate kidney disease are also explored in this review.
Collapse
|
41
|
Is the Macrophage Phenotype Determinant for Fibrosis Development? Biomedicines 2021; 9:biomedicines9121747. [PMID: 34944564 PMCID: PMC8698841 DOI: 10.3390/biomedicines9121747] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Fibrosis is a pathophysiological process of wound repair that leads to the deposit of connective tissue in the extracellular matrix. This complication is mainly associated with different pathologies affecting several organs such as lung, liver, heart, kidney, and intestine. In this fibrotic process, macrophages play an important role since they can modulate fibrosis due to their high plasticity, being able to adopt different phenotypes depending on the microenvironment in which they are found. In this review, we will try to discuss whether the macrophage phenotype exerts a pivotal role in the fibrosis development in the most important fibrotic scenarios.
Collapse
|
42
|
Pro-Inflammatory Serum Amyloid a Stimulates Renal Dysfunction and Enhances Atherosclerosis in Apo E-Deficient Mice. Int J Mol Sci 2021; 22:ijms222212582. [PMID: 34830462 PMCID: PMC8623330 DOI: 10.3390/ijms222212582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Acute serum amyloid A (SAA) is an apolipoprotein that mediates pro-inflammatory and pro-atherogenic pathways. SAA-mediated signalling is diverse and includes canonical and acute immunoregulatory pathways in a range of cell types and organs. This study aimed to further elucidate the roles for SAA in the pathogenesis of vascular and renal dysfunction. Two groups of male ApoE-deficient mice were administered SAA (100 µL, 120 µg/mL) or vehicle control (100 µL PBS) and monitored for 4 or 16 weeks after SAA treatment; tissue was harvested for biochemical and histological analyses at each time point. Under these conditions, SAA administration induced crosstalk between NF-κB and Nrf2 transcriptional factors, leading to downstream induction of pro-inflammatory mediators and antioxidant response elements 4 weeks after SAA administration, respectively. SAA treatment stimulated an upregulation of renal IFN-γ with a concomitant increase in renal levels of p38 MAPK and matrix metalloproteinase (MMP) activities, which is linked to tissue fibrosis. In the kidney of SAA-treated mice, the immunolocalisation of inducible nitric oxide synthase (iNOS) was markedly increased, and this was localised to the parietal epithelial cells lining Bowman’s space within glomeruli, which led to progressive renal fibrosis. Assessment of aortic root lesion at the study endpoint revealed accelerated atherosclerosis formation; animals treated with SAA also showed evidence of a thinned fibrous cap as judged by diffuse collagen staining. Together, this suggests that SAA elicits early renal dysfunction through promoting the IFN-γ-iNOS-p38 MAPK axis that manifests as the fibrosis of renal tissue and enhanced cardiovascular disease.
Collapse
|
43
|
Urinary Matrix Metalloproteinase-9 and Nephrin in Idiopathic Membranous Nephropathy: A Cross-Sectional Study. DISEASE MARKERS 2021; 2021:1620545. [PMID: 34707724 PMCID: PMC8545589 DOI: 10.1155/2021/1620545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 11/14/2020] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
Aim Idiopathic membranous nephropathy (IMN) has a varied clinical course that requires accurate prediction as a prerequisite for treatment administration. Currently, its prognosis relies on proteinuria, a clinical parameter whose onset lags behind kidney injury. Increased urinary excretion of matrix metalloproteinase-9 (MMP-9) and nephrin has been reported in a number of IMN-like glomerular diseases in which they reflected disease severity. However, little or nothing is known of the importance of these biomarkers in IMN, a major cause of adult nephrotic syndrome. To highlight their potential, we measured both biomarkers and assessed their relationships with key parameters of renal function in IMN. Methods We quantified urinary MMP-9 and nephrin in 107 biopsy-proven IMN patients and 70 healthy subjects by enzyme-linked immunosorbent assay (ELISA). We then compared biomarker levels between patients and healthy subjects and among patients with different clinical features. We also determined the relationship of each biomarker with proteinuria and the estimated glomerular filtration rate (eGFR). Results Urinary MMP-9 and nephrin were significantly higher in IMN compared to healthy controls. Unlike nephrin, MMP-9 correlated significantly with proteinuria and was significantly higher among patients with nephrotic range proteinuria. Both biomarkers were correlated with eGFR, but only MMP-9 was significantly higher in patients with eGFR less than 90 ml/min/1.73 m2. Conclusion Our findings suggest that urinary MMP-9 holds a greater potential than urinary nephrin in monitoring the severity of IMN.
Collapse
|
44
|
Juin SK, Pushpakumar S, Sen U. GYY4137 Regulates Extracellular Matrix Turnover in the Diabetic Kidney by Modulating Retinoid X Receptor Signaling. Biomolecules 2021; 11:biom11101477. [PMID: 34680110 PMCID: PMC8533431 DOI: 10.3390/biom11101477] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney is associated with an accumulation of extracellular matrix (ECM) leading to renal fibrosis. Dysregulation of retinoic acid metabolism involving retinoic acid receptors (RARs) and retinoid X receptors (RXRs) has been shown to play a crucial role in diabetic nephropathy (DN). Furthermore, RARs and peroxisome proliferator-activated receptor γ (PPARγ) are known to control the RXR-mediated transcriptional regulation of several target genes involved in DN. Recently, RAR and RXR have been shown to upregulate plasminogen activator inhibitor-1 (PAI-1), a major player involved in ECM accumulation and renal fibrosis during DN. Interestingly, hydrogen sulfide (H2S) has been shown to ameliorate adverse renal remodeling in DN. We investigated the role of RXR signaling in the ECM turnover in diabetic kidney, and whether H2S can mitigate ECM accumulation by modulating PPAR/RAR-mediated RXR signaling. We used wild-type (C57BL/6J), diabetic (C57BL/6-Ins2Akita/J) mice and mouse mesangial cells (MCs) as experimental models. GYY4137 was used as a H2S donor. Results showed that in diabetic kidney, the expression of PPARγ was decreased, whereas upregulations of RXRα, RXRβ, and RARγ1 expression were observed. The changes were associated with elevated PAI-1, MMP-9 and MMP-13. In addition, the expressions of collagen IV, fibronectin and laminin were increased, whereas elastin expression was decreased in the diabetic kidney. Excessive collagen deposition was observed predominantly in the peri-glomerular and glomerular regions of the diabetic kidney. Immunohistochemical localization revealed elevated expression of fibronectin and laminin in the glomeruli of the diabetic kidney. GYY4137 reversed the pathological changes. Similar results were observed in in vitro experiments. In conclusion, our data suggest that RXR signaling plays a significant role in ECM turnover, and GYY4137 modulates PPAR/RAR-mediated RXR signaling to ameliorate PAI-1-dependent adverse ECM turnover in DN.
Collapse
Affiliation(s)
| | | | - Utpal Sen
- Correspondence: ; Tel.: +1-502-852-2030; Fax: +1-502-852-6239
| |
Collapse
|
45
|
Yan H, Xu J, Xu Z, Yang B, Luo P, He Q. Defining therapeutic targets for renal fibrosis: Exploiting the biology of pathogenesis. Biomed Pharmacother 2021; 143:112115. [PMID: 34488081 DOI: 10.1016/j.biopha.2021.112115] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023] Open
Abstract
Renal fibrosis is a failed wound-healing process of the kidney tissue after chronic, sustained injury, which is a common pathway and pathological marker of virtually every type of chronic kidney disease (CKD), regardless of cause. However, there is a lack of effective treatment specifically targeting against renal fibrosis per se to date. The main pathological feature of renal fibrosis is the massive activation and proliferation of renal fibroblasts and the excessive synthesis and secretion of extracellular matrix (ECM) deposited in the renal interstitium, leading to structural damage, impairment of renal function, and eventually end-stage renal disease. In this review, we summarize recent advancements regarding the participation and interaction of many types of kidney residents and infiltrated cells during renal fibrosis, attempt to comprehensively discuss the mechanism of renal fibrosis from the cellular level and conclude by highlighting novel therapeutic targets and approaches for development of new treatments for patients with renal fibrosis.
Collapse
Affiliation(s)
- Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiangxin Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
46
|
Wang S, Shi C, Cai X, Wang Y, Chen X, Han H, Shen H. Human Acellular Amniotic Matrix with Previously Seeded Umbilical Cord Mesenchymal Stem Cells Restores Endometrial Function in a Rat Model of Injury. Mediators Inflamm 2021; 2021:5573594. [PMID: 34531703 PMCID: PMC8438588 DOI: 10.1155/2021/5573594] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/24/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Abnormal endometrial repair after injury results in the formation of intrauterine adhesions (IUA) and a thin endometrium, which are key causes for implantation failure and infertility. Stem cell transplantation offers a potential alternative for some cases of severe Asherman's syndrome that cannot be treated with surgery or hormonal therapy. Umbilical cord-derived mesenchymal stem cells (UCMSCs) have been reported to repair the damaged endometrium. However, there is no report on the effects of UCMSCs previously seeded on human acellular amniotic matrix (AAM) on endometrial injury. METHODS Absolute ethanol was injected into rat uteri to damage the endometrium. UCMSCs previously seeded on AAM were surgically transplanted. Using a variety of methods, the treatment response was assessed by endometrial thickness, endometrial biomarker expression, endometrial receptivity, cell proliferation, and inflammatory factors. RESULTS Endometrial thickness was markedly improved after UCMSC-AAM transplantation. The expression of endometrial biomarkers, namely, vimentin, cytokeratin, and integrin β3, in treated rats increased compared with untreated rats. In the UCMSC-AAM group, the VEGF expression decreased, whereas that of MMP9 increased compared with the injury group. Moreover, in the AAM group, the MMP9 expression increased. The expression of proinflammatory factors (IL-2, TNFα, and IFN-γ) in the UCMSC-AAM group decreased compared with the untreated group, whereas the expression of anti-inflammatory factors (IL-4, IL-10) increased significantly. CONCLUSIONS UCMSC transplantation using AAM as the carrier can be applied to treat endometrial injury in rats. The successful preparation of lyophilized AAM provides the possibility of secondary infectious disease screening and amniotic matrix quality detection, followed by retrospective analysis. The UCMSC-AAM complex may promote the better application of UCMSCs on the treatment of injured endometrium.
Collapse
Affiliation(s)
- Shan Wang
- Peking University People's Hospital, Reproductive Medicine Center, Beijing 100044, China
- Beijing Friendship Hospital, Capital Medical University, Department of Obstetrics and Gynecology, Beijing 100050, China
| | - Cheng Shi
- Peking University People's Hospital, Reproductive Medicine Center, Beijing 100044, China
| | - Xiaohui Cai
- Beijing Friendship Hospital, Capital Medical University, Department of Obstetrics and Gynecology, Beijing 100050, China
| | - Yanbin Wang
- Peking University People's Hospital, Reproductive Medicine Center, Beijing 100044, China
| | - Xi Chen
- Peking University People's Hospital, Reproductive Medicine Center, Beijing 100044, China
| | - Hongjing Han
- Peking University People's Hospital, Reproductive Medicine Center, Beijing 100044, China
| | - Huan Shen
- Peking University People's Hospital, Reproductive Medicine Center, Beijing 100044, China
| |
Collapse
|
47
|
Yazgan B, Avcı F, Memi G, Tastekin E. Inflammatory response and matrix metalloproteinases in chronic kidney failure: Modulation by adropin and spexin. Exp Biol Med (Maywood) 2021; 246:1917-1927. [PMID: 34024143 PMCID: PMC8424640 DOI: 10.1177/15353702211012417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic kidney disease is a major global public health problem. The peptide hormones adropin and spexin modulate many physiological functions such as energy balance and glucose, lipid and protein metabolism. However, it is unclear whether these peptides may exert effects on renal damage, tissue remodeling, and inflammatory conditions. In view of the limited information, we aimed to investigate the effect of adropin and spexin on matrix metalloproteinase and inflammatory response genes a rat model of adenine-induced chronic kidney failure. Chronic kidney failure was induced in rats by administering adenine hemisulfate. Renal function was determined in an autoanalyzer. Histopathological modifications were assessed by H&E staining. mRNA expression levels of ALOX 15, COX 1, COX 2, IL-1β, IL-10, IL-17A, IL-18 IL-21, IL-33, KIM-1, MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-13, NGAL, TGFβ1, TIMP-1, and TNFα in kidney tissue were measured by qPCR. Our results showed an increase of 24-h urine volume, serum creatinine, BUN, and urine protein levels in group with adenine-induced CKF. Adropin and spexin treatments decreased urine protein and 24-h urine volume. Renal damage, TIMP-1, IL-33, and MMP-2 increased after CKF induction, while COX 1, MMP-9, and MMP-13 levels were significantly reduced. Furthermore, KIM-1, TIMP-1, IL-33, and MMP-2 were downregulated by spexin treatment. Renal damage, NGAL, TIMP-1 IL-17A, IL-33, MMP-2, and MMP-3 decreased after adropin treatment, while MMP-13 levels were upregulated. Treatment with adropin+spexin decreased KIM-1, NGAL, TIMP-1, IL-1β, IL-17A, IL-18, IL-33, ALOX 15, COX 1, COX 2, TGFβ1, TNFα, MMP-2, MMP-3, and MMP-7, but increased MMP-13 levels. Our findings revealed that inflammatory response and MMP genes were modulated by adropin and spexin. These peptides may have protective effects on inflammation and chronic kidney damage progression.
Collapse
Affiliation(s)
- Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoğlu Serefeddin Health Services Vocational School, Amasya University, Amasya 05100, Turkey
- Department of Molecular Medicine, Institute of Health Sciences, Amasya University, Amasya 05100, Turkey
| | - Filiz Avcı
- Department of Molecular Medicine, Institute of Health Sciences, Amasya University, Amasya 05100, Turkey
| | - Gülsün Memi
- Department of Nursing, Hakkı Yoruk Health School, Trakya University, Edirne 22030, Turkey
- Department of Physiology, Institute of Health Sciences, Trakya University, Edirne 22030, Turkey
| | - Ebru Tastekin
- Department of Pathology, Faculty of Medicine, Trakya University, Edirne 22030, Turkey
| |
Collapse
|
48
|
McNair ED, Bezaire J, Moser M, Mondal P, Conacher J, Franczak A, Sawicki G, Reid D, Khani-Hanjani A. The Association of Matrix Metalloproteinases With Acute Kidney Injury Following CPB-Supported Cardiac Surgery. Can J Kidney Health Dis 2021; 8:20543581211019640. [PMID: 34350005 PMCID: PMC8287351 DOI: 10.1177/20543581211019640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cardiac surgery-associated acute kidney injury (AKI) is an adverse outcome that increases morbidity and mortality in patients undergoing cardiac surgical procedures. To date, the use of serum creatinine levels as an early indicator of AKI has limitations because of its slow rise and poor predictive accuracy for renal injury. This delay in diagnosis may lead to prolonged initiation in treatment and increased risk for adverse outcomes. OBJECTIVE This pilot study explores serum and urine matrix metalloproteinases (MMPs)-2 and MMP-9 and their association, and potentially earlier detection of AKI in patients following cardiopulmonary bypass (CPB)-supported cardiac surgery. We hypothesize that increased activity of serum and urine levels MMP-2 and/ or MMP-9 are associated with AKI. Furthermore, MMP-2 and/ or MMP-9 may provide earlier identification of AKI as compared with serum levels of creatinine. METHODS During the study period, there were 150 CPB-supported surgeries, 21 of which developed AKI according to the Kidney Disease Improving Global Outcomes criteria. We then selected a sample of 21 matched cases from those patients who went through the surgery without developing AKI. Primary outcomes were the measurement via gel zymography of the serum and urine activity of MMP-2 and MMP-9 drawn at the following intervals: pre-CPB; 10-minute post-CPB; and 4-hour post-CPB time points. Secondary variables were the measurement of serum creatinine, intensive care unit (ICU) fluid balance, and length of ICU stay. RESULTS At the 10-minute and 4-hour post-CPB time points, the serum MMP-2 activity of AKI patients were significantly higher as compared with non-AKI patients (P < .001 and P = .004), respectively. Similarly, at the 10-minute and 4-hour post-CPB time points, the serum MMP-9 activity of AKI patients was significantly higher as compared with non-AKI patients (P = .001 and P = .014), respectively. The activity of urine MMP-2 and MMP-9 of AKI patients was significantly higher as compared with non-AKI patients at all 3 time points (P = .004, P < .001, P < .001), respectively. CONCLUSION Although the pilot study may have limitations, it has demonstrated that the serum and urine levels of activity of MMP-2 and MMP-9 are associated with the clinical endpoint of AKI and appear to have earlier rising levels as compared with those of serum creatinine. Furthermore, in depth, exploration is underway with a larger sample size to attempt validation of the analytical performance and reproducibility of the assay for MMP-2 and MMP-9 to aid in earlier diagnosis of AKI following CPB-supported cardiac surgery.
Collapse
Affiliation(s)
- Erick D. McNair
- Department of Pathology and Laboratory
Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Department of Surgery/Division of
Cardiac Surgery, College of Medicine, University of Saskatchewan, Saskatoon,
Canada
| | - Jennifer Bezaire
- Department of Pathology and Laboratory
Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Michael Moser
- Department of Medicine, College of
Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Prosanta Mondal
- Department of Community Health and
Epidemiology, College of Medicine, University of Saskatchewan, Saskatoon,
Canada
| | - Josie Conacher
- Department of Pathology and Laboratory
Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Aleksandra Franczak
- Department of Medicine, College of
Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Greg Sawicki
- Department of Pharmacology, College of
Medicine, University of Saskatchewan, Saskatoon, Canada
| | - David Reid
- Department of Medicine, College of
Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Abass Khani-Hanjani
- Department of Surgery/Division of
Cardiac Surgery, College of Medicine, University of Saskatchewan, Saskatoon,
Canada
| |
Collapse
|
49
|
Cantero-Navarro E, Rayego-Mateos S, Orejudo M, Tejedor-Santamaria L, Tejera-Muñoz A, Sanz AB, Marquez-Exposito L, Marchant V, Santos-Sanchez L, Egido J, Ortiz A, Bellon T, Rodrigues-Diez RR, Ruiz-Ortega M. Role of Macrophages and Related Cytokines in Kidney Disease. Front Med (Lausanne) 2021; 8:688060. [PMID: 34307414 PMCID: PMC8295566 DOI: 10.3389/fmed.2021.688060] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a key characteristic of kidney disease, but this immune response is two-faced. In the acute phase of kidney injury, there is an activation of the immune cells to fight against the insult, contributing to kidney repair and regeneration. However, in chronic kidney diseases (CKD), immune cells that infiltrate the kidney play a deleterious role, actively participating in disease progression, and contributing to nephron loss and fibrosis. Importantly, CKD is a chronic inflammatory disease. In early CKD stages, patients present sub-clinical inflammation, activation of immune circulating cells and therefore, anti-inflammatory strategies have been proposed as a common therapeutic target for renal diseases. Recent studies have highlighted the plasticity of immune cells and the complexity of their functions. Among immune cells, monocytes/macrophages play an important role in all steps of kidney injury. However, the phenotype characterization between human and mice immune cells showed different markers; therefore the extrapolation of experimental studies in mice could not reflect human renal diseases. Here we will review the current information about the characteristics of different macrophage phenotypes, mainly focused on macrophage-related cytokines, with special attention to the chemokine CCL18, and its murine functional homolog CCL8, and the macrophage marker CD163, and their role in kidney pathology.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Lucía Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Sanz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Teresa Bellon
- La Paz Hospital Health Research Institute, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
50
|
Lysyl oxidase inhibitors attenuate cyclosporin A-induced nephropathy in mouse. Sci Rep 2021; 11:12437. [PMID: 34127702 PMCID: PMC8203624 DOI: 10.1038/s41598-021-91772-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
Calcineurin inhibitors, such as Cyclosporin (CsA), are the mainstay of anti-rejection therapy in solid organ transplants but can paradoxically induce progressive nephropathy characterised by renal dysfunction and interstitial fibrosis. Lysyl oxidases (LOXs), a group of enzymes that catalyse extracellular matrix (ECM) crosslinking, were shown to implicate in tissue scarring. It is hypothesized that inhibition of these enzymes may render therapeutic effects against CsA-induced nephropathy. In this study, 6-to-8 weeks old C57BL/6 J mice were administered saline or CsA (30 mg/kg/day s.c) for 16 weeks. At 8 weeks, CsA-treated animals were divided into 5 groups respectively treated with: (1) vehicle, (2) PXS-5505 (Pan-LOX inhibitor), (3) PXS-5382 (LOX-like 2 inhibitor), (4) PXS-5505 for 4 weeks then PXS-5382 for 4 weeks (sequential therapy), and (5) Telmisartan (standard therapy). Our results indicate that CsA administration significantly increased the levels of blood urea nitrogen, glomerular and tubular injury, tubulointerstitial fibrosis, inflammation and oxidative stress in mouse kidney. These changes were associated with upregulated mRNA expression of LOX and LOXL2. Administration of Pan-LOX or LOXL2 inhibitors or the sequential therapy suppressed the expression of ECM proteins (α-SMA, FN and COL1A), matrix metalloproteases (MMP)2 and 9, inflammatory markers (TNFα and MCP-1) and TGF-β1-Smad3 signalling. Among all regimens including telmisartan, only Pan-LOX inhibitor PXS-5505 was able to attenuate uraemia. Collectively, our study suggests that Pan-LOX and LOXL2 inhibition can attenuate progressive nephropathy due to CsA administration.
Collapse
|