1
|
Fleming S, Morroll D, Nijs M. Sperm Separation and Selection Techniques to Mitigate Sperm DNA Damage. Life (Basel) 2025; 15:302. [PMID: 40003711 PMCID: PMC11856810 DOI: 10.3390/life15020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Semen preparation and sperm selection techniques exploit the morphological and physiological characteristics of sperm function, including motility, morphology, density, and maturity, as reflected by their cell-surface charge and the expression of hyaluronan receptors. The various methods employed have a common purpose of mimicing sperm selection within the female reproductive tract and, thereby, increasing the likelihood that oocytes will be fertilised by spermatozoa with intact nuclear DNA and a normal genome. Indeed, the paternal genome is relevant to embryonic genome activation and blastocyst development, and has a fundamental impact upon successful implantation, ongoing pregnancy and live birth. The clinical use of both well-established and some more recently developed techniques is discussed in this comparative clinical review of sperm separation from seminal plasma and selection for insemination.
Collapse
Affiliation(s)
- Steven Fleming
- Discipline of Anatomy & Histology, School of Medical Sciences, University of Sydney, Sydney, NSW 2000, Australia;
- CooperSurgical, 2750 Ballerup, Denmark;
| | | | | |
Collapse
|
2
|
Vasilescu SA, Goss DM, Gurner KH, Kelley RL, Mazi M, De Bond FK, Lorimer J, Horta F, Parast FY, Gardner DK, Nosrati R, Warkiani ME. A biomimetic sperm selection device for routine sperm selection. Reprod Biomed Online 2025; 50:104433. [PMID: 39721152 DOI: 10.1016/j.rbmo.2024.104433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/27/2024] [Indexed: 12/28/2024]
Abstract
RESEARCH QUESTION Can a biomimetic microfluidic sperm sorter isolate motile sperm while minimizing DNA damage in comparison with density gradient centrifugation (DGC)? DESIGN This was a two-phase study of 61 men, consisting of a proof-of-concept study with 21 donated semen samples in a university research laboratory, followed by a diagnostic andrology study with 40 consenting patients who presented at a fertility clinic for semen diagnostics. Each sample was split to perform DGC and microfluidic sperm selection (one-step sperm selection with 15 min of incubation) side-by-side. Outcomes evaluated included concentration, progressive motility, and DNA fragmentation index (DFI) of raw semen, and sperm isolated using DGC and the microfluidic device. Results were analysed using Friedman's test for non-parametric data (significant when P < 0.05). DFI values were assessed by sperm chromatin dispersion assay. RESULTS Sperm isolated using DGC and the microfluidic device showed improved DFI values and motility compared with the raw semen sample in both cohorts. However, the microfluidic device was significantly better than DGC at reducing DFI values in both the proof-of-concept study (P = 0.012) and the diagnostic andrology study (P < 0.001). Progressive motility was significantly higher for sperm isolated using the microfluidic device in the proof-of-concept study (P = 0.0061) but not the diagnostic andrology study. Sperm concentration was significantly lower for samples isolated using the microfluidic device compared with DGC for both cohorts (P < 0.001). CONCLUSIONS Channel-based biomimetic sperm selection can passively select motile sperm with low DNA fragmentation. When compared with DGC, this method isolates fewer sperm but with a higher proportion of progressively motile cells and greater DNA integrity.
Collapse
Affiliation(s)
| | - Dale M Goss
- University of Technology Sydney, Sydney, Australia; IVF Australia, Sydney, Australia
| | | | | | | | | | - Jennifer Lorimer
- Education Programme in Reproduction and Development, Monash University, Melbourne, Australia
| | - Fabrizzio Horta
- Education Programme in Reproduction and Development, Monash University, Melbourne, Australia; Fertility and Research Centre, Royal Hospital for Women and School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Farin Y Parast
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia
| | | | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia
| | - Majid E Warkiani
- University of Technology Sydney, Sydney, Australia; Institute for Biomedical Materials and Devices, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
3
|
Serrano-Albal M, Aquilina MC, Kiazim LG, Zak LJ, Griffin DK, Ellis PJ. Effect of Two Different Sperm Selection Methods on Boar Sperm Parameters and In Vitro Fertilisation Outcomes. Animals (Basel) 2024; 14:2544. [PMID: 39272329 PMCID: PMC11394568 DOI: 10.3390/ani14172544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Porcine in vitro embryo production (IVP) protocols have conventionally used density gradient selection (DGS) by centrifugation to prepare sperm samples and achieve successful fertilisation. However, the possible toxicity of the solutions used and the potential damage caused by the centrifugation step may have a negative effect on the quality of the sample. Microfluidic chip-based sperm (MCS) sorting has been proposed as an alternative technique for the selection of high-quality sperm with the purpose of improving reproductive outcomes in IVF. This device does not require centrifugation or any toxic solution to prepare the sample for fertilisation. The sample is not subjected to unnecessary stress, and the process is less operator-dependent. In this study, we compared the sperm parameters of unselected extender-diluted boar semen samples with selected samples using DGS and MCS methods. The results show an expected reduction in sperm concentration after both methods. All the groups were significantly different from one another, with MCS being the group with the lowest concentration. Though the three groups had a similar overall motility, significant differences were found in progressive motility when comparing the unselected group (control, 19.5 ± 1.4%) with DGS and MCS. Progressive motility in DGS was also significantly higher than in MCS (65.2 ± 4.9% and 45.7% ± 5.3, respectively). However, MCS selection resulted in enriched sperm samples with a significantly lower proportion of morphologically abnormal sperm compared to DGS. After fertilisation, no statistical differences were found between the two methods for embryological parameters such as cleavage rates, blastulation rates, and embryo quality. The number of cells in blastocysts derived from MCS was significantly greater than those derived from DGS sperm. Thus, we demonstrate that MCS is at least as good as the standard DGS for most measures. As a more gentle and reproducible approach for sperm selection, however, it could improve consistency and improve IVP outcomes as mediated by a greater proportion of morphologically normal sperm and manifested by a higher cell count in blastocysts.
Collapse
Affiliation(s)
| | | | - Lucas G Kiazim
- School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK
| | - Louisa J Zak
- Topigs Norsvin Research Center, Meerendonkweg 25, 5216 TZ 's-Hertogenbosch, The Netherlands
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK
| | - Peter J Ellis
- School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK
| |
Collapse
|
4
|
Cariati F, Orsi MG, Bagnulo F, Del Mondo D, Vigilante L, De Rosa M, Sciorio R, Conforti A, Fleming S, Alviggi C. Advanced Sperm Selection Techniques for Assisted Reproduction. J Pers Med 2024; 14:726. [PMID: 39063980 PMCID: PMC11278480 DOI: 10.3390/jpm14070726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Male infertility accounts for approximately 40% of infertility cases. There are many causes of male infertility, including environmental factors, age, lifestyle, infections, varicocele, and cancerous pathologies. Severe oligozoospermia, cryptozoospermia, and azoospermia (obstructive and non-obstructive) are identified as severe male factor infertility, once considered conditions of sterility. Today, in vitro fertilization (IVF) techniques are the only treatment strategy in cases of male factor infertility for which new methodologies have been developed in the manipulation of spermatozoa to achieve fertilization and increase success rates. This review is an update of in vitro manipulation techniques, in particular sperm selection, emphasizing clinical case-specific methodology. The success of an IVF process is related to infertility diagnosis, appropriate choice of treatment, and effective sperm preparation and selection. In fact, selecting the best spermatozoa to guarantee an optimal paternal heritage means increasing the blastulation, implantation, ongoing pregnancy and live birth rates, resulting in the greater success of IVF techniques.
Collapse
Affiliation(s)
- Federica Cariati
- Department of Public Health, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (L.V.); (M.D.R.); (C.A.)
- Fertility Unit, Maternal-Child Department, AOU Federico II Polyclinic, 80131 Naples, Italy;
| | - Maria Grazia Orsi
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (M.G.O.); (A.C.)
| | - Francesca Bagnulo
- Fertility Unit, Maternal-Child Department, AOU Federico II Polyclinic, 80131 Naples, Italy;
| | - Daniela Del Mondo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Luigi Vigilante
- Department of Public Health, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (L.V.); (M.D.R.); (C.A.)
- Fertility Unit, Maternal-Child Department, AOU Federico II Polyclinic, 80131 Naples, Italy;
| | - Martina De Rosa
- Department of Public Health, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (L.V.); (M.D.R.); (C.A.)
- Fertility Unit, Maternal-Child Department, AOU Federico II Polyclinic, 80131 Naples, Italy;
| | - Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman Mother Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (M.G.O.); (A.C.)
| | - Steven Fleming
- Discipline of Anatomy & Histology, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia;
| | - Carlo Alviggi
- Department of Public Health, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (L.V.); (M.D.R.); (C.A.)
- Fertility Unit, Maternal-Child Department, AOU Federico II Polyclinic, 80131 Naples, Italy;
| |
Collapse
|
5
|
Hsu CT, Lee CI, Lin FS, Wang FZ, Chang HC, Wang TE, Huang CC, Tsao HM, Lee MS, Agarwal A. Live motile sperm sorting device for enhanced sperm-fertilization competency: comparative analysis with density-gradient centrifugation and microfluidic sperm sorting. J Assist Reprod Genet 2023; 40:1855-1864. [PMID: 37300647 PMCID: PMC10371955 DOI: 10.1007/s10815-023-02838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE A live motile sperm sorting device (LensHooke® CA0) developed to prevent the deleterious effects of centrifugation was evaluated comparatively with conventional density-gradient centrifugation (DGC) and microfluidic-based device (Zymot) in sperm selection. METHODS Semen samples from 239 men were collected. CA0 under different incubation intervals (5, 10, 30, and 60 min) and temperatures (20, 25, and 37℃) was conducted. The sperm quality in CA0-, DGC-, and Zymot-processed samples was then comparatively evaluated. Semen parameters included concentration, motility, morphology, motion kinematics, DNA fragmentation index (DFI), and the rate of acrosome-reacted sperm (AR). RESULTS Total motility and motile sperm concentration increased in a time- and temperature-dependent manner and the total motility peaked for 30 min at 37℃. In paired analysis, CA0 showed significantly higher total motility (94.0%), progressive motility (90.8%), rapid progressive motility (83.6%), normal morphology (10.3%), and lower DFI (2.4%) and AR (4.7%) than the other two methods in normozoospermic samples (all p < 0.05). For non-normozoospermic samples, CA0 had significantly better results than the other two methods (total motility 89.2%, progressive motility 80.4%, rapid progressive motility 74.2%, normal morphology 8.5%, DFI 4.0%, and AR 4.0%; all p < 0.05). CONCLUSION CA0 yielded spermatozoa with enhanced sperm fertilization potentials; DFI was minimized in samples processed by CA0. CA0 was effective for both normal and abnormal semen samples due to its consistent selection efficiency.
Collapse
Affiliation(s)
- Cheng-Teng Hsu
- Center for Research and Development, Bonraybio Co., Ltd, Taichung, Taiwan
| | - Chun-I Lee
- Division of Infertility Clinic, Lee Women's Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Fong-Sian Lin
- Center for Research and Development, Bonraybio Co., Ltd, Taichung, Taiwan
| | - Fang-Zong Wang
- Center for Research and Development, Bonraybio Co., Ltd, Taichung, Taiwan
| | - Hui-Chen Chang
- Center for Research and Development, Bonraybio Co., Ltd, Taichung, Taiwan
| | - Tse-En Wang
- Center for Research and Development, Bonraybio Co., Ltd, Taichung, Taiwan
| | - Chun-Chia Huang
- Division of Infertility Clinic, Lee Women's Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Mei Tsao
- Division of Infertility Clinic, Lee Women's Hospital, Taichung, Taiwan
| | - Maw-Sheng Lee
- Division of Infertility Clinic, Lee Women's Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ashok Agarwal
- Global Andrology Forum, American Center for Reproductive Medicine, OH, 44022, Moreland Hills, USA.
- Cleveland Clinic Foundation, Cleveland, OH, 44195, USA.
- Global Andrology Forum, 130 West Juniper Lane, Moreland Hills, OH, 44022, USA.
| |
Collapse
|
6
|
Analyzing the Differential Impact of Semen Preparation Methods on the Outcomes of Assisted Reproductive Techniques. Biomedicines 2023; 11:biomedicines11020467. [PMID: 36831003 PMCID: PMC9953211 DOI: 10.3390/biomedicines11020467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Sperm separation plays a critical role in assisted reproductive technology. Based on migration, density gradient centrifugation and filtration, a properly selected sperm could help in increasing assisted reproductive outcomes in teratozoospermia (TZs). The current study aimed to assess the prognostic value of four sperm selection techniques: density gradient centrifugation (DGC), swim-up (SU), DGC-SU and DGC followed by magnetic-activated cell sorting (DGC-MACS). These were evaluated using spermatozoa functional parameters. A total of 385 infertile couples underwent the procedure of intracytoplasmic sperm injection (ICSI), with an isolated teratozoospermia in the male partner. Semen samples were prepared by using one of the mentioned sperm preparation techniques. The improvements in the percentage of normal mature spermatozoa, rate of fertilization, cleavage, pregnancy and the number of live births were assessed. The normal morphology, spermatozoa DNA fragmentation (SDF) and chromatin maturity checked by using chromomycin A3 (CMA3) with DGC-MACS preparation were better compared to the other three methods. Embryo cleavage, clinical pregnancy and implantation were better improved in the DGC-MACS than in the other tested techniques. The DGC-MACS technique helped in the selection of an increased percentage of normal viable and mature sperm with intact chromatin integrity in patients with teratozoospermia.
Collapse
|
7
|
Štiavnická M, Hošek P, Abril-Parreño L, Kenny DA, Lonergan P, Fair S. Membrane remodulation and hyperactivation are impaired in frozen-thawed sperm of low-fertility bulls. Theriogenology 2023; 195:115-121. [DOI: 10.1016/j.theriogenology.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
|
8
|
Rao M, Tang L, Wang L, Chen M, Yan G, Zhao S. Cumulative live birth rates after IVF/ICSI cycles with sperm prepared by density gradient centrifugation vs. swim-up: a retrospective study using a propensity score-matching analysis. Reprod Biol Endocrinol 2022; 20:60. [PMID: 35361225 PMCID: PMC8969370 DOI: 10.1186/s12958-022-00933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Density gradient centrifugation (DGC) and swim-up (SU) are the two most widely used sperm preparation methods for in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). However, existing comparisons of IVF/ICSI outcomes following these sperm preparation methods are insufficient and controversial. METHODS This retrospective study included all first autologous IVF and ICSI cycles performed between March 1, 2016, and December 31, 2020 in a single university-based center. A total of 3608 cycles were matched between DGC and SU using propensity score (PS) matching for potential confounding factors at a ratio of 1:1. The primary outcome was the cumulative live birth rate (cLBR) per aspiration. RESULTS PS matching provided 719 cycles after DGC and 719 cycles after SU. After adjusting for confounders, the recovery rate, progressive motility rate after sperm preparation, fertilization rate, good-quality embryo rate, and blastocyst formation rate were similar between the DGC and SU groups. The cLBR (odds ratio [OR] = 1.143, 95% confidence interval [CI]: 0.893-1.461) and LBR per transfer (OR = 1.082, 95% CI: 0.896-1.307) were also not significantly different between the groups. Furthermore, no significant differences were found in all of the laboratory and clinical outcomes following conventional IVF or ICSI cycles between the two groups. However, a significantly higher fertilization rate (β = 0.074, 95% CI: 0.008-0.140) was observed when using poor-quality sperm in the DGC group than in the SU group. CONCLUSIONS Sperm preparation using DGC and SU separately resulted in similar IVF/ICSI outcomes. Further studies are warranted to compare the effects of these methods on IVF/ICSI outcomes when using sperm from subgroups of different quality.
Collapse
Affiliation(s)
- Meng Rao
- Department of Reproduction and Genetics, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Li Tang
- Department of Reproduction and Genetics, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Longda Wang
- Department of Reproduction and Genetics, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Mengxiang Chen
- Department of Reproduction and Genetics, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Gaofeng Yan
- Department of Reproduction and Genetics, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Shuhua Zhao
- Department of Reproduction and Genetics, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
9
|
Sperm Selection for ICSI: Do We Have a Winner? Cells 2021; 10:cells10123566. [PMID: 34944074 PMCID: PMC8700516 DOI: 10.3390/cells10123566] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
In assisted reproductive technology (ART), the aim of sperm cells’ preparation is to select competent spermatozoa with the highest fertilization potential and in this context, the intracytoplasmic sperm injection (ICSI) represents the most applied technique for fertilization. This makes the process of identifying the perfect spermatozoa extremely important. A number of methods have now been developed to mimic some of the natural selection processes that exist in the female reproductive tract. Although many studies have been conducted to identify the election technique, many doubts and disagreements still remain. In this review, we will discuss all the sperm cell selection techniques currently available for ICSI, starting from the most basic methodologies and continuing with those techniques suitable for sperm cells with reduced motility. Furthermore, different techniques that exploit some sperm membrane characteristics and the most advanced strategy for sperm selection based on microfluidics, will be examined. Finally, a new sperm selection method based on a micro swim-up directly on the ICSI dish will be analyzed. Eventually, advantages and disadvantages of each technique will be debated, trying to draw reasonable conclusions on their efficacy in order to establish the gold standard method.
Collapse
|