1
|
Rosa IA, Bianchini AE, Bressan CA, Ferrari FT, Ariotti K, Mori NC, Bandeira Junior G, Pinheiro CG, Pavanato MA, Cargnelutti JF, Baldisserotto B, Heinzmann BM. Redox profile of silver catfish challenged with Aeromonas hydrophila and treated with hexane extract of Hesperozygis ringens (Benth.) Epling through immersion bath. AN ACAD BRAS CIENC 2024; 96:e20230188. [PMID: 38597489 DOI: 10.1590/0001-3765202420230188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/19/2023] [Indexed: 04/11/2024] Open
Abstract
The growing increase in the fish farming sector has favored the establishment of bacterial outbreaks caused by Aeromonas hydrophila in several species. The hexane extract of Hesperozygis ringens (HEHR) (Lamiaceae) leaves increased the survival rate of silver catfish (Rhamdia quelen) experimentally infected by A. hydrophila. However, it is noteworthy that no reports have been found on the possible mechanisms of action of this extract in infected fish. This study aimed to evaluate the effect of the HEHR, administered through single immersion bath, on lipid peroxidation and antioxidant defenses in muscle and liver tissue of silver catfish challenged with A. hydrophila. The results showed that the oxidative status of silver catfish was altered, although oxidative stress was not triggered during the experiment. HEHR at 30 mg/L (HEHR30) was not characterized as a pro-oxidant agent in the presence of infection, unlike florfenicol and HEHR at 15 mg/L treatments in some cases. In short, HEHR30 provided an important increase in hepatic catalase activity, characterizing one of the possible mechanisms involved in the greater survival of fish experimentally infected by A. hydrophila. Additionally, HEHR30 did not induce lipid peroxidation, nor reduced antioxidant defenses of silver catfish infected or not by A. hydrophila.
Collapse
Affiliation(s)
- Isadora A Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Adriane E Bianchini
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Caroline A Bressan
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Fabíola T Ferrari
- Universidade Federal de Santa Maria, Curso de Farmácia, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Karine Ariotti
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Natacha C Mori
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
- Universidade de Cruz Alta (UNICRUZ), Curso de Farmácia, Rodovia Municipal Jacob Della Mea, s/n, km 5,6, 98020-290 Cruz Alta, RS, Brazil
| | - Guerino Bandeira Junior
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Carlos G Pinheiro
- Programa de Pós-Graduação em Engenharia Florestal, Universidade Federal de Santa Maria, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Maria Amália Pavanato
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
- Universidade Federal de Santa Maria, Departamento de Fisiologia e Farmacologia, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Juliana F Cargnelutti
- Universidade Federal de Santa Maria, Departamento de Medicina Veterinária Preventiva, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Bernardo Baldisserotto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
- Universidade Federal de Santa Maria, Departamento de Fisiologia e Farmacologia, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Berta Maria Heinzmann
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
- Universidade Federal de Santa Maria, Curso de Farmácia, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
- Universidade Federal de Santa Maria, Departamento de Farmácia Industrial, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
4
|
Pires LF, Costa LM, de Almeida AAC, Silva OA, Cerqueira GS, de Sousa DP, de Freitas RM. Is there a correlation between in vitro antioxidant potential and in vivo effect of carvacryl acetate against oxidative stress in mice hippocampus? Neurochem Res 2014; 39:758-69. [PMID: 24619401 DOI: 10.1007/s11064-014-1267-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 02/23/2014] [Accepted: 02/25/2014] [Indexed: 11/28/2022]
Abstract
This study investigated in vitro and in vivo antioxidant potential of carvacryl acetate (CA), a derivative of carvacrol, monoterpenic component of oregano. The correlation between in vitro and in vivo CA effects was also determined. In vitro tests measured thiobarbituric acid reactive species content, nitrite formation and hydroxyl radical levels. In vivo tests measured thiobarbituric acid reactive species content, nitrite concentration and reduced glutathione (GSH) levels, as well as glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase activities were measured, using mice hippocampus. The CA administrations for in vivo tests were intraperitoneally and acutely improved. CA reduced lipid peroxidation, nitrite and hydroxyl radical contents in vitro as well as lipid peroxidation and nitrite content in vivo. It also increased reduced GSH levels and GPx as well as catalase activities. Moreover, CA required a lower concentration to inhibit 50 % of free radicals measured in vitro than trolox. There was significant negative correlation between in vitro nitrite levels and in vivo reduced GSH levels; in vitro nitrite content and in vivo GPx activity as well as in vitro hydroxyl radical levels and in vivo SOD activity. To date, this is the first study which suggests vitro and in vivo antioxidant potential to this monoterpene and the correlation between these parameters.
Collapse
Affiliation(s)
- Lúcio Fernandes Pires
- Postgraduate Program of Pharmacology, Federal University of Piauí, Teresina, PI, Brazil,
| | | | | | | | | | | | | |
Collapse
|